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Over the last decade, there has been a considerable amount of research in automatic short answer grad-

ing (ASAG). The majority of previous experiments were based on a feature engineering approach and used
manually-engineered statistical, lexical, grammatical and semantic features for ASAG. In this study, we aim
for an approach that is free from manually-engineered features and propose an architecture for deep learning
based on the newly-introduced BERT (Bidirectional Encoder Representations from Transformers) and XL-
NET (Extra Long Network) classifiers. We report the results achieved over one of the most popular dataset for
ASAG, SciEntBank. Compared to past works for the SemEval-2013 2-way, 3-way and 5-way tasks, we ob-
tained better or competitive performance with BERT Base (cased and uncased) and XLNET Base (cased) using
a reference-based approach (considering students and model answers) and without any type of hand-crafted

features.

1 INTRODUCTION

Automatic grading of natural language answers is
a highly desired goal in education. Advances in
machine learning bring this goal closer to reality.
Large classes and the success of Massive Open Online
Courses (MOOCS) in education contribute to making
this goal even more attractive. Open-ended answers
provide teachers with a more accurate and detailed
understanding of how a student comprehends domain-
specific knowledge (Badger and Thomas, 1992). This
is compared to traditional types of answers like
multiple-choice questions or fill-in-the-gap items in
which the student’s understanding is restricted to the
choices that are presented and thus not examined
deeply. (Riordan et al., 2017).

For automatic grading, natural language answers
can be divided into essays or short answers. Ac-
cording to Burrows et al. (2015), short answers have
the following characteristics: The answer should not
be guessed from the words in the question (external
knowledge); the answer should be given in natural
language; the length of the answer should be about
one phrase to one paragraph; the content of the an-
swer is domain-related; and the answer should be
close-ended.

In both short answers and essays, each student an-
swer is evaluated based on a nominal, ordinal or ratio
scale (Roy et al., 2018). In the nominal scale, grades
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are in the format of labels like correct, incorrect, etc.
Ordinal grades are in the letter format like A+, A-,
etc. and ratio grades are in the numerical format like
1, 1.5, etc.

Besides grades, the student answer is usually as-
sociated with the question and a model (also called
reference) answer(s). Sakaguchi et al. (2015) de-
fined two general types of grading approaches. When
automatic grading is done based only on the stu-
dent answer and label, this is called a response-based
approach. Otherwise, the grading is done using a
reference-based approach in which the whole con-
text is considered (model answer or question, or both
along the student answer and the label). In this case,
the system compares the student’s answer with the
model answer using several types of similarity met-
rics. The other approaches are hybrid, in which both
response- based and reference-based techniques are
taken into account simultaneously.

In a majority of natural language processing(NLP)
tasks such as ASAG, language model (LM)s have
proven to be successful. In essence, these models help
determine the probability of a sequence of words and
can predict words given previous words within a se-
quence (Goldberg, 2017). Traditional language mod-
els such as n-gram language models use count meth-
ods. Vector-space models based on counting n-grams
have often been used for the ASAG task. For exam-
ple, Mantecon et al. (2018) compared bag of n-grams
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representations with bags of semantic annotations for
ASAG.

In modern approaches, LMs are trained using neu-
ral networks. Neural language models alleviate the
problems of traditional approaches in a number of
ways (Goldberg, 2017). Firstly, they expand the con-
text taken into account. Secondly, these models ex-
hibit a generalization capability across different con-
texts. Initial neural models were based on recurrent
neural networks (RNN) like long short term memory
networks (LSTMs and BiLSTm). The most recently
introduced neural models for language modeling like
BERT (Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2018) and XLNET (Ex-
tra Long Network) (Yang et al., 2019) are based on
the transformer architecture. They are reported by
Devlin et al. (2018) to have robustly increased the
performance of several NLP tasks like GLUE (Gen-
eral Language Understanding Evaluation) or question
answering on SQuAD (Stanford Question Answering
Dataset) (Rajpurkar et al., 2016). We aim to expand
the application of these transformer models to the cur-
rent ASAG task.

