
Artificial Intelligence in Software Test Automation: A Systematic 
Literature Review 

Anna Trudova, Michal Dolezel a and Alena Buchalcevova b  
Department of Information Technologies, University of Economics, Prague, W. Churchill Sq. 4, Prague, Czech Republic 

Keywords: Software Testing, Test Automation, Test Tools, Artificial Intelligence, Literature Study. 

Abstract: Artificial intelligence (AI) has made a considerable impact on the software engineering field, and the area of 
software testing is not an exception. In theory, AI techniques could help to achieve the highest possible level 
of software test automation. The goal of this Systematic Literature Review (SLR) paper is to highlight the 
role of artificial intelligence in the software test automation area through cataloguing AI techniques and 
related software testing activities to which the techniques can be applied. Specifically, the potential influence 
of AI on those activities was explored. To this end, the SLR was performed with the focus on research studies 
reporting the implementation of AI techniques in software test automation. Out of 34 primary studies that 
were included in the final set, 9 distinct software testing activities were identified. These activities had been 
reportedly improved by applying the AI techniques mostly from the machine learning and computer vision 
fields. According to the reviewed primary studies, the improvement was achieved in terms of reusability of 
test cases, manual effort reduction, improved coverage, improved fault and vulnerability detection. Several 
publicly accessible AI-enhanced tools for software test automation were discovered during the review as well. 
Their short summary is presented. 

1 INTRODUCTION 

The growing complexity of today’s software systems 
results in an increased need for sophisticated testing 
techniques. Performing software testing activities 
manually appears to be ineffective in terms of 
demanding manpower consumption, low execution 
speed and inadequate test coverage. Those are 
precisely the problems which test automation could 
address and, in most cases, also solve. Software test 
automation is defined by Dustin et al. (1999) as 
“management and performance of test activities, to 
include the development and execution of test scripts 
so as to verify test requirements, using an automated 
test tool” (p. 4). In principle, however, test 
automation should be considered as a broader 
concept, including not only the automated test 
scripting and execution, but also other activities 
across the whole software testing process (Garousi & 
Elberzhager, 2017).  

It is known that the software test automation has 
its limitations and problems (Rafi et al., 2012). As an 
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example, fragile automation scripts or ineffective 
fault detection may be mentioned. However, the 
limitations and problems of test automation are 
conceptually similar to certain issues which already 
have been solved by the application of artificial 
intelligence (AI) techniques (Last, Kandel & Bunke, 
2004). On the way towards this promising vision, the 
book Artificial intelligence methods in software 
testing (Last et al., 2004) incorporated a set of articles 
and papers on the relatively new application of 
artificial intelligence algorithms in software testing. 
Generally speaking, the proposed approaches were as 
follows: 

1. fuzzy logic for the generalization of cause-
effect software testing;  

2. Info-Fuzzy Networks and Artificial Neural 
Networks for test case generation and 
reduction;  

3. AI planning for regenerating regression tests 
affected by software change;  

4. case-based reasoning and C4.5 for 
determination of risky modules in software. 
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Another publication provided an overview of the 
AI techniques usable in software testing  (Houranim, 
Hammad & Lafi, 2019). Authors of the publication 
focused their findings on the software testing domain, 
but they paid only a limited attention to software test 
automation. The following AI techniques in 
connection with test automation were metioned: 
Huber Regression, Support Vector Regression 
(SVR), multi-layer perceptron, Hybrid Genetic 
Algorithms (HGA) and Natural Language Processing 
(NLP). 

The publications mentioned above represent only 
a relatively small selection of possibly promising 
applications of AI techniques in the software testing 
domain. The papers included in Artificial intelligence 
methods in software testing (Last et al., 2004) pointed 
out to the next step that should be taken. This step was 
defined as a need to move forward with practical tools 
that implements AI algorithms not only for software 
testing in general, but for software test automation in 
particular.  

At the time of writing this paper, we found no 
publications that would provide a full overview of AI 
techniques applications in software test automation. 
This paper intends to fill this gap. Therefore, the aim 
of this paper is to identify in what manner artificial 
intelligence is impacting the software test automation 
field, and to systematize the AI techniques that can be 
applied to the stated field. Such knowledge can enable 
a better understanding of given areas, their conceptual 
interconnection, and provide the practitioners with 
practical examples of AI techniques applied to 
various test automation activities. This paper is 
primarily intended for specialists from the quality 
engineering field. Due to that fact, it aims to give a 
practical, bird-eyes perspective on AI; the paper does 
not cover specific details with regard to the 
implementation details of various AI techniques. 

