
Artificial Intelligence in Software Test Automation: A Systematic
Literature Review

Anna Trudova, Michal Dolezel a and Alena Buchalcevova b
Department of Information Technologies, University of Economics, Prague, W. Churchill Sq. 4, Prague, Czech Republic

Keywords: Software Testing, Test Automation, Test Tools, Artificial Intelligence, Literature Study.

Abstract: Artificial intelligence (AI) has made a considerable impact on the software engineering field, and the area of
software testing is not an exception. In theory, AI techniques could help to achieve the highest possible level
of software test automation. The goal of this Systematic Literature Review (SLR) paper is to highlight the
role of artificial intelligence in the software test automation area through cataloguing AI techniques and
related software testing activities to which the techniques can be applied. Specifically, the potential influence
of AI on those activities was explored. To this end, the SLR was performed with the focus on research studies
reporting the implementation of AI techniques in software test automation. Out of 34 primary studies that
were included in the final set, 9 distinct software testing activities were identified. These activities had been
reportedly improved by applying the AI techniques mostly from the machine learning and computer vision
fields. According to the reviewed primary studies, the improvement was achieved in terms of reusability of
test cases, manual effort reduction, improved coverage, improved fault and vulnerability detection. Several
publicly accessible AI-enhanced tools for software test automation were discovered during the review as well.
Their short summary is presented.

1 INTRODUCTION

The growing complexity of today’s software systems
results in an increased need for sophisticated testing
techniques. Performing software testing activities
manually appears to be ineffective in terms of
demanding manpower consumption, low execution
speed and inadequate test coverage. Those are
precisely the problems which test automation could
address and, in most cases, also solve. Software test
automation is defined by Dustin et al. (1999) as
“management and performance of test activities, to
include the development and execution of test scripts
so as to verify test requirements, using an automated
test tool” (p. 4). In principle, however, test
automation should be considered as a broader
concept, including not only the automated test
scripting and execution, but also other activities
across the whole software testing process (Garousi &
Elberzhager, 2017).

It is known that the software test automation has
its limitations and problems (Rafi et al., 2012). As an

a https://orcid.org/0000-0002-5963-5145
b https://orcid.org/0000-0002-8185-5208

example, fragile automation scripts or ineffective
fault detection may be mentioned. However, the
limitations and problems of test automation are
conceptually similar to certain issues which already
have been solved by the application of artificial
intelligence (AI) techniques (Last, Kandel & Bunke,
2004). On the way towards this promising vision, the
book Artificial intelligence methods in software
testing (Last et al., 2004) incorporated a set of articles
and papers on the relatively new application of
artificial intelligence algorithms in software testing.
Generally speaking, the proposed approaches were as
follows:

1. fuzzy logic for the generalization of cause-
effect software testing;

2. Info-Fuzzy Networks and Artificial Neural
Networks for test case generation and
reduction;

3. AI planning for regenerating regression tests
affected by software change;

4. case-based reasoning and C4.5 for
determination of risky modules in software.

Trudova, A., Dolezel, M. and Buchalcevova, A.
Artificial Intelligence in Software Test Automation: A Systematic Literature Review.
DOI: 10.5220/0009417801810192
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 181-192
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

181

Another publication provided an overview of the
AI techniques usable in software testing (Houranim,
Hammad & Lafi, 2019). Authors of the publication
focused their findings on the software testing domain,
but they paid only a limited attention to software test
automation. The following AI techniques in
connection with test automation were metioned:
Huber Regression, Support Vector Regression
(SVR), multi-layer perceptron, Hybrid Genetic
Algorithms (HGA) and Natural Language Processing
(NLP).

The publications mentioned above represent only
a relatively small selection of possibly promising
applications of AI techniques in the software testing
domain. The papers included in Artificial intelligence
methods in software testing (Last et al., 2004) pointed
out to the next step that should be taken. This step was
defined as a need to move forward with practical tools
that implements AI algorithms not only for software
testing in general, but for software test automation in
particular.

At the time of writing this paper, we found no
publications that would provide a full overview of AI
techniques applications in software test automation.
This paper intends to fill this gap. Therefore, the aim
of this paper is to identify in what manner artificial
intelligence is impacting the software test automation
field, and to systematize the AI techniques that can be
applied to the stated field. Such knowledge can enable
a better understanding of given areas, their conceptual
interconnection, and provide the practitioners with
practical examples of AI techniques applied to
various test automation activities. This paper is
primarily intended for specialists from the quality
engineering field. Due to that fact, it aims to give a
practical, bird-eyes perspective on AI; the paper does
not cover specific details with regard to the
implementation details of various AI techniques.

The rest of this paper is organized as follows.
Section 2 describes the systematic review process,
Section 3 presents the SLR results together with
answering the research questions. Conclusions are
presented in Section 4.

2 SYSTEMATIC LITERATURE
REVIEW

In order to accurately perform the Systematic
Literature Review (SLR) focused on artificial
intelligence in software test automation, the
systematic process was followed according to the
SLR guidelines proposed by Kitchenham and

Charters (2007). A Systematic Literature Review is a
“means of identifying, evaluating and interpreting all
available research relevant to a particular research
question, or topic area, or phenomenon of interest”
(Kitchenham & Charters, 2007, p. 3). The following
subsections reflect and document the process of how
the review was conducted.