In this paper, we adopt a reference-based ap-
proach to train a machine learning model on one of
the most challenging datasets provided in SemEval'-
2013, which is SciEntBank (Nielsen et al., 2008). We
define two grading models based on BERT and XL-
NET and show that both either match or improve the
performance of the state of the art (SOTA) on this
dataset. The main advantage of the approach pre-
sented here is that grading is performed without man-
ually extracting features, contrary to what has been
generally done in the state of the art.

The structure of the paper is as follows: In section
2, we review previous approaches to grading applied
on the SciEntBank dataset. Then, we explain BERT
and XLNET in the context of ASAG. In section 4,
we specify the experimental setup and the evaluation
measures. The next section analyzes the results ob-
tained in all our experiments. We discuss how BERT
and XLNET boost the ASAG on SciEntBank dataset
in section 6. The last section describes our conclu-
sion, limitations and future work.

2 PREVIOUS WORKS

In 2013, SemEval (Dzikovska et al., 2013) established
a competition for ASAG, framed as a textual entail-
ment task where grading the answers requires seman-
tic inference. Semantic inference helps to identify if

'Semantic Evaluation Competition
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the content of student answers and model answers are
similar or dissimilar and goes beyond a mere word
overlap. Two datasets namely BEETLE (Dzikovska
et al., 2010) and SciEntBank were provided for this
challenge. In this paper, we trained a model on the
SciEntBank dataset. According to the results of the
SOTA (Dzikovska et al., 2010), this dataset is the
most challenging of the two.

The SciEntBank dataset is gathered from 3rd-6th
grade students (Nielsen et al., 2008). The general
topics for this dataset include Life Science, Physical
Science and Technology, Earth and Space Science,
and Scientific Reasoning and Technology. Based on
the classification from SemEval-2013, there are three
ways of labeling students’ responses:

e 2-way task: correct and incorrect
e 3-way task: correct, contradictory or incorrect

e 5-way task: correct, partially correct, contradic-
tory, irrelevant or not in the domain

For evaluation purposes, SemEval-2013 provided
three test sets: test of unseen-answers (TUA), test of
unseen-questions (TUQ), and test of unseen-domains
(TUD) scenarios. The TUA is used for the evaluation
of the system based on questions already seen in the
training set (Dzikovska et al., 2013). By contrast, the
questions in the TUQ are totally new and not observed
in training set. Finally, questions related to domains
unseen in the training set are proposed in the TUD
scenario. The size of the test data is 540, 733 and
4562 answers respectively. Overall, there are 10,804
responses to 197 questions in the whole train and test
datasets.

The first results on this dataset were published in
SemEval-2013 (Dzikovska et al., 2013). In this com-
petition, nine teams participated with various mod-
els. Almost all the teams benefited from using sim-
ilarity metrics such as BLEU (Bilingual Evaluation
Understanding) (Papineni et al., 2002) between ques-
tions, student answers and model answers. These
metrics were sometimes applied to dense vectors ob-
tained using LSA (Latent Semantic Analysis) (Deer-
wester et al., 1990) or similar dimension reduction
techniques. Considering all the tasks in all the test
sets, the overall best performance was obtained with
the following systems:

e ETS (Heilman and Madnani, 2013): In this sys-
tem, n-gram features and similarity features are
used together with a domain adaptation technique
called Daume (III, 2009) to adapt features to the
context of the answers across domains.

e CoMet (Ott et al., 2013): Syntactic features like
parts of speech, dependency relations and con-
stituent structures are used in this system. It
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also combined several other features and built a
stacked classifier. The meta-classifier used was
logistic regression.

e SOFTCARDINALITY (Jimenez et al., 2013):
This system modeled the overlap between stu-
dent and model answer through soft cardinality,
a method proven by Jimenez et al. (2010) to boost
the accuracy in measuring textual similarity.

Since the creation of the SemEval-2013 challenge,
several other researchers also evaluated their systems
on the SciEntBank dataset. For example, Ramachan-
dran et al. Ramachandran and Foltz (2015) aug-
mented the ASAG dataset by generating model an-
swers. To accomplish this task, the authors summa-
rized the answers of the top students. The features
used were mostly similarity measures between their
generated model answer, the student answer and the
question. These features include word overlap, cosine
similarity and Lesk similarity. When evaluated on the
TUA test, their approach outperformed past works in
the 3-way and 5-way tasks, but not in the 2-way task.