The rest of this paper is organized as follows. 
Section 2 describes the systematic review process, 
Section 3 presents the SLR results together with 
answering the research questions. Conclusions are 
presented in Section 4. 

2 SYSTEMATIC LITERATURE 
REVIEW 

In order to accurately perform the Systematic 
Literature Review (SLR) focused on artificial 
intelligence in software test automation, the 
systematic process was followed according to the 
SLR guidelines proposed by Kitchenham and 

Charters (2007). A Systematic Literature Review is a 
“means of identifying, evaluating and interpreting all 
available research relevant to a particular research 
question, or topic area, or phenomenon of interest” 
(Kitchenham & Charters, 2007, p. 3). The following 
subsections reflect and document the process of how 
the review was conducted. 

2.1 Research Questions 

In order to describe the role of artificial intelligence 
and its techniques in software test automation, the 
following research questions were stated:  
RQ1: Which software testing activities can be 
improved by applying AI techniques?  
RQ2: What AI techniques can be applied for 
improving testing activities identified during 
answering the RQ1? 
RQ3: What are the reported benefits of AI techniques 
usage in software test automation? 
RQ4: What AI-enhanced software tools can be 
pragmatically used by practitioners for software test 
automation activities? 

2.2 Search Strategy 

Several digital libraries were used as a source of the 
research papers, including IEEExplore 
(https://ieeexplore.ieee.org), ACM Digital Library 
(https://dl.acm.org), ScienceDirect 
(www.sciencedirect.com), and SpringerLink 
(https://link.springer.com). These libraries were 
selected due to the quality, accessibility and relevance 
of their content for the field of software engineering. 

Search queries for each of the libraries are stated 
in Table 1. The following list summarizes the 
keywords that were identified as relevant to answer 
the research   questions: artificial intelligence, 
machine learning, computer vision, natural language 
processing, test automation, automated test, 
automated testing, software engineering, software. 
The full queries can be found in Table 1. 

The syntax and the keywords themselves were 
adapted depending on the searching-related features 
and limitations of each digital library. Notably, the 
main difference was a varying usage of specific 
syntax (asterisk or double quotes) for different 
databases. 

The presented search results are accurate as of 
15th September 2019. Number of total results without 
removing duplicate papers was 2 548. 
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Table 1: Search queries for digital libraries with the number of results found. 

Digital Library Search query  Number of 
results

ACM Digital 
Library 

("computer vision" OR "natural language processing" OR "AI" OR "artificial intelligence" 
OR "ML" OR "machine learning" OR "NLP") AND ((test* AND (automated OR 
automation)) AND ("software engineering" OR "software") 

855 

IEEExplore ("computer vision" OR "natural language processing" OR "AI" OR "artificial intelligence" 
OR "ML" OR "machine learning" OR "NLP") AND ("test* automat*" OR "automat* test*") 
AND ("software engineering" OR "software") 

455 

ScienceDirect ("computer vision" OR "natural language processing" OR "artificial intelligence" OR 
"machine learning") AND ("test automation" OR "automated test" OR "automated testing") 
AND ("software engineering" OR "software") 

426 

SpringerLink ("computer vision" OR "natural language processing" OR "AI" OR "artificial intelligence" 
OR "ML" OR "machine learning" OR "NLP") AND (("test* AND automat*") OR ("automat* 
AND test*")) AND ("software engineering" OR "software") 

812 

2.3 Inclusion and Exclusion Criteria  

Obtained publications were filtered according to the 
inclusion and exclusion criteria that are defined 
below. Some of the criteria are based on the fact that 
this paper is meant for quality engineers and, as a 
result of that matter, does not consider the activities 
related to software programming and code 
maintenance. 
The inclusion criteria were: 
IC1: publications written in English 
IC2: only primary studies 
IC3: publications from the software engineering 
domain 
IC4: publications that describe the application of 
artificial intelligence techniques 