2.1 Research Questions

In order to describe the role of artificial intelligence
and its techniques in software test automation, the
following research questions were stated:
RQ1: Which software testing activities can be
improved by applying AI techniques?
RQ2: What AI techniques can be applied for
improving testing activities identified during
answering the RQ1?
RQ3: What are the reported benefits of AI techniques
usage in software test automation?
RQ4: What AI-enhanced software tools can be
pragmatically used by practitioners for software test
automation activities?

2.2 Search Strategy

Several digital libraries were used as a source of the
research papers, including IEEExplore
(https://ieeexplore.ieee.org), ACM Digital Library
(https://dl.acm.org), ScienceDirect
(www.sciencedirect.com), and SpringerLink
(https://link.springer.com). These libraries were
selected due to the quality, accessibility and relevance
of their content for the field of software engineering.

Search queries for each of the libraries are stated
in Table 1. The following list summarizes the
keywords that were identified as relevant to answer
the research questions: artificial intelligence,
machine learning, computer vision, natural language
processing, test automation, automated test,
automated testing, software engineering, software.
The full queries can be found in Table 1.

The syntax and the keywords themselves were
adapted depending on the searching-related features
and limitations of each digital library. Notably, the
main difference was a varying usage of specific
syntax (asterisk or double quotes) for different
databases.

The presented search results are accurate as of
15th September 2019. Number of total results without
removing duplicate papers was 2 548.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

182

Table 1: Search queries for digital libraries with the number of results found.

Digital Library Search query Number of
results

ACM Digital
Library

("computer vision" OR "natural language processing" OR "AI" OR "artificial intelligence"
OR "ML" OR "machine learning" OR "NLP") AND ((test* AND (automated OR
automation)) AND ("software engineering" OR "software")

855

IEEExplore ("computer vision" OR "natural language processing" OR "AI" OR "artificial intelligence"
OR "ML" OR "machine learning" OR "NLP") AND ("test* automat*" OR "automat* test*")
AND ("software engineering" OR "software")

455

ScienceDirect ("computer vision" OR "natural language processing" OR "artificial intelligence" OR
"machine learning") AND ("test automation" OR "automated test" OR "automated testing")
AND ("software engineering" OR "software")

426

SpringerLink ("computer vision" OR "natural language processing" OR "AI" OR "artificial intelligence"
OR "ML" OR "machine learning" OR "NLP") AND (("test* AND automat*") OR ("automat*
AND test*")) AND ("software engineering" OR "software")

812

2.3 Inclusion and Exclusion Criteria

Obtained publications were filtered according to the
inclusion and exclusion criteria that are defined
below. Some of the criteria are based on the fact that
this paper is meant for quality engineers and, as a
result of that matter, does not consider the activities
related to software programming and code
maintenance.
The inclusion criteria were:
IC1: publications written in English
IC2: only primary studies
IC3: publications from the software engineering
domain
IC4: publications that describe the application of
artificial intelligence techniques

The following exclusion criteria were specified:
EC1: publication types such as encyclopaedia, book,
book chapter, conference abstract, editorials, book
review, conference info
EC2: papers issued before publication of Last et al.
(2004), where authors collected a representative set of
papers on the topic of application of artificial
intelligence techniques in software testing
EC3: publications related to training, validating and
testing algorithms
EC4: publications regarding unit testing and fault
localization techniques

The above stated criteria were thoroughly applied
in several phases. During the first phase of the review,
duplicate and incomplete publications were excluded.
In addition to that, all publications were filtered by
year, language and type of publication with the help
of Mendeley reference management software. After
duplicates were removed and the criteria (IC1, EC1,
EC2) were applied, the amount of found publications
was significantly reduced from 2 548 to 1 814. The

next phase involved filtering papers based on reading
their titles and abstracts. Publications were evaluated
by multiple exclusion and inclusion criteria that were
not applied in the previous phase: IC2, IC3, IC4, EC3
EC4. As the outcome, the number of papers that were
included was cut down to 227. In some cases, it was
not sufficient to read only the title and abstract to
identify whether a certain publication is relevant to
the research or not. Therefore, in order to make a
decision regarding inclusion or exclusion of aforesaid
publications, the introduction and conclusion were
read in addition to their titles and abstracts. The next
phase of the review involved reading of the articles’
full text with the intention of identifying whether each
individual paper should be included into the final set
or not, respecting all stated inclusion and exclusion
criteria. During this phase, several papers written by
the same authors regarding the same subject were
discovered, although they were not complete
duplicates. In order not to compromise the review’s
results, only the more recent publication or, in some
cases, the more descriptive one was taken into final
set. Once filtered based on the inclusion and
exclusion criteria specified above, the set of 39 papers
remained (Fig. 1). The quality of that publications
was subsequently analysed and assessed according to
the SLR process (Kitchenham & Charters, 2007). A
more detailed information regarding the quality
assessment is presented in the following Section 2.4.

2.4 Quality Assessment

For the purpose of assuring that the previously
selected 39 publications are relevant and unbiased, a
quality assessment was performed. To address the
problem of the papers’ quality, a checklist was used
as it is a standardized way of performing the quality
assessment.

Artificial Intelligence in Software Test Automation: A Systematic Literature Review

183

Figure 1: SLR process.

The quality checklist proposed and applied consisted
of the following questions:
Q1: Are the study aims clearly stated?
Q2: Is there an adequate description of the study
context?
Q3: Is there a clear statement of findings/achieved
results?
Q4: Are the findings/achieved results based on
multiple projects? That means, whether the solution
proposed by the authors was successfully verified by
its application to at least two cases in a particular
context (e.g. multiple web applications)
Q5: Do the researchers discuss the validity/reliability
of their results?

