
Learning Recursion: Insights from the ChiQat Intelligent Tutoring
System

Omar Alzoubi1 a, Barbara Di Eugenio2 b, Davide Fossati3 c, Nicholas Green2 and
Mehrdad Alizadeh2

1Jordan University of Science and Technology, Jordan
2University of Illinois at Chicago, U.S.A.

3Emory University, U.S.A.

Keywords: Recursion, Intelligent Tutoring Systems, Computer Science Education.

Abstract: Recursion is a difficult concept to teach, and novice programmers struggle Learning it. The reasons include
unfamiliarity with activities associated with analyzing recursion, such as visualizing program execution and
difficulty understanding its back flow of control. In this paper we discuss approaches to teaching recursion that
includes conceptual and program visualization methods. We also describe the recursion module of our ChiQat-
Tutor system which relies on ideas from both approaches. We designed several activities that allow students
to work on recursive problems: answering questions, animations, code tracing, validation, and construction
tasks. We conducted four evaluation experiments at two different institutions, with a total of 89 students tak-
ing introductory Computer Science courses. We hypothesized that ChiQat-Tutor can help novice Computer
Science students learn recursion, develop accurate mental models of recursion, and serve as an effective visu-
alization tool with which hidden features of recursion can become evident. Our results showed some evidence
that the animation, answering questions, code tracing, and validation tasks exhibit a trend towards significant
learning gains.

1 INTRODUCTION

Recursion is an important concept in computer sci-
ence, whether seen as a problem-solving approach, a
way of expressing an algorithm, a mathematical con-
cept, or a programming technique (McCauley et al.,
2015; Hamouda et al., 2019). It is a powerful and es-
sential computational problem solving technique that
involves breaking down of a problem into smaller
sub-problems of the same kind. Thus said, such de-
composition is not easily comprehended by novice
students learning recursion (Dann et al., 2001). Some
computer science educators suggest that recursion is
an inherently difficult concept to master, and it is one
of the most difficult concepts to teach (Pirolli and An-
derson, 1985). This is because it is a method to define
subprogram, in which the subprograms being defined
is applied within its own definition.

A key explanation why recursion is seen as a diffi-

a https://orcid.org/0000-0002-7978-1633
b https://orcid.org/0000-0003-1706-2577
c https://orcid.org/0000-0003-3587-8860

cult concept because it is traditionally taught after stu-
dents have developed preconceptions based on their
learning of repetition (Turbak et al., 1999). Addition-
ally, students sometimes have difficulty recognizing
different invocations of the same function, and they
get confused by the bookkeeping required for tracing
each recursive call (Tessler et al., 2013). In particular,
they struggle with unfamiliarity with activities asso-
ciated with analyzing recursion, the visualization of
the program execution, the back-flow of control after
reaching the base case, comparison to loop structures,
and the lack of everyday analogies for recursion.

It is acknowledged that in order to understand the
process of recursion and be able to write recursive
code, one must be able to visualize the nature of a
problem and how solutions to smaller sub-problems
are combined to solve the original problem (Bower,
1998). In a comprehensive review conducted by
(McCauley et al., 2015), a number of successful ap-
proaches to teaching recursion were cited. It included;
providing students with variety of analogies and ex-
amples, introducing repetition before recursion, trac-
ing methods, teaching students problem solving tech-

336
Alzoubi, O., Di Eugenio, B., Fossati, D., Green, N. and Alizadeh, M.
Learning Recursion: Insights from the ChiQat Intelligent Tutoring System.
DOI: 10.5220/0009413903360343
In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 2, pages 336-343
ISBN: 978-989-758-417-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

niques to break problems into small sub-problems,
identifying base and recursive cases, and providing
modifiable code templates.

The focus of this paper is about the strategies for
teaching recursion which we implemented and eval-
uated in ChiQat-Tutor. We carried out four experi-
ments in two locations: Carnegie Mellon University
in Qatar (CMUQ), and the University of Illinois at
Chicago (UIC), over a period of one year. We ana-
lyzed students’ interactions with the recursion module
of ChiQat-Tutor, looking for further insights on suit-
able approaches for recursion learning. In the next
section we review some of the approaches to teaching
recursion, discussing the advantages and limitations
of each approach. We also introduce our approach to
teaching recursion in ChiQat tutor.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related literature. Section 3
provides an overview of the ChiQat system. Section 4
explains our experimental protocol and data collec-
tion. Section 5 discusses our results; and Section 6
provides concluding remarks.