Sultan et al. (2016) applied a feature ensemble ap-
proach in which the authors combined text alignment,
semantic similarity, question demoting, term weight-
ing, and length ratios. They were able to achieve
slightly better results than the SOTA on the 2-way
task for the TUD test set.

In one of the most recent works, Saha et al. (2018)
suggested a new set of features in which they parti-
tioned the similarities into histogram bins instead of
one single overall similarity. These partial similarities
are based on tokens and part-of-speech tags. In addi-
tion to these similarities, the authors considered ques-
tion types (like where, when, how, etc.) as another
feature in their evaluation process. They combined
these token features (TF) with sentence embeddings
features (SF) based on InferSent (Conneau et al.,
2017)) and achieved better or competitive results on
three datasets, including SciEntBank. Roughly at the
same time, Marvaniya et al. (2018) created a scor-
ing rubric for ASAG. Instead of considering only the
model answers as a perfect example for the compar-
ison, the authors defined the scoring rubric as the
ranked clusters of student answers for each grade. In
their research, the scoring rubric, in conjunction with
a student answer and question, is converted to core
features such as lexical overlap and sentence embed-
dings extracted by InferSent (Conneau et al., 2017)).

Finally, the most similar work to ours is the ap-
proach of Sung et al. (2019) in which they conducted
an experiment on only the 3-way SciEntBank dataset
using BERT and improved the results over the SOTA.
Since there is no access to the input setup and all the
hyperparameters of the paper, their results are hardly
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reproducible. In contrast to this work, we tested
BERT and XLNET on all the SemEval-2013 tasks (2-
way, 3-way and 5-way).

In this work, we adopt the reference-based ap-
proach of using student and model answers. We pro-
pose to learn the entailment between the student an-
swer and the model answer using BERT (Devlin et al.,
2018) and XLNET (Yang et al., 2019). Our approach
differs from top ASAG systems in that we carry out
the task of grading without using any type of hand-
crafted features. We also do not use questions as input
in our experiments.

3 ASAG WITH BERT AND XLNET

As the grades in the SciEntBank dataset are based
on a nominal scale, we consider grading the answers
as a supervised classification task. There has been
a vast body of methods for representing input (to-
kens within student answers, model answers or ques-
tions). These representations, such as n-grams, (Heil-
man and Madnani, 2013; Mantecon et al., 2018) are
usually learned or extracted from training data. How-
ever, deep learning networks require a large amount
of data to be trained adequately. The fact that the
size of SciEntBank dataset is relatively small hinders
a robust training process. To relieve this issue, mod-
ern language model architectures make use of transfer
learning (Goodfellow et al., 2016). In fact, one of the
strengths of models such as BERT and XLNet is that
they are pre-trained on very large corpora. They can
then be fine-tuned on small corpora such as SciEnt-
Bank. These recent language models are built on the
transformer architecture (Vaswani et al., 2017).

BERT is a bidirectional model which is trained
to build a language model using a Transformer en-
coder (Vaswani et al., 2017; Devlin et al., 2018).
The corpora used for pretraining are BooksCorpus
(800M words) and Wikipedia (2,500M words). Over-
all, BERT beats the other similar transformer models
like OpenAl (Radford et al., 2018) in that it considers
both left and right contexts given a target word. BERT
is pretrained using a masked language model (MLM)
task and next sentence prediction (NSP) task. MLM
(Taylor, 1953) is used to randomly mask some of the
tokens and then predict them. In NSP, two consecu-
tive sentences are used to gain discourse knowledge.

Another transformer model which is even more re-
cent than BERT is XLNET. XLNET is inspired from
BERT and Transformer-XL (Dai et al., 2019) but dif-
fers in the following ways:

e XLNET and BERT: XLNET is based on a bidi-
rectional AR (autoregressive) language model,



while BERT is built upon bidirectional AE (au-
toencoder) model. In this regard, XLNET is pre-
trained based on the potential permutations of
context words surrounding a target word. Also,
XLNET takes into account dependencies between
words.

e XLNET and Transformer-XL: Two fundamen-
tal features of Transformer-XL are integrated into
XLNET permutation language modeling: relative
positional embeddings and the recurrence mecha-
nism.