 
The following exclusion criteria were specified:  
EC1: publication types such as encyclopaedia, book, 
book chapter, conference abstract, editorials, book 
review, conference info 
EC2: papers issued before publication of Last et al. 
(2004), where authors collected a representative set of 
papers on the topic of application of artificial 
intelligence techniques in software testing 
EC3: publications related to training, validating and 
testing algorithms 
EC4: publications regarding unit testing and fault 
localization techniques 

The above stated criteria were thoroughly applied 
in several phases. During the first phase of the review, 
duplicate and incomplete publications were excluded. 
In addition to that, all publications were filtered by 
year, language and type of publication with the help 
of Mendeley reference management software. After 
duplicates were removed and the criteria (IC1, EC1, 
EC2) were applied, the amount of found publications 
was significantly reduced from 2 548 to 1 814. The 

next phase involved filtering papers based on reading 
their titles and abstracts. Publications were evaluated 
by multiple exclusion and inclusion criteria that were 
not applied in the previous phase: IC2, IC3, IC4, EC3 
EC4. As the outcome, the number of papers that were 
included was cut down to 227. In some cases, it was 
not sufficient to read only the title and abstract to 
identify whether a certain publication is relevant to 
the research or not. Therefore, in order to make a 
decision regarding inclusion or exclusion of aforesaid 
publications, the introduction and conclusion were 
read in addition to their titles and abstracts. The next 
phase of the review involved reading of the articles’ 
full text with the intention of identifying whether each 
individual paper should be included into the final set 
or not, respecting all stated inclusion and exclusion 
criteria. During this phase, several papers written by 
the same authors regarding the same subject were 
discovered, although they were not complete 
duplicates. In order not to compromise the review’s 
results, only the more recent publication or, in some 
cases, the more descriptive one was taken into final 
set. Once filtered based on the inclusion and 
exclusion criteria specified above, the set of 39 papers 
remained (Fig. 1). The quality of that publications 
was subsequently analysed and assessed according to 
the SLR process (Kitchenham & Charters, 2007). A 
more detailed information regarding the quality 
assessment is presented in the following Section 2.4. 

2.4 Quality Assessment 

For the purpose of assuring that the previously 
selected 39 publications are relevant and unbiased, a 
quality assessment was performed. To address the 
problem of the papers’ quality, a checklist was used 
as it is a standardized way of performing the quality 
assessment. 
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Figure 1: SLR process. 

The quality checklist proposed and applied consisted 
of the following questions: 
Q1: Are the study aims clearly stated?  
Q2: Is there an adequate description of the study 
context?  
Q3: Is there a clear statement of findings/achieved 
results? 
Q4: Are the findings/achieved results based on 
multiple projects? That means, whether the solution 
proposed by the authors was successfully verified by 
its application to at least two cases in a particular 
context (e.g. multiple web applications) 
Q5: Do the researchers discuss the validity/reliability 
of their results?  

Answers to the stated questions were binary, with 
the answer being either “yes” or “no”. For each 
affirmative answer, the paper was given a point, in 
other case the point was not granted. The overall 
score for the paper is based on the count of points 
gained. The maximum achievable score was 5 points, 
and with that in mind, if the score was lower than 3, 
the paper was excluded from the final set. Table 2 
summarizes the results of the quality assessment for 
the papers included during the previous phase. The 
lines marked in light grey represent the publications 
excluded due to their low score. Each publication has 
an identifier assigned to it, being used further in this 
paper.   

After the quality assessment was performed, the 
final set of selected publications included 34 
publications. 

3 SLR RESULTS 

This section presents the outcomes of the Systematic 
Literature Review and provides the answers to the 
research questions posed (RQ1, RQ2, RQ3, RQ4). 
 
 
 
 

3.1 RQ1: Which Software Testing 
Activities Can Be Improved by 
Applying AI Techniques? 

In the course of this literature study, 9 distinct 
activities were identified. These activities constitute 
software testing activities which have a potential to be 
automated and improved by applying AI techniques. 
The activities were identified and analysed based on 
the resulting set of 34 papers. A brief summary of the 
activities is presented in Table 3. 

Some of the papers proposed approaches 
applicable across several testing activities. Hence, 
based on that fact, the publications were mentioned 
multiple times in all the activities they impact.  