Answers to the stated questions were binary, with
the answer being either “yes” or “no”. For each
affirmative answer, the paper was given a point, in
other case the point was not granted. The overall
score for the paper is based on the count of points
gained. The maximum achievable score was 5 points,
and with that in mind, if the score was lower than 3,
the paper was excluded from the final set. Table 2
summarizes the results of the quality assessment for
the papers included during the previous phase. The
lines marked in light grey represent the publications
excluded due to their low score. Each publication has
an identifier assigned to it, being used further in this
paper.

After the quality assessment was performed, the
final set of selected publications included 34
publications.

3 SLR RESULTS

This section presents the outcomes of the Systematic
Literature Review and provides the answers to the
research questions posed (RQ1, RQ2, RQ3, RQ4).

3.1 RQ1: Which Software Testing
Activities Can Be Improved by
Applying AI Techniques?

In the course of this literature study, 9 distinct
activities were identified. These activities constitute
software testing activities which have a potential to be
automated and improved by applying AI techniques.
The activities were identified and analysed based on
the resulting set of 34 papers. A brief summary of the
activities is presented in Table 3.

Some of the papers proposed approaches
applicable across several testing activities. Hence,
based on that fact, the publications were mentioned
multiple times in all the activities they impact.

Figure 2 shows the count of papers that mentioned
individual testing activities. Based on that count, it is
possible to make an assumption that even the AI
techniques are reportedly suitable to be used all
across the testing process, some of the activities (e.g.
test case or test oracle generation) attract more
attention than the others.

As mentioned earlier, several software testing
activities were identified during the SLR process.
These are described below in more detail as they are
important for the remaining research questions.
Test Case Generation. Test case generation can be
defined as a process of creation of a sequence of test
operations or test steps for the particular system under
test (Hu et al., 2018; Li & Lam, 2005; Mariani et al.,
2012; Papadopoulos & Walkinshaw, 2015;
Srivastava & Baby, 2010).
Test Oracle Generation. This activity can also be
titled test evaluation. Test oracles provide the
feedback on the obtained outputs from the system
under test. They determine whether the outputs
correspond with the expected ones (Braga et al.,
2018; Jin et al., 2008; Shahamiri et al., 2011).
Test Execution. The core of this activity is
represented by the execution of test cases and by
recording the results of those test runs. In certain
cases, test execution and some other activities such as

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

184

0 2 4 6 8 10 12 14 16 18 20

Test case generation
Test oracle generation

Test execution
Test data generation

Test results reporting
Test repair

Test case selection
Flaky test prediction

Test order generation

Publications

T
es

ti
n

g
A

ct
iv

it
y

Table 2: Quality assessment. Lines marked grey represent the excluded publications.

Identifier Publication Q1 Q2 Q3 Q4 Q5 Score
R1 Méndez-Porras et al. (2015) yes yes no no no 2
R2 Sharifipour et al. (2018) yes yes yes yes yes 5
R3 Shahamiriet al. (2011) yes yes yes no yes 4
R4 Papadopoulos and Walkinshaw (2015) yes yes yes yes yes 5
R5 Wotawa (2016) yes yes no no no 2
R6 Lu et al. (2008) yes yes no no no 2
R7 King et al. (2018) yes yes yes yes yes 5
R8 Srivastava and Baby (2010) no yes yes no yes 3
R9 Paradkar et al. (2007) yes yes yes no no 3
R10 Wang et al. (2007) yes yes no no no 2
R11 Jin et al. (2008) yes yes yes no no 3
R12 Mariani et al. (2012) yes yes yes yes yes 5
R13 Liu et al. (2017) yes yes yes yes yes 5
R14 Li et al. (2011) yes yes yes no no 3
R15 Li et al. (2009) yes yes yes no yes 4
R16 Shen et al. (2009) yes yes yes no yes 4
R17 Li and Lam (2005) yes yes yes no no 3
R18 Souza et al. (2011) yes yes yes yes yes 5
R19 Rosenfeld et al. (2018) yes yes yes yes yes 5
R20 Gu et al. (2017) yes yes yes yes yes 5
R21 Bhattacharyya and Amza (2018) yes yes yes no no 3
R22 Carino and Andrews (2015) yes yes yes yes yes 5
R23 Santiago et al. (2018) yes yes yes yes yes 5
R24 Stocco et al. (2018) yes yes yes yes yes 5
R25 Thummalapenta et al. (2012) yes yes yes no no 3
R26 Bozic and Wotawa (2018) yes yes yes no no 3
R27 Hewett and Kijsanayothin (2009) yes yes yes no yes 4
R28 Hillah et al. (2016) yes yes yes yes yes 5
R29 White et al. (2019) yes yes yes yes yes 5
R30 Moghadam (2019) yes yes yes yes no 4
R31 Sant et al. (2005) yes yes yes no yes 4
R32 Chen et al. (2017) yes yes yes yes yes 5
R33 Braga et al. (2018) yes yes yes yes yes 5
R34 Vieira et al. (2006) yes yes no no no 2
R35 Chang et al. (2010) yes yes yes yes yes 5
R36 Fard et al. (2014) yes yes yes yes yes 5
R37 Pan et al. (2019) yes yes yes yes no 4
R38 Hu et al. (2018) yes yes yes yes yes 5
R39 Choi et al. (2013) yes yes yes yes yes 5

Figure 2: Number of publications by testing activity.