Overall, ASAG using transformer-based architectures
can be seen as learning the textual entailment between
a student answer and a model answer. In what fol-
lows, we briefly present the model architecture and
input representation for both BERT and XLNET.

3.1 Model Architecture

Both BERT and XLNET are available with two model
sizes:

o BERT Base and XLNET Base: There are 12 lay-
ers, 12 attention heads and 768 neurons for these
two models. The number of total parameters is
110 millions. For BERT, cased and uncased ver-
sions are trained and released. However, only the
cased version is released with XLNET.

e BERT Large and XLNET Large: In contrast to
BERT Base, these models include 24 layers, 16 at-
tention heads and 1024 neuron. Similar to BERT
Base, there are cased and uncased versions while
only the cased version exist for the XLNET large
model.

Since we ran our experiments on Google Colab
and due to our limited computing power, we chose
the lighter BERT and XLNET base models.

3.2 ASAG Input Representation and
Architecture

In our models (called graders), the input is the student
answer, model answer and the grades (labels) associ-
ated with each student answer. Our goal is to train
a model in which the relationship between student
answers and model answers is learned in association
with the grade assigned to each student answer.

Similar to SemEval-2013 as discussed in Sec-
tion 2, we consider ASAG as a textual entailment task.
Inspired by the textual entailment literature (Dagan
et al., 2005), we hypothesize that a correct student an-
swer (text) entails the model answer (hypothesis) and
we note it as follows:
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Figure 1: Overall Grading Process by Transformers.

student answer S — model answer M

In other words, the correct grade is assigned to an
answer if the answer entails the model answer. We
also explored the results of the reverse experiment in
which the model answer entails the student answer.
The results of these reverse experiments are not re-
ported in this paper because they are not extraordi-
narily different from the results of the S—M experi-
ments.

The overall process is summarized in Figure 1.
No pre-processing is applied to the raw answer texts.
Overall, the input sequence is fed to the Transformer
model. Then, the output of the classification model
token ([CLS?] in Figure 1) is passed to the softmax
function and a grade is assigned to the answer.

Both BERT and XLNET have a maximum num-
ber of tokens in an input sequence (max sequence
lengths). In fact, each model includes different to-
kenizers that output different tokens. What makes
these lengths dissimilar is visible in the tokenization
output of the following example from model answers
in SciEntBank train set:

Rub the minerals together and see which one
scratches the other.

['rub’, ’the’, ’miner-

e BERT Base Uncased:
als’, ’together’, ’and’, ’see’, ’which’, ’one’,
’scratches’, 'the’, "other’, ’.’]
e BERT Base Cased: ['R’, ’##ub’, ’the’, ’min-
erals’, ’together’, ’and’, ’see’, ’which’, ’one’,
’scratch’, #ites’, ’the’, “other’, ’.’]

e XLNET Base Cased: [’ ’, 'Rub’, ’the’, ’min-
erals’, ’together’, ’and’, ’see’, ’which’, ’one’,
’scratches’, ’the’, “other’, ’.’]

In the above examples, the lengths are 12, 14 and 13.
We observe that the words Rub and scratches are to-
kenized in a different way, which produced different
lengths.

4 EXPERIMENTS

In this section, we describe the experimental setup.

2¢lassification
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4.1 Experimental Setup

There are 135 questions in the SciEntBank train
dataset. Each question is a tuple composed of: ques-
tion, model answer, student answer, and label. We
divided this dataset into train and validation set. As
question-blind division of the dataset could bias the
final trained model towards one (or a number of) spe-
cific question, we randomly selected 20% of the tu-
ples from each question for the validation set and 80%
for the train set. The test sets were provided sep-
arately by SemEval-2013. BERT and XLNet were
fine-tuned on the SemEval train datasets, and tested
on the test sets.

We conducted our experiments using the max se-
quence lengths of 165, 185 and 175 (considering the
[CLS] and [SEP?] tokens) for BERT Base uncased,
BERT Base cased and XLNET cased respectively.
These parameter values were chosen based on the
longest tokenized answer in the dataset.