Figure 2 shows the count of papers that mentioned 
individual testing activities. Based on that count, it is 
possible to make an assumption that even the AI 
techniques are reportedly suitable to be used all 
across the testing process, some of the activities (e.g.   
test case or test oracle generation) attract more 
attention than the others.   

As mentioned earlier, several software testing 
activities were identified during the SLR process. 
These are described below in more detail as they are 
important for the remaining research questions.  
Test Case Generation. Test case generation can be 
defined as a process of creation of a sequence of test 
operations or test steps for the particular system under 
test (Hu et al., 2018; Li & Lam, 2005; Mariani et al., 
2012; Papadopoulos & Walkinshaw, 2015; 
Srivastava & Baby, 2010).  
Test Oracle Generation. This activity can also be 
titled test evaluation. Test oracles provide the 
feedback on the obtained outputs from the system 
under test. They determine whether the outputs 
correspond with the expected ones (Braga et al., 
2018; Jin et al., 2008; Shahamiri et al., 2011). 
Test Execution. The core of this activity is 
represented by the execution of test cases and by 
recording the results of those test runs. In certain 
cases, test execution and some other activities such as 
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Table 2: Quality assessment. Lines marked grey represent the excluded publications. 

Identifier Publication Q1 Q2 Q3 Q4 Q5 Score 
R1 Méndez-Porras et al. (2015) yes yes no no no 2 
R2 Sharifipour et al. (2018) yes yes yes yes yes 5 
R3 Shahamiriet al. (2011) yes yes yes no yes 4 
R4 Papadopoulos and Walkinshaw (2015) yes yes yes yes yes 5 
R5 Wotawa (2016) yes yes no no no 2 
R6 Lu et al. (2008) yes yes no no no 2 
R7 King et al. (2018) yes yes yes yes yes 5 
R8 Srivastava and Baby (2010) no yes yes no yes 3 
R9 Paradkar et al. (2007) yes yes yes no no 3 
R10 Wang et al. (2007) yes yes no no no 2 
R11 Jin et al. (2008) yes yes yes no no 3 
R12 Mariani et al. (2012) yes yes yes yes yes 5 
R13 Liu et al. (2017) yes yes yes yes yes 5 
R14 Li et al. (2011) yes yes yes no no 3 
R15 Li et al. (2009) yes yes yes no yes 4 
R16 Shen et al. (2009) yes yes yes no yes 4 
R17 Li and Lam (2005) yes yes yes no no 3 
R18 Souza et al. (2011) yes yes yes yes yes 5 
R19 Rosenfeld et al. (2018) yes yes yes yes yes 5 
R20 Gu et al. (2017) yes yes yes yes yes 5 
R21 Bhattacharyya and Amza (2018) yes yes yes no no 3 
R22 Carino and Andrews (2015) yes yes yes yes yes 5 
R23 Santiago et al. (2018) yes yes yes yes yes 5 
R24 Stocco et al. (2018) yes yes yes yes yes 5 
R25 Thummalapenta et al. (2012) yes yes yes no no 3 
R26 Bozic and Wotawa (2018) yes yes yes no no 3 
R27 Hewett and Kijsanayothin (2009) yes yes yes no yes 4 
R28 Hillah et al. (2016) yes yes yes yes yes 5 
R29 White et al. (2019) yes yes yes yes yes 5 
R30 Moghadam (2019) yes yes yes yes no 4 
R31 Sant et al. (2005) yes yes yes no yes 4 
R32 Chen et al. (2017) yes yes yes yes yes 5 
R33 Braga et al. (2018) yes yes yes yes yes 5 
R34 Vieira et al. (2006) yes yes no no no 2 
R35 Chang et al. (2010) yes yes yes yes yes 5 
R36 Fard et al. (2014) yes yes yes yes yes 5 
R37 Pan et al. (2019) yes yes yes yes no 4 
R38 Hu et al. (2018) yes yes yes yes yes 5 
R39 Choi et al. (2013) yes yes yes yes yes 5 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Number of publications by testing activity. 
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data generation are performed together 
(Bhattacharyya & Amza, 2018; Chang et al., 2010; 
Gu et al., 2017; Hillah et al., 2016).  
Test Data Generation. Test data generation is a 
process of creation of the data for test cases. As an 
example, input values that should be relevant to each 
particular test can be mentioned (Liu et al., 2017; 
Sharifipour et al., 2018; White et al., 2019).  