Artificial Intelligence in Software Test Automation: A Systematic Literature Review

185

data generation are performed together
(Bhattacharyya & Amza, 2018; Chang et al., 2010;
Gu et al., 2017; Hillah et al., 2016).
Test Data Generation. Test data generation is a
process of creation of the data for test cases. As an
example, input values that should be relevant to each
particular test can be mentioned (Liu et al., 2017;
Sharifipour et al., 2018; White et al., 2019).

Table 3: Software testing activities that can be improved by
applying the AI techniques.

Testing Publication identifier

Test case
generation

R4, R8, R9, R12, R15, R16, R17, R19,
R22, R23, R25, R26, R28, R29, R30,
R31, R36, R38

Test
oracle
generation

R3, R4, R9, R11, R12, R19, R26, R28,
R29, R32, R33, R35, R36

Test
execution

R12, R19, R20, R21, R26, R28, R30,
R32, R35, R37, R39

Test data
generation

R2, R13, R14, R28, R29, R39

Test
results
reporting

R19, R20, R32

Test
repair

R24, R25, R37

Test case
selection

R18, R28

Flaky test
prediction

R7

Test order
generation

R27

Test Results Reporting. Test results reporting is the
collection of test outputs in the form of a report. This
activity is performed after test execution and test
evaluation activities have been finished. Such reports
can possibly contain the following information:
executed steps, execution status, occurred failures
identification, defect reports, etc. (Chen et al., 2017;
Gu et al., 2017; Rosenfeld et al., 2018).
Test Repair. Test repair is, in essence, a maintenance
activity. Within the course of this activity, test scripts
are adjusted to changed conditions. The need for it
lays in a fact that test scripts are fragile and vulnerable
to the changes introduced by developers in a newer
version of the tested software (Pan et al., 2019; Stocco
et al., 2018).
Test Case Selection. This activity focuses on the
selection of test cases from a test suite. The selection
is made based on criteria individually defined for
each test case execution. Test case selection also
involves removal of the duplicate, redundant or
inexecutable test cases from the test set, which is
typically generated by the tools (Souza et al., 2011).

Flaky Test Prediction. Flaky test is characterized as
such when it reports false positive or false negative
test result, when adjustment was made to the test
scripts and/or to the code of the system under test
(King et al., 2018). If the tests expressing similar
characteristics could be identified and repaired, the
overall stability and reliability of the tests can be
significantly improved.
Test Order Generation. This activity is concentrated
on determination of the number and order of the
components under test during the component
integration testing. The aim is to minimize the
number of mocked components required for testing,
and to select their appropriate orchestration (Hewett
& Kijsanayothin, 2009).

3.2 RQ2: What AI Techniques Can Be
Applied for Improving Testing
Activities Identified during
Answering the RQ1?

During the SLR process, several promising AI
techniques were identified. The findings are
presented in Table 4, where the identified techniques
are introduced together with the publications,
mentioning and using the technique. Figure 3
summarizes all identified artificial intelligence
techniques and the publications where usage of those
techniques was reported. The mentioned artificial
intelligence techniques are ordered according to the
count of publications where these techniques were
used. For the sake of readability of the diagram, a few
algorithms and methods from Table 4 were
aggregated. Specifically, those belonging to the
computer vision (CV) field were combined into the
group labelled as “CV techniques” by grouping
namely: non-maximum suppression method (NMS),
Scale Invariant Feature Transform (SIFT), Features
from Accelerated Segment Test (FAST), Fast
Normalized Cross Correlation (FNCC) algorithms,
contour detection, Scale-Invariant Feature Transform
(SIFT), Optical Character Recognition (OCR).

The visible trend from Figure 3 is that more than
half of the reported AI techniques was reported only
by a single publication. However, if the individual
techniques were grouped by AI subfields, it would be
apparent that most used techniques are from the
machine learning and computer vision fields. From
the machine learning field, the most popular
techniques were different types of networks (e.g.
Artificial Neural Network, Convolutional Neural
Networks, Recurrent neural network, Bayesian
Network) and Q-learning (Mariani et al., 2012),
which were used in 23% and 8% of the publications

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

186

0 1 2 3 4

ANN
CV techniques

Q‐learning
ACO
BN

Graphplan algorithm
Hybrid GA

SVM
AdaBoostM1, IREP

C4.5
CNN

Fuzzing algorithm
Heuristics algorithms

k‐means
KStar classifier

L*
Markov model

MF‐IPP
NLP algorithms

PSO
RNN

Publications

A
I t
e
ch
n
iq
u
e

Figure 3: Count of publications by AI techniques.

respectively. The application of computer vision
techniques was reported by 11% of the publications
in the final set, where the individual techniques from

these field include template matching algorithms,
contour detection and OCR.

Table 4 maps the identified AI techniques to
testing activities that were identified in RQ1.
Unfortunately, it was not possible to identify the exact
AI technique used in the Thummalapenta et al. (2012)
publication. Therefore, in Table 4 it is mentioned as
“Algorithm from NLP field”.

3.3 RQ3: What Are the Reported
Benefits of AI Techniques Usage in
Software Test Automation?

This section describes the benefits of AI techniques
usage in the field of software test automation. The
identified benefits may be perceived as a main
motivation for applying artificial intelligence in
software test automation. To answer the research
question, it was important to differentiate the research
contributions of the selected publications to software
engineering field in general from the practical value
AI techniques can bring to the testing activities. The
reported benefits were grouped into larger categories

Table 4: Mapping AI techniques and testing activities (x = technique is applicable).