4.2 Training the Grader with BERT
and XLNET

Our hyperparameters for all the 2-way, 3-way and 5-
way grading were experimentally selected and are as
follows:

e Epochs =10

e Dropout probability for all the layers = 0.1
e Warmup Proportion = 0.1

e Mini Batch size = 16

e [earning rate = 5e-6 for BERT and Se-5 for XL-
NET

To avoid overfitting/underfitting, we employed
one of the most common regularization techniques,
which is to stop the training process on a set of ini-
tial epochs before full convergence. This is done in
combination with the dropout technique. We set the
number of epochs to 10 experimentally and trained
our model for the full number of epochs. Then, we
analyzed the flow of loss change per epoch to control
the overfitting and underfitting. In the end, we eval-
uated our models on the validation sets and stopped
the training process before the occurrence of any of
these two problems. We stopped the training at the
2-4 epoch for all the models.

4.3 Evaluation Measures

We evaluate our ASAG system using the SemEval-
2013 challenge measures:

3separator
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e Accuracy (ACC): Proportion of correctly graded
answers.

e Macro Average F1 score (M-F1): Precision, re-
call and F1 scores are calculated independently
for each grade label and then averaged over all
grade labels.

o Weighted Average F1 score (W-F1): Weighted
average of M-F1. It takes into account the size of
the classes related to each grade label.

S5 RESULTS

In this section, we report the results of BERT Base
uncased, BERT Base cased and XLNET Base cased.
Then, we compare the performance of BERT and
XLNET with the best graders in the SOTA. We do
not consider the question in our ASAG task because
BERT and XLNET classifiers only accepts two input
sequences (student answer and model answer in our
case).

5.1 Proposed Graders

The results from both experiments in all our proposed
models are provided in Figure 2.

As shown in Figure 2, the results of the 2-way ex-
periments show that BERT Base uncased is slightly
better than the other two models in the S—M config-
uration. As expected, all evaluation measures indicate
a stronger performance for TUA than TUQ and TUD.

XLNET Base cased for the 3-way task dominates
almost in all the datasets in terms of F1-Macro and
Fl-weighted. For Acc, BERT Base uncased and
XLNET Base cased behave almost in an identical
manner. Overall, the results obtained with the TUD
dataset are comparable with that of TUA.

Finally for the 5-way task (S—M), the perfor-
mance of grading using BERT Base cased model is
always better than other models. BERT Base cased
and XLNET Base cased behave similarly to a certain
extent in all the datasets. Overall, the results for the
5-way task are not as high as for the other tasks. How-
ever, they are still competitive with the SOTA (we re-
turn to these results in section 5.2).

Overall, all the proposed models seem to have bet-
ter performance for TUA. For TUQ and TUD, the
models behave roughly in the same way.
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Figure 2: Comparing BERT and XLNET in the context of S—M for 2way, 3way and Sway task.

5.2 Comparison of Proposed Graders
with SOTA

In this subsection, we compare the performance of all
our proposed models to the other systems in SOTA.
Tables 1, 2 and 3 report the results for 2-way, 3-
way and 5-way tasks respectively. Regarding the
SemEval-2013 (Dzikovska et al., 2013) systems, it
should be noted that we include in the Tables 1, 2 and
3 only the best performing systems. In what follows,
we explain the differences and similarities of our re-
sults for all the tasks. Given that (Saha et al., 2018)
is the best performing system, most of our compar-
isons involve with its two main configurations (with
or without questions (+/- Q)):

e 2-way

— TUA: BERT Base uncased is slightly better
than (Saha et al., 2018) (+Q) in terms of Acc,
M-F1 and W-F1 scores. XLNET Base cased
and (Saha et al., 2018) obtain a similar accu-
racy. If we compare our models with that of
(Saha et al., 2018) (-Q) (as we do not consider
the question in our model), all our proposed
models outperform the SOTA.

— TUQ: (Saha et al., 2018) (-Q) is better than all
our proposed models in terms of ACC, M-F1

and W-F1 scores.
comes close.

— TUD: Again (Saha et al., 2018) (-Q) achieved
the best results for all our metrics. Like for
TUQ, the results obtained with XLNET Base
cased are similar.