Table 3: Software testing activities that can be improved by 
applying the AI techniques. 

Testing Publication identifier 

Test case 
generation 

R4, R8, R9, R12, R15, R16, R17, R19, 
R22, R23, R25, R26, R28, R29, R30, 
R31, R36, R38

Test 
oracle 
generation 

R3, R4, R9, R11, R12, R19, R26, R28, 
R29, R32, R33, R35, R36 

Test 
execution 

R12, R19, R20, R21, R26, R28, R30, 
R32, R35, R37, R39 

Test data 
generation 

R2, R13, R14, R28, R29, R39 

Test 
results 
reporting 

R19, R20, R32 

Test 
repair 

R24, R25, R37 

Test case 
selection  

R18, R28 

Flaky test 
prediction 

R7 

Test order 
generation 

R27 

Test Results Reporting. Test results reporting is the 
collection of test outputs in the form of a report. This 
activity is performed after test execution and test 
evaluation activities have been finished. Such reports 
can possibly contain the following information: 
executed steps, execution status, occurred failures 
identification, defect reports, etc. (Chen et al., 2017; 
Gu et al., 2017; Rosenfeld et al., 2018).  
Test Repair. Test repair is, in essence, a maintenance 
activity. Within the course of this activity, test scripts 
are adjusted to changed conditions. The need for it 
lays in a fact that test scripts are fragile and vulnerable 
to the changes introduced by developers in a newer 
version of the tested software (Pan et al., 2019; Stocco 
et al., 2018).  
Test Case Selection. This activity focuses on the 
selection of test cases from a test suite. The selection 
is made based on criteria individually defined for 
each test case execution. Test case selection also 
involves removal of the duplicate, redundant or 
inexecutable test cases from the test set, which is 
typically generated by the tools (Souza et al., 2011).   

Flaky Test Prediction. Flaky test is characterized as 
such when it reports false positive or false negative 
test result, when adjustment was made to the test 
scripts and/or to the code of the system under test 
(King et al., 2018). If the tests expressing similar 
characteristics could be identified and repaired, the 
overall stability and reliability of the tests can be 
significantly improved.  
Test Order Generation. This activity is concentrated 
on determination of the number and order of the 
components under test during the component 
integration testing. The aim is to minimize the 
number of mocked components required for testing, 
and to select their appropriate orchestration (Hewett 
& Kijsanayothin, 2009).  

3.2 RQ2: What AI Techniques Can Be 
Applied for Improving Testing 
Activities Identified during 
Answering the RQ1? 

During the SLR process, several promising AI 
techniques were identified. The findings are 
presented in Table 4, where the identified techniques 
are introduced together with the publications, 
mentioning and using the technique. Figure 3 
summarizes all identified artificial intelligence 
techniques and the publications where usage of those 
techniques was reported. The mentioned artificial 
intelligence techniques are ordered according to the 
count of publications where these techniques were 
used. For the sake of readability of the diagram, a few 
algorithms and methods from Table 4 were 
aggregated. Specifically, those belonging to the 
computer vision (CV) field were combined into the 
group labelled as “CV techniques” by grouping 
namely: non-maximum suppression method (NMS), 
Scale Invariant Feature Transform (SIFT), Features 
from Accelerated Segment Test (FAST), Fast 
Normalized Cross Correlation (FNCC) algorithms, 
contour detection, Scale-Invariant Feature Transform 
(SIFT), Optical Character Recognition (OCR). 

The visible trend from Figure 3 is that more than 
half of the reported AI techniques was reported only 
by a single publication. However, if the individual 
techniques were grouped by AI subfields, it would be 
apparent that most used techniques are from the 
machine learning and computer vision fields.  From 
the machine learning field, the most popular 
techniques were different types of networks (e.g. 
Artificial Neural Network, Convolutional Neural 
Networks, Recurrent neural network, Bayesian 
Network) and Q-learning (Mariani et al., 2012), 
which were used in 23% and 8% of the publications  
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Figure 3: Count of publications by AI techniques. 

respectively. The application of computer vision 
techniques was reported by 11% of the publications 
in the final set, where the individual techniques from 

these field include template matching algorithms, 
contour detection and OCR. 