AI technique \ Testing activity

P
ub

li
ca

ti
on

s
id

en
tif

ie
r

T
es

t c
as

e
ge

ne
ra

ti
on

T
es

t o
ra

cl
e

ge
ne

ra
ti

on

T
es

t
ex

ec
ut

io
n

T
es

t d
at

a
ge

ne
ra

ti
on

T
es

t r
es

ul
ts

re

po
rt

in
g

T
es

t r
ep

ai
r

T
es

t c
as

e
se

le
ct

io
n

F
la

ky
 te

st

pr
ed

ic
ti

on

T
es

t o
rd

er

ge
ne

ra
ti

on

Non-maximum suppression method (NMS) R32 x

SIFT, FAST, and FNCC algorithms R24, R37 x
Contour detection, OCR R37 x
Bayesian Network R7, R28 x x x
Particle swarm optimization (PSO) R18 x
Hybrid genetic algorithms R14, R16 x x
Ant colony optimization (ACO) R2, R8 x x
Artificial Neural Network (ANN) R3, R11, R22, R23 x x
Graphplan algorithm R9, R26 x x
Support vector machine (SVM) R36, R38 x x
AdaBoostM1 and Incremental Reduced Error
Pruning (IREP) algorithms R33 x

Convolutional Neural Networks (CNN) R29 x x
Template-matching algorithm R32, R35 x
Decision tree algorithm (C4.5) R4 x
Markov model R31 x
MF-IPP (Multiple Fact Files Interference
Progression Planner)

R15 x

Algorithm from NLP field R25 x
Q-learning R12, R17, R30 x
Recurrent neural network (RNN) R13 x
L* R39 x x
Fuzzing algorithm R20 x
k-means R21 x
KStar classifier R19 x
Heuristics algorithms R27 x

Artificial Intelligence in Software Test Automation: A Systematic Literature Review

187

Table 5: Reported benefits of using AI techniques.

Benefit Benefit description
Publications
identifier

Manual effort reduction Some of the testing activities are already automated but still require
user guidance, some of them are only semi-automatic, with more
human interventions. Application of AI techniques saves the manual
effort in terms of reduction of time and cost required for the creation
of the tests, execution and their maintenance.

R7 R9, R20, R24,
R25, R27, R28, R30,
R32, R33, R35, R37,
R38, R39

Improved code
coverage

Reported benefits regarding the coverage can be described as an ability
to cover either a significant part of the statements, branches, transitions
or to fully cover them. In the publications, the improvement in
coverage was measured against the already existing approaches.

R2, R8, R12, R22,
R29, R31, R36, R39

Improved fault and
vulnerability detection
effectiveness

Generally speaking, generated test cases or oracles are more efficient
and effective at identifying flaws in software in comparison with the
existing approaches.

R4, R9, R12, R22,
R26, R32, R36, R38

Reusability of created
test cases and test
oracles

Reusability of generated test cases and oracles in the context of the
publication could be perceived as an independence of one or more
conditions: specific GUI library, application, operating system, source
code, system model.

R23, R29, R30, R35,
R38

Test breakage repair Papers were reporting the effectiveness of breakage repair capabilities
by correcting the significant amount of breakages, outperforming
existing solutions.

R24, R25, R37

Avoidance of redundant
actions during the test
execution

To improve the execution time and accuracy of the test, the AI
techniques contribute to avoidance of system under test restarts and of
unnecessary activity transitions.

R8, R20, R39

Improvement of
existing solutions

Some of them are improvements that AI-based approach can bring to
existing test case generation, selection and data generation techniques:
generated text inputs are depending on the context of the system under
test and not generated randomly; avoidance of the combinatorial
explosion during the generation; selection of test cases based not on
one but multiple objectives.

R13, R15, R18

Improved test adequacy
of the generated test
cases

Generated test cases are able to achieve the required test adequacy,
which exceeds equivalent test adequacy for other non-AI approaches.
The adequacy is based on the states covered, practicability and non-
redundancy of the generated test cases.

R4, R17

and are shown in Table 5 together with their short
description.

It is pertinent to note that the relationship between
the AI techniques and the benefits can be described as
many-to-many relationship type. Taking this fact into
consideration, in more than 70% of all papers at least
one of the first tree benefits from the table below
(Table 5) was observed.

3.4 RQ4: What AI-enhanced Software
Tools Can Be Pragmatically Used
by Practitioners for Software Test
Automation Activities?

During the review, 14 software tools presented in
Table 6 were discovered. As it is obvious from the
table, only half of them is publicly accessible on the
web. Information regarding the year of relevant
research publication, in which the tool was used, and

the year of last tool update are presented in Table 6 as
well. The latter information is presented only for
those tools that are publicly accessible.

The table also shows that only a few tools (3) have
been under active development after the papers,
which reported on the tools, were published. These
are as follows: AutoBlackTest, Sikuli Test and
SwiftHand.

In total, seven publicly accessible tools were
identified and are shown in Table 6. A detailed
description for each of them is presented below.
Model-Inference Driven Testing (MINTest) can be
used for the test case generation using the C4.5
algorithm (Papadopoulos & Walkinshaw, 2015). At
its webpage (“MIN Test Framework”, 2012), it is
described as a test framework for unit and integration
levels of testing. Its implementation is intended for
Linux operating system (OS).