Only XLNET Base cased

e 3-way

— TUA: For all the evaluation measures, (Sung
et al., 2019) achieved the best results in the
SOTA. Except (Sung et al., 2019), BERT Base
uncased and XLNET Base cased are the best
in terms of accuracy. When not considering
(Sung et al., 2019), XLNET Base cased per-
formed better than all the other systems in the
SOTA for the other two measures.

— TUQ: BERT Base uncased performed the best
based on all the measures, except when com-
pared to (Sung et al., 2019) for M-F1.

— TUD: For this test set, we achieved the best
results in the SOTA with XLNET Base cased
by all the measures. Followed by this model,
BERT Base uncased is slightly better than XL-
NET Base cased only for the accuracy. In terms
of W-F1, BERT Base uncased can be ranked
second after XLNET Base cased.
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Table 1: Comparison of the proposed system with SOTA on 2-way SciEntBank dataset: The highlighted numbers are the best

in the SOTA.
TUA TUQ TUD
Acc |M-F1|W-F1| Acc |M-F1|W-F1| Acc | M-F1 | W-F1
COMET (Ott et al., 2013) 0.774 1 0.768 | 0.773 [ 0.603 | 0.579 | 0.597 | 0.676 | 0.67 | 0.677
ETS (Heilman and Madnani, 2013) 0.776 | 0.762 | 0.77 [0.633 | 0.602 | 0.622 | 0.627 | 0.543 | 0.574
SOFTCARDINALITY (Jimenez et al., 2013) | 0.724 | 0.715 | 0.722 | 0.745 | 0.737 | 0.745 [ 0.711 | 0.705 | 0.712
Sultan et. al. (Sultan et al., 2016) 0.708 | 0.676 | 0.69 [0.705|0.678 | 0.695 | 0.712| 0.703 | 0.712
Graph (Ramachandran and Foltz, 2015) - 0.644 | 0.658 - - - - - -
MEAD (Ramachandran and Foltz, 2015) - 0.631 | 0.645 - - - - - -
TF+SF [-question] (Saha et al., 2018) 0.779 1 0.771 | 0.777 [ 0.749 | 0.738 | 0.747 | 0.708 | 0.690 | 0.702
TF+SF [+question] (Saha et al., 2018) 0.79210.785 | 0.791 | 0.702 | 0.685 | 0.698 | 0.719 | 0.708 | 0.717
Mavarniya (Marvaniya et al., 2018) - 0.773 1 0.781 - - - - - -
BERT Base uncased 0.798 | 0.792 | 0.797 | 0.723 | 0.718 | 0.724 | 0.699 | 0.693 | 0.7
BERT Base cased 0.79 [ 0.783 | 0.788 | 0.697 | 0.690 | 0.698 | 0.698 | 0.689 | 0.697
XLNET Base cased 0.79210.781 | 0.788 | 0.736 | 0.724 | 0.734 | 0.702 | 0.679 | 0.693

Table 2: Comparison of the proposed system with SOTA on 3-way SciEntBank dataset: The highlighted numbers are the best