Table 4 maps the identified AI techniques to 
testing activities that were identified in RQ1. 
Unfortunately, it was not possible to identify the exact 
AI technique used in the Thummalapenta et al. (2012) 
publication. Therefore, in Table 4 it is mentioned as 
“Algorithm from NLP field”. 

3.3 RQ3: What Are the Reported 
Benefits of AI Techniques Usage in 
Software Test Automation? 

This section describes the benefits of AI techniques 
usage in the field of software test automation. The 
identified benefits may be perceived as a main 
motivation for applying artificial intelligence in 
software test automation. To answer the research 
question, it was important to differentiate the research 
contributions of the selected publications to software 
engineering field in general from the practical value 
AI techniques can bring to the testing activities. The 
reported benefits were grouped into larger categories  

Table 4: Mapping AI techniques and testing activities (x = technique is applicable). 
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Non-maximum suppression method (NMS) R32     x     

SIFT, FAST, and FNCC algorithms R24, R37  x   
Contour detection, OCR R37      x    
Bayesian Network R7, R28 x      x x  
Particle swarm optimization (PSO) R18   x  
Hybrid genetic algorithms R14, R16 x x     
Ant colony optimization (ACO) R2, R8 x   x      
Artificial Neural Network (ANN) R3, R11, R22, R23 x x     
Graphplan algorithm R9, R26 x x     
Support vector machine (SVM) R36, R38 x x        
AdaBoostM1 and Incremental Reduced Error 
Pruning (IREP) algorithms R33  x        

Convolutional Neural Networks (CNN) R29 x x     
Template-matching algorithm R32, R35 x     
Decision tree algorithm (C4.5)  R4 x         
Markov model R31 x     
MF-IPP (Multiple Fact Files Interference 
Progression Planner) 

R15 x         

Algorithm from NLP field R25 x     
Q-learning R12, R17, R30 x     
Recurrent neural network (RNN) R13 x     
L* R39   x x      
Fuzzing algorithm R20 x     
k-means R21 x     
KStar classifier R19   x       
Heuristics algorithms R27     x
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Table 5: Reported benefits of using AI techniques. 

Benefit Benefit description 
Publications 
identifier 

Manual effort reduction Some of the testing activities are already automated but still require 
user guidance, some of them are only semi-automatic, with more 
human interventions. Application of AI techniques saves the manual 
effort in terms of reduction of time and cost required for the creation 
of the tests, execution and their maintenance. 

R7 R9, R20, R24, 
R25, R27, R28, R30, 
R32, R33, R35, R37, 
R38, R39 

Improved code 
coverage 

Reported benefits regarding the coverage can be described as an ability 
to cover either a significant part of the statements, branches, transitions 
or to fully cover them. In the publications, the improvement in 
coverage was measured against the already existing approaches. 

R2, R8, R12, R22, 
R29, R31, R36, R39 

Improved fault and 
vulnerability detection 
effectiveness 

Generally speaking, generated test cases or oracles are more efficient 
and effective at identifying flaws in software in comparison with the 
existing approaches.

R4, R9, R12, R22, 
R26, R32, R36, R38 

Reusability of created 
test cases and test 
oracles 

Reusability of generated test cases and oracles in the context of the 
publication could be perceived as an independence of one or more 
conditions: specific GUI library, application, operating system, source 
code, system model.

R23, R29, R30, R35, 
R38 

Test breakage repair Papers were reporting the effectiveness of breakage repair capabilities 
by correcting the significant amount of breakages, outperforming 
existing solutions. 

R24, R25, R37 

Avoidance of redundant 
actions during the test 
execution 

To improve the execution time and accuracy of the test, the AI 
techniques contribute to avoidance of system under test restarts and of 
unnecessary activity transitions.

R8, R20, R39 

Improvement of 
existing solutions  

Some of them are improvements that AI-based approach can bring to 
existing test case generation, selection and data generation techniques: 
generated text inputs are depending on the context of the system under 
test and not generated randomly; avoidance of the combinatorial 
explosion during the generation; selection of test cases based not on 
one but multiple objectives.