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

188

Table 6: AI-enhanced software tools, their public accessibility with years of publication and tool update.

Tool name
Publication
identifier

Is tool publicly
available?

Publication
year

Last update
year

MINTest - Model-Inference driven Testing R4 yes 2015 2012
AutoBlackTest - Automatic Black-Box Testing R12 yes 2012 2016

DAS - Dynamic Ant Simulator R17 no 2005 -

ACAT - Activities Classification for Application Testing R19 no 2018 -
AimDroid R20 yes 2017 2017

Vista R24 yes 2018 2018
ATA - Automating Test Automation R25 no 2012 -
MIDAS R28 no 2016 -
UI X-RAY R32 no 2017 -
Sikuli Test R35 yes 2010 2019
Testilizer R36 yes 2014 2014
METER - Mobile Test Repair R37 no 2019 -
AppFlow R38 no 2018 -
SwiftHand R39 yes 2013 2015

Automatic Black-Box Testing (AutoBlackTest)
implements the reinforcement learning, namely Q-
Learning. The tool serves for the automatic graphical
user interface (GUI) test case generation (Mariani et
al., 2012). According to the AutoBlackTest GitHub
repository (Shekhar, Murphy-Hill, & Oliviero, 2016),
it runs only with IBM Rational Functional Tester on
Windows OS. Based on available information, it is
not possible to say whether the tool is usable on a
higher version of Windows OS than 8.1 and JRE
above 1.6.
AimDroid is a tool that was designed for the GUI
testing of Android applications. The automated
testing of the application is made by the exploration
of its activities. The tool handles test execution and
test results reporting back to the user. As an AI-
enhancement, the fuzzing algorithm was used (Gu et
al., 2017). One of the limitations and a concern
regarding the usage of AimDroid is the fact that the
device should be rooted: the user of the device is
granted root privileges (Institute of Computer
Software of Nanjing University, 2017).
Vista leverages the computer vision techniques for
the purpose of GUI test breakage repair. It records a
successfully running test in its web-based GUI. Once
the test starts to fail on a later version of the
application, Vista is able to compare the current state
of the application with the recorded one and can
perform the repair of the test scripts (Stocco et al.,
2018). The tool currently supports the repair of the
scripts written in Java, in particular Selenium scripts
(Stocco, 2018).
Sikuli Test is an automated tool that enables usage of
visual notation (e.g. by using a picture of an element
for the sake of element identification on the screen)

while writing the GUI test. The tool uses computer
vision in order to make automated testing easier for
the user. Sikuli Test is designed to be platform
independent. So, it can be used for testing of not only
desktop applications, but also web and mobile
(Android) applications (Chang et al., 2010). It seems
that the tool is currently under active development as
SikuliX (Hocke, n.d).
Testilizer is capable of generating test cases from
existing Selenium test scripts for web applications
using SVM (Vapnik, 2013). The Selenium tests are
the starting point for the tool, which is able to
generate new test cases for the previously not reached
states of the application (Fard et al., 2014). Crawljax
is required as a prerequisite installed on the machine,
where the tests should run (Fard & Mesbah, 2014).
SwiftHand supports the GUI test automation of
Android applications. It uses L* algorithm (Irfan,
Oriat, & Groz, 2010) for exploration of the model of
the application-under-test’s GUI. Subsequently,
SwiftHand uses it to generate needed inputs in order
to examine the previously not visited states of the
application (Choi et al., 2013). SwiftHand can be run
on Linux OS or OSX (Choi, 2015). The GitHub
repository (Choi, 2015) of the tool provides a detailed
information on how to install and run the tool.

4 DISCUSSION AND
CONCLUSION

The overall goal of this paper was to raise awareness
regarding the potential benefits that AI could bring
into the software test automation field. A Systematic

Artificial Intelligence in Software Test Automation: A Systematic Literature Review

189

Literature Review (SLR) study was conducted for the
purpose of fulfilling the goal. As the main outcome of
the SLR process, 34 resulting publications were
closely analysed and found relevant to the stated
research questions.

Based on the discovered publications, nine
software testing activities were identified as activities
which could be improved by the application of AI
techniques. The testing activities are as follows: test
case generation, test oracle generation, test execution,
test data generation, test results reporting, test repair,
test case selection, flaky test prediction, test order
generation. The analysed papers addressed mostly
test case generation.

According to the collected data, most commonly
used AI techniques appears to be from the field of
machine learning, specifically different types of
neural networks: Artificial Neural Network,
Recurrent Neural Network, Bayesian Network; Q-
learning; L* etc. Bayesian Network and techniques
from the Computer Vision field belong among the
techniques that were used across more testing
activities more frequently than others.

Eight benefits of AI usage in software test
automation were discovered during the SLR. With
respect to the fact that the artificial intelligence
techniques described in the publications can
contribute to multiple benefits, 73% of all papers
reported at least one of the following benefits: manual
effort reduction, improved coverage, improved fault
and vulnerability detection.

In order to provide test practitioners with practical
examples of AI application in the test automation
field, several AI-enhanced tools were identified.
From these tools, only the publicly accessible ones
were described here in more details: MINTest,
AutoBlackTest, AimDroid, Vista, Sikuli Test,
Testilizer and SwiftHand. Importantly, some of the
tools mentioned above appear to be already outdated.
Therefore, pragmatically speaking, they may not be
practically usable as the software engineering field
and artificial intelligence techniques evolve quickly.
As two examples, we mention MINTest and
Testilizer, which have not been updated for seven and
five years respectively.