in the SOTA.
TUA TUQ TUD
Acc |M-F1|W-F1| Acc |M-F1|W-F1| Acc |M-F1| W-F1
COMET (Ott et al., 2013) 0.713 | 0.64 | 0.707 | 0.546 | 0.38 | 0.522|0.579|0.404 | 0.55
ETS (Heilman and Madnani, 2013) 0.72 10.647 | 0.708 | 0.583 | 0.393 | 0.537 | 0.543| 0.333 | 0.461
SOFTCARDINALITY (Jimenez et al., 2013) | 0.659 | 0.555 | 0.647 | 0.652 | 0.469 | 0.634 | 0.637 | 0.486 | 0.62
Sultan et. al. (Sultan et al., 2016) 0.604 | 0.443 | 0.569 | 0.642 | 0.455 | 0.615 | 0.626 | 0.451 | 0.603
Graph (Ramachandran and Foltz, 2015) - 0.438 | 0.567 - - - - - -
MEAD (Ramachandran and Foltz, 2015) - 0.429 | 0.554 - - - - - -
TF+SF [-question] (Saha et al., 2018) 0.718 | 0.666 | 0.714 [ 0.613 | 0.491 | 0.628 [ 0.632 | 0.479 | 0.611
TF+SF [+question] (Saha et al., 2018) 0.718 [ 0.657 | 0.711 | 0.653 | 0.489 | 0.636 | 0.640 | 0.452 | 0.61
Marvaniya (Marvaniya et al., 2018) - 0.636 | 0.719 - - - - - -
Sung et. al. (Sung et al., 2019) 0.759 | 0.72 | 0.758 | 0.653 | 0.575 | 0.648 | 0.638 | 0.579 | 0.634
BERT Base uncased 0.726 1 0.622 | 0.714 [ 0.708 | 0.528 | 0.686 | 0.672 | 0.528 [ 0.6514
BERT Base cased 0.707| 0.5 |0.667 |0.645| 0.45 |0.616| 0.63 |0.438| 0.6
XLNET Base cased 0.726| 0.7 |0.723]0.622| 0.55 | 0.61 |0.665| 0.6 | 0.657

e S5-way

— TUA: BERT Base uncased performed better
than all the other systems in the SOTA in terms
of all the evaluation measures. Also, BERT
Base cased and XLNET Base cased performed
well in terms of accuracy and W-F1 when com-
pared to the other systems.

— TUQ: Similar to TUA, BERT Base uncased
dominated the SOTA followed by XLNET Base
cased. It should be noted the W-F1 for XLNET
Base cased is slightly better than that of BERT
Base uncased. However, BERT Base cased per-
forms better in terms of M-F1.

— TUD: The results from all our proposed models
are significantly better than those of the SOTA.
Among our models, BERT Base cased is the top
model in terms of accuracy and W-F1. XLNET
Base cased is better in terms of M-F1.
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6 DISCUSSION

According to the results described in Section 5, our
findings suggest that BERT and XLNET graders
achieve better or competitive results compared to the
SOTA. This is true especially on the TUA test set for
all the tasks, except for (Sung et al., 2019) on the 3-
way task. For all the other test sets in all the tasks,
our proposed models perform better in terms of all
the measures.

For the 2-way task on TUQ, XLNET Base cased
compete with the best system (Saha et al., 2018) in
the SOTA. The difference is around 0.1. The same is
true for TUD, except the M-F1. Overall, the value of
all the evaluation metrics are almost equal or above
0.7 using our proposed models.

For the 3-way grading task, XLNET Base cased
grade well generally. This is highlighted in TUA and



Table 3: Comparison of the proposed system with SOTA on 5-way SciEntBank dataset: The highlighted numbers are the best

Using BERT and XLNET for the Automatic Short Answer Grading Task

in the SOTA.
TUA TUQ TUD
Acc | M-F1 | W-F1| Acc |M-F1|W-F1| Acc |M-F1|W-F1
COMET (Ott et al., 2013) 0.6 | 0.441 | 0.598 |0.437|0.161 [ 0.299 | 0.421 | 0.121 | 0.252
ETS (Heilman and Madnani, 2013) 0.643| 0478 | 0.64 [0.432(0.263 | 0.411 |0.441| 0.38 | 0.414
SOFTCARDINALITY (Jimenez et al., 2013) | 0.544 | 0.38 |0.537 | 0.525|0.307 | 0.492 [0.512| 0.3 |0.471
Sultan et. al. (Sultan et al., 2016) 0.489(0.3298 | 0.487 | 0.480 | 0.302 | 0.467 | 0.506 | 0.344 | 0.484
Graph (Ramachandran and Foltz, 2015) - 0.372 | 0.458 - - - - - -
MEAD (Ramachandran and Foltz, 2015) - 0.379 | 0.461 - - - - - -
TF+SF [-question] (Saha et al., 2018) 0.644| 0.480 [ 0.642| 0.5 [0.316|0.488 |0.508 | 0.357 | 0.492
TF+SF [+question] (Saha et al., 2018) 0.629 | 0.472 | 0.630 | 0.506 | 0.376 | 0.471 | 0.51 | 0.342 | 0.486
Mavarniya (Marvaniya et al., 2018) - 0.579 | 0.61 - - - - - -
BERT Base uncased 0.66 | 0.484 | 0.662 | 0.552| 0.437 | 0.533 | 0.557 | 0.41 | 0.558
BERT Base cased 0.66 | 0.478 | 0.658| 0.5 |0.424|0.487 |0.562| 0.5 |0.552
XLNET Base cased 0.658 | 0.47 |0.655|0.544 | 0.435 | 0.545 | 0.532| 0.535 | 0.535
TUQ for all the measures. For TUQ, BERT Base un- mineral is harder, the brown mineral will