R13, R15, R18 

Improved test adequacy 
of the generated test 
cases 

Generated test cases are able to achieve the required test adequacy, 
which exceeds equivalent test adequacy for other non-AI approaches. 
The adequacy is based on the states covered, practicability and non-
redundancy of the generated test cases.

R4, R17 

and are shown in Table 5 together with their short 
description. 

It is pertinent to note that the relationship between 
the AI techniques and the benefits can be described as 
many-to-many relationship type. Taking this fact into 
consideration, in more than 70% of all papers at least 
one of the first tree benefits from the table below 
(Table 5) was observed. 

3.4 RQ4: What AI-enhanced Software 
Tools Can Be Pragmatically Used 
by Practitioners for Software Test 
Automation Activities?   

During the review, 14 software tools presented in 
Table 6 were discovered. As it is obvious from the 
table, only half of them is publicly accessible on the 
web. Information regarding the year of relevant 
research publication, in which the tool was used, and 

the year of last tool update are presented in Table 6 as 
well. The latter information is presented only for 
those tools that are publicly accessible.  

The table also shows that only a few tools (3) have 
been under active development after the papers, 
which reported on the tools, were published. These 
are as follows: AutoBlackTest, Sikuli Test and 
SwiftHand.  

In total, seven publicly accessible tools were 
identified and are shown in Table 6. A detailed 
description for each of them is presented below. 
Model-Inference Driven Testing (MINTest) can be 
used for the test case generation using the C4.5 
algorithm (Papadopoulos & Walkinshaw, 2015). At 
its webpage (“MIN Test Framework”, 2012), it is 
described as a test framework for unit and integration 
levels of testing. Its implementation is intended for 
Linux operating system (OS).  
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Table 6: AI-enhanced software tools, their public accessibility with years of publication and tool update. 

Tool name 
Publication 
identifier 

Is tool publicly 
available? 

Publication 
year 

Last update 
year 

MINTest - Model-Inference driven Testing R4 yes 2015 2012 
AutoBlackTest - Automatic Black-Box Testing  R12 yes 2012 2016 

DAS - Dynamic Ant Simulator R17 no 2005 - 

ACAT - Activities Classification for Application Testing R19 no 2018 - 
AimDroid R20 yes 2017 2017 

Vista R24 yes 2018 2018 
ATA - Automating Test Automation R25 no 2012 - 
MIDAS R28 no 2016 - 
UI X-RAY R32 no 2017 - 
Sikuli Test R35 yes 2010 2019 
Testilizer R36 yes 2014 2014 
METER - Mobile Test Repair R37 no 2019 - 
AppFlow R38 no 2018 - 
SwiftHand R39 yes 2013 2015 

 
Automatic Black-Box Testing (AutoBlackTest) 
implements the reinforcement learning, namely Q-
Learning. The tool serves for the automatic graphical 
user interface (GUI) test case generation (Mariani et 
al., 2012). According to the AutoBlackTest GitHub 
repository (Shekhar, Murphy-Hill, & Oliviero, 2016), 
it runs only with IBM Rational Functional Tester on 
Windows OS. Based on available information, it is 
not possible to say whether the tool is usable on a 
higher version of Windows OS than 8.1 and JRE 
above 1.6. 
AimDroid is a tool that was designed for the GUI 
testing of Android applications. The automated 
testing of the application is made by the exploration 
of its activities. The tool handles test execution and 
test results reporting back to the user. As an AI-
enhancement, the fuzzing algorithm was used (Gu et 
al., 2017). One of the limitations and a concern 
regarding the usage of AimDroid is the fact that the 
device should be rooted: the user of the device is 
granted root privileges (Institute of Computer 
Software of Nanjing University, 2017).  
Vista leverages the computer vision techniques for 
the purpose of GUI test breakage repair. It records a 
successfully running test in its web-based GUI. Once 
the test starts to fail on a later version of the 
application, Vista is able to compare the current state 
of the application with the recorded one and can 
perform the repair of the test scripts (Stocco et al., 
2018). The tool currently supports the repair of the 
scripts written in Java, in particular Selenium scripts 
(Stocco, 2018). 
Sikuli Test is an automated tool that enables usage of 
visual notation (e.g. by using a picture of an element 
for the sake of element identification on the screen) 