During the review process, an observation was
made that most of the publications included in our
SLR were concentrated on solving one or two
particular problems that can arise during software test
automation activities. That means, an integrative and
simply-to-use toolset for test automation practitioners
starving for AI-driven test automation does not seem
to be readily available yet. However, one should note
that this review was concentrated on predominantly

academic sources. Therefore, it did not include much
grey-literature, which may be perceived as its main
limitations. In fact, probing into commercial AI-
powered tools by means of multivocal literature
reviewing (Garousi, Felderer, & Mäntylä, 2016)
might bring additional insights.

Furthermore, as the paper focused mostly on the
benefits of AI usage in software test automation,
future work should also consider limitations and risks
that AI might bring into this context. As an example,
it is reasonable to expect that high initial investments
into AI technologies, together with a need for special
training, may significantly hinder the AI adoption
process in the software industry. To cope with these
dilemmas, future empirical work should ideally take
a practice-based view. Notably, mapping specific
motives and approaches driving the deployment and
usage of AI-powered test automation tools in real-
world companies appears to be an ideal way forward.

ACKNOWLEDGEMENT

This work has been supported by an internal grant
funding scheme (F4/23/2019) administered by the
University of Economics, Prague.

REFERENCES

Bhattacharyya, A., & Amza, C. (2018). PReT: A tool for
automatic phase-based regression testing. CloudCom,
2018, 284–289.

Bozic, J., & Wotawa, F. (2018). Planning-based security
testing of web applications. AST@ICSE 201, 20-26.

Braga, R., Neto, P. S., Rabêlo, R., Santiago, J., & Souza, M.
(2018). A machine learning approach to generate test
oracles. SBES 2018, 142–151.

Carino, S., & Andrews, J. H. (2015). Dynamically Testing
GUIs Using Ant Colony Optimization. ASE 2015, 138–
148.

Chang, T.-H., Yeh, T., & Miller, R. C. (2010). GUI testing
using computer vision. CHI 2010, 1535.

Chen, C.-F., Pistoia, M., Shi, C., Girolami, P., Ligman, J.
W., & Wang, Y. (2017). UI X-Ray. IUI 2017, 245–255.

Choi, W., Necula, G., & Sen, K. (2013). Guided GUI testing
of android apps with minimal restart and approximate
learning. OOPSLA 2013, 623–640.

Choi, W. 2015. wtchoi/SwiftHand. Retrieved October 27,
2019, from https://github.com/wtchoi/SwiftHand

Dustin, E., Rashka, J., & Paul, J. (1999). Automated
Software Testing: Introduction, Management, and
Performance. Addison-Wesley Professional.

Fard, A. M., Mirzaaghaei, M., Mesbah, A. (2014a).
Leveraging existing tests in automated test generation
for web applications. ASE 2014, 67-78

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

190

Fard, A. M., Mesbah, A. (2014b). saltlab/Testilizer.
Retrieved October 27, 2019 from https://github.com/
saltlab/Testilizer

Garousi, V., Felderer, M., & Mäntylä, M. V. (2016). The
need for multivocal literature reviews in software
engineering: complementing systematic literature
reviews with grey literature. EASE 2016: 26:1 – 26:6

Garousi, V., & Elberzhager, F. (2017). Test Automation:
Not Just for Test Execution. IEEE Software 34(2), 90-
96.

Gu, T., Cao, C., Liu, T., Sun, C., Deng, J., Ma, X., & Lü, J.
(2017). AIMDROID: Activity-insulated multi-level
automated testing for android applications. ICSME
2017, 103–114.

Hewett, R., & Kijsanayothin, P. (2009). Automated test
order generation for software component integration
testing. ASE 2009 , 211–220.

Hillah, L. M., Maesano, A.-P., Maesano, L., De Rosa, F.,
Kordon, F., & Wuillemin, P.-H. (2016). Service
functional testing automation with intelligent
scheduling and planning. SAC 2016, 1605–1610.

Hocke, R., n.d. SikuliX by RaiMan. Retrieved October 27,
2019, from http://sikulix.com/

Hourani, H., Hammad, A., & Lafi, M. (2019). The Impact
of Artificial Intelligence on Software Testing. JEEIT
2019, 565–570.

Hu, G., Zhu, L., & Yang, J. (2018). AppFlow: using
machine learning to synthesize robust, reusable UI
tests. ESEC/SIGSOFT FSE 2018, 269–282.

Institute of Computer Software of Nanjing University.
(2017). AimDroid: Activity-Insulated Multi-level
Automated Testing for Android Applications. Retrieved
October 27, 2019, from https://icsnju.github.io/
AimDroid-ICSME-2017/

Irfan, M. N., Oriat, C., & Groz, R. (2010). Angluin style
finite state machine inference with nonoptimal
counterexamples. MIIT 2010, 11-19.

Jin, H., Wang, Y., Chen, N., Gou, Z., & Wang, S. (2008).
Artificial Neural Network for Automatic Test Oracles
Generation. CSSE (2) 2008, 727–730.

King, T. M., Santiago, D., Phillips, J., & Clarke, P. J.
(2018). Towards a Bayesian Network Model for
Predicting Flaky Automated Tests. QRS Companion
2018, 100–107.

Kitchenham, B., & Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering. EBSE-2007-01.

Last, M., Kandel, A., Bunke, H. (2004). Artificial
Intelligence Methods in Software Testing Series in
Machine Perception and Artificial Intelligence, Volume
56, 2004. World Scientific Publishing Co.