cased dominates the SOTA. It should be noted that the
accuracy for BERT Base uncased is always the high-
est. Overall, the proposed models seem to improve
the SOTA.

In the 5-way task, all our models work robustly
compared to the SOTA. Among them, BERT Base un-
cased achieved the top values for all the evaluation
measures. Close to BERT Base uncased, it is XLNET
and BERT Base cased. XLNET Base cased even per-
forms slightly better than our other models for TUD.

As we explore grading (or classification) from 2-
way to 5-way, the performance becomes weaker. Al-
though we improve the performance in 3-way and 5-
way tasks, the value for all the evaluation measures
(Acc, M-F1 and W-F1) does not exceed 0.75, espe-
cially in the 5-way task. Besides, most of the mea-
sures in the 5-way task show that the models are not
robust in the SOTA (including the current study) and
predicts the answers randomly to certain extent.

We explored the dataset to try to understand its
challenges. One possible reason for lower classifica-
tion results is that we found it difficult to differen-
tiate classes like correct from partially correct, and
irrelevant from not in the domain. In fact, we found
some ambiguity in the labels associated to some an-
swers, which adds to the complexity of grading. For
instance, in the following example extracted from Sci-
EntBank (Nielsen et al., 2008), it is a complicated
to assign a partially correct label based only on the
”scratch” concept:

e Question: ”Georgia found one brown mineral and
one black mineral. How will she know which one
is harder?”

e Model Answer:
a scratch on the less hard mineral.

”The harder mineral will leave
If the black

have a scratch.”
o Student Answer: ’The one with a scratch.”

Consequently, it seems likely that the performance of
machine scoring systems would improve if the grade
labels were more clearly defined and annotated.

Finally, the type of the test sets adds to the com-
plexity of the task. The SOTA and our evaluation re-
sults show that TUA is the least difficult dataset, fol-
lowed by TUQ and TUD. In fact, the challenge seems
to increase with unknown questions or when there is
a need for domain adaptation.

7 CONCLUSION AND FUTURE
WORK

In this paper, we proposed approaches based on the
BERT and XLNET classifiers for the ASAG task.
Overall, we showed the approaches can be considered
as better or comparable to SOTA satisfactory graders
on the SemEval-2013 SciEntBank dataset. Our find-
ings further suggest that XLNET and BERT seem to
be strong baselines for ASAG for the 3way and Sway
tasks respectively, with the exception of the 2-way
TUQ and TUD conditions.

These overall good results of language models
such as BERT and XLNet on ASAG seem to indi-
cate that modern language models succeed in build-
ing a semantic representation of student answers and
model answers and classifying them correctly. BERT
and XLNet seem to either equal or outperform the re-
sults obtained with human engineered features. These
features, however, help to explain classification re-
sults, a task that is more difficult with transformer-
based models. For pedagogical purposes, the ability
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to explain grading results is a must and further work
should be directed towards the combination of mod-
ern language models with explainable capabilities.

The current work has a number of limitations. One
of the most important is that our experiment was car-
ried out on only one dataset. Other datasets like BEE-
TLE or DT-Grade (Banjade et al., 2016) could also
be used to confirm the promising characteristics of
BERT and XLNET for ASAG. Another limitation is
that that we did not use the largest BERT model due
to limited computing power. We also note that we
could not go beyond 10 epochs, and as a result ad-
justed our early stopping based on the observation on
this 10 epoch experiment.

We plan to address the above-mentioned limita-
tions in future work. We also intend to explore ensem-
bling BERT with other classifiers to boost the grading
performance, especially by considering features that
were successful in the SOTA.
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