while writing the GUI test. The tool uses computer 
vision in order to make automated testing easier for 
the user. Sikuli Test is designed to be platform 
independent. So, it can be used for testing of not only 
desktop applications, but also web and mobile 
(Android) applications (Chang et al., 2010). It seems 
that the tool is currently under active development as 
SikuliX (Hocke, n.d).  
Testilizer is capable of generating test cases from 
existing Selenium test scripts for web applications 
using SVM (Vapnik, 2013). The Selenium tests are 
the starting point for the tool, which is able to 
generate new test cases for the previously not reached 
states of the application (Fard et al., 2014). Crawljax 
is required as a prerequisite installed on the machine, 
where the tests should run (Fard & Mesbah, 2014).   
SwiftHand supports the GUI test automation of 
Android applications. It uses L* algorithm (Irfan, 
Oriat, & Groz, 2010) for exploration of the model of 
the application-under-test’s GUI. Subsequently, 
SwiftHand uses it to generate needed inputs in order 
to examine the previously not visited states of the 
application (Choi et al., 2013). SwiftHand can be run 
on Linux OS or OSX (Choi, 2015). The GitHub 
repository (Choi, 2015) of the tool provides a detailed 
information on how to install and run the tool. 

4 DISCUSSION AND 
CONCLUSION 

The overall goal of this paper was to raise awareness 
regarding the potential benefits that AI could bring 
into the software test automation field. A Systematic 
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Literature Review (SLR) study was conducted for the 
purpose of fulfilling the goal. As the main outcome of 
the SLR process, 34 resulting publications were 
closely analysed and found relevant to the stated 
research questions. 

Based on the discovered publications, nine 
software testing activities were identified as activities 
which could be improved by the application of AI 
techniques. The testing activities are as follows: test 
case generation, test oracle generation, test execution, 
test data generation, test results reporting, test repair, 
test case selection, flaky test prediction, test order 
generation. The analysed papers addressed mostly 
test case generation. 

According to the collected data, most commonly 
used AI techniques appears to be from the field of 
machine learning, specifically different types of 
neural networks: Artificial Neural Network, 
Recurrent Neural Network, Bayesian Network; Q-
learning; L* etc. Bayesian Network and techniques 
from the Computer Vision field belong among the 
techniques that were used across more testing 
activities more frequently than others. 

Eight benefits of AI usage in software test 
automation were discovered during the SLR. With 
respect to the fact that the artificial intelligence 
techniques described in the publications can 
contribute to multiple benefits, 73% of all papers 
reported at least one of the following benefits: manual 
effort reduction, improved coverage, improved fault 
and vulnerability detection. 

In order to provide test practitioners with practical 
examples of AI application in the test automation 
field, several AI-enhanced tools were identified. 
From these tools, only the publicly accessible ones 
were described here in more details: MINTest, 
AutoBlackTest, AimDroid, Vista, Sikuli Test, 
Testilizer and SwiftHand. Importantly, some of the 
tools mentioned above appear to be already outdated. 
Therefore, pragmatically speaking, they may not be 
practically usable as the software engineering field 
and artificial intelligence techniques evolve quickly. 
As two examples, we mention MINTest and 
Testilizer, which have not been updated for seven and 
five years respectively.  

During the review process, an observation was 
made that most of the publications included in our 
SLR were concentrated on solving one or two 
particular problems that can arise during software test 
automation activities. That means, an integrative and 
simply-to-use toolset for test automation practitioners 
starving for AI-driven test automation does not seem 
to be readily available yet. However, one should note 
that this review was concentrated on predominantly 

academic sources. Therefore, it did not include much 
grey-literature, which may be perceived as its main 
limitations. In fact, probing into commercial AI-
powered tools by means of multivocal literature 
reviewing (Garousi, Felderer, & Mäntylä, 2016) 
might bring additional insights. 

Furthermore, as the paper focused mostly on the 
benefits of AI usage in software test automation, 
future work should also consider limitations and risks 
that AI might bring into this context. As an example, 
it is reasonable to expect that high initial investments 
into AI technologies, together with a need for special 
training, may significantly hinder the AI adoption 
process in the software industry. To cope with these 
dilemmas, future empirical work should ideally take 
a practice-based view. Notably, mapping specific 
motives and approaches driving the deployment and 
usage of AI-powered test automation tools in real-
world companies appears to be an ideal way forward. 
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