Li, H., & Lam, C. P. (2005). An ant colony optimization
approach to test sequence generation for state-based
software testing. QSIC 2005, 255–262.

Li, L., Wang, D., Shen, X., & Yang, M. (2009). A method
for combinatorial explosion avoidance of AI planner
and the application on test case generation. CiSE 2009,
1–4.

Li, X., Wang, T., Wang, F., & Wang, M. (2011). A novel
model for automatic test data generation based on
predicate slice. AIMSEC 2011, 1803–1805.

Liu, P., Zhang, X., Pistoia, M., Zheng, Y., Marques, M., &
Zeng, L. (2017). Automatic Text Input Generation for
Mobile Testing. ICSE 2017, 643–653.

Lu, Y., Yan, D., Nie, S., & Wang, C. (2008). Development
of an Improved GUI Automation Test System Based on
Event-Flow Graph. CASE (2) 2008, 712–715.

Méndez-Porras, A., Nieto Hidalgo, M., García-Chamizo, J.
M., Jenkins, M., & Porras, A. M. (2015). A top-down
design approach for an automated testing framework.
UCAml 2015, 37–49.

Moghadam, M. H. (2019). Machine Learning-assisted
Performance Testing. ESEC/SIGSOFT FSE 2019,
1187–1189.

MIN Test Framework. (2012). MIN Test Framework.
Retrieved October 27, 2019, from http://min.
sourceforge.net/.

Pan, M., Xu, T., Pei, Y., Li, Z., Zhang, T., & Li, X. (2019).
GUI-guided Repair of Mobile Test Scripts. ICSE
(Companion Volume) 2019, 326–327.

Papadopoulos, P., & Walkinshaw, N. (2015). Black-box
test generation from inferred models. RAISE@ICSE
2015, 19–24.

Paradkar, A. M., Sinha, A., Williams, C., Johnson, R. D.,
Outterson, S., Shriver, C., & Liang, C. (2007).
Automated functional conformance test generation for
semantic web services. ICWS 2007, 110–117.

Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M.
V. (2012). Benefits and limitations of automated
software testing: Systematic literature review and
practitioner survey. AST 2012, 26-42

Rosenfeld, A., Kardashov, O., & Zang, O. (2018).
Automation of Android Applications Functional
Testing Using Machine Learning Activities
Classification. MOBILESoft@ICSE 2018, 122–132.

Sant, J., Souter, A., & Greenwald, L. (2005). An
exploration of statistical models for automated test case
generation. ACM SIGSOFT Software Engineering
Notes 30(4), 1–7.

Santiago, D., Clarke, P. J., Alt, P., & King, T. M. (2018).
Abstract flow learning for web application test
generation. A-TEST@ESEC/SIGSOFT FSE 2018, 49–
55.

Shahamiri, S. R., Kadir, W. M. N. W., Ibrahim, S., &
Hashim, S. Z. M. (2011). An automated framework for
software test oracle. Inf. Softwa. Technol., 53(7), 774–
788.

Sharifipour, H., Shakeri, M., & Haghighi, H. (2018).
Structural test data generation using a memetic ant
colony optimization based on evolution strategies.
Swarm Evol. Comput. 40, 76–91.

Shekhar, S., Murphy-Hill, E., & Oliviero, R., 2016. ICSE-
2011-AutoBlackTest. Retrieved October 27, 2019, from
https://github.com/SoftwareEngineeringToolDemos/I
CSE-2011-AutoBlackTest.

Shen, X., Wang, Q., Wang, P., & Zhou, B. (2009).
Automatic generation of test case based on GATS
algorithm. GrC 2009, 496–500.

Artificial Intelligence in Software Test Automation: A Systematic Literature Review

191

Souza, L. S. d., Miranda, P. B. C. d., Prudencio, R. B. C., &
Barros, F. d. A. (2011). A Multi-objective Particle
Swarm Optimization for Test Case Selection Based on
Functional Requirements Coverage and Execution
Effort. ICTAI 2011, 245–252.

Srivastava, P. R., & Baby, K. (2010). Automated software
testing using metahurestic technique based on an Ant
Colony Optimization. ISED 2010, 235–240.

Stocco, A., Yandrapally, R., & Mesbah, A. (2018a). Visual
web test repair. ESEC/SIGSOFT FSE 2018, 503–514.

Stocco, A. (2018b). Saltlab/vista. Retrieved October 27,
2019, from https://github.com/saltlab/vista

Thummalapenta, S., Singhania, N., Devaki, P., Sinha, S.,
Chandra, S., Das, A. K., & Mangipudi, S. (2012).
Efficiently scripting change-resilient tests. SIGSOFT
FSE 2012, 41

Vapnik, V.N. (2013). The nature of statistical learning
theory. Springer science & business media.

Vieira, F. E., Martins, F., Silva, R., Menezes, R., & Braga,
M. (2006). Using Genetic Algorithms to Generate Test
Plans for Functionality Testing. ACM Southeast
Regional Conference 2006, 140-145

Wang, Y., Bai, X., Li, J., & Huang, R. (2007). Ontology-
based test case generation for testing web services.
ISADS 2007, 43–50.

White, T. D., Fraser, G., & Brown, G. J. (2019). Improving
Random GUI Testing with Image-based Widget
Detection. ISSTA 2019, 307–317.

Wotawa, F. (2016). On the Automation of Security Testing.
ICSSA 2016, 11–16.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

192