2 RELATED WORK

A number of approaches to teaching recursion was
discussed in (Tessler et al., 2013). These include con-
ceptual models of recursion and control flow, and the
use of visual aids. Conceptual models are defined
by teachers and are used as tools for understanding
or teaching of a system. Conceptual models used
for teaching recursion include mathematical induc-
tion, abstract and conceptual discussions of recursion,
process tracing, and structure templates of recursive
code (Wu et al., 1998). On the other hand, the visual
aids approach relies on the use of algorithms anima-
tion, program visualizations using video games of an-
imated characters.

Some researchers advocated the use of program
visualizations to introduce recursion. For example,
(Dann et al., 2001) experimented with program visu-
alization technique to introduce recursion to students.
They utilized a software system named Alice which
allowed students to gain intuitive sense and mathe-
matical insight into the recursive process. However,
(Edgington, 2007) cited a number of limitations with
the Alice system.

Algorithm animation are also commonly used as
an aid to teaching recursion. The instructor pro-
grams an animation for commonly used algorithms
(e.g. quick sort, factorial). The student runs the pre-
pared animation observing the behavior using differ-
ent inputs. It is suggested that students should be able

to manipulate the animations, not just watch them, in
order to learn (Bower, 1998). It appears that there
is no consensus on the benefits of algorithm anima-
tion as a learning aid. (Stasko et al., 1993) found no
significant result suggesting that algorithm animators
assist learning. They suggested that future research
should focus on allowing students to construct their
own animations. On the other hand, a meta-analysis
of 24 experimental studies on the use of algorithm
visualization (AV) as an aid for learning algorithms
was conducted by (Hundhausen et al., 2002). Their
results showed that the effectiveness of AV is deter-
mined by how students use the AV technology rather
than what the AV technology shows them. Other re-
search showed that animation seems to make a chal-
lenging algorithm more accessible, thus leading to en-
hanced learning (Kehoe et al., 2001).

Recursion Graphs (RGraph) is a visual tool used
to aid the introduction of recursion to students (Sa
and Hsin, 2010). RGraph is similar to recursion trees
in that it shows the invocation sequence. However it
adds the detailed calling sequences from one layer to
another including the intermediate results for each re-
cursive call. An RGraph is a directed graph with two
sets of vertices (oval for a recursion call, and square
for post/pre processing statements of recursion calls).
The RGraph is built layer by layer from top to bot-
tom (i.e. breadth-first) with directed edges indicating
the processing sequence. One particular feature of an
RGraph is that it is traceable as it shows the detailed
invocation sequence from one layer to another. Re-
sults showed that the use of RGraphs helped improv-
ing student learning of recursion by providing flexi-
bility in demonstration and more focused pedagogical
interactions from students.

On the other hand, conceptual models for teach-
ing recursion are tools that aim at helping students
formulate accurate mental models of the concept of
recursion (Götschi et al., 2003; Wu et al., 1998). It is
believed that if a person has a mental model of a pro-
cess, s/he will then be able to make predictions about
the behavior of that process, although perhaps inac-
curately sometimes (Kahney, 1983). Moreover, pos-
session of a model will allow a person to debug the
model when s/he is faced with counter-examples.

Early research on teaching recursion embraced
the use of the mathematical induction model (Ford,
1984). In this model students are taught recursion
through the theory of recurrence relations (Wilcocks
and Sanders, 1994). However, a possible limita-
tion with this approach is that novice computer sci-
ence students might not possess the necessary level
of mathematical skills required to develop a clear un-
derstanding of recursion (Ford, 1984; Wilcocks and

Learning Recursion: Insights from the ChiQat Intelligent Tutoring System

337

Figure 1: Interface of ChiQat-Tutor Recursion Module. Left: A Problem, Its Explanation, and Questions. Center: Task List
and Recursion Graph. Right: Help Button and Recursive Code. Bottom: System’s Feedback.

Sanders, 1994).
Some researchers believe that more emphasis

should be put on the declarative, abstract level of
problem decomposition rather than on the computa-
tional model and program visualization (Ford, 1984;
Ginat and Shifroni, 1999). A divide-and-conquer
strategy is applied at the problem level, regardless
of the machine implementation. (Ginat and Shifroni,
1999) found that the use of such model significantly
enhanced recursive programs formulation ability of
students in comparison to establishing comprehension
via understanding of the process of recursion execu-
tion. On the other hand, (Wu et al., 1998) found that
concrete conceptual model, which provide an appro-
priate level of details of the process of recursion, is
better than abstract conceptual models for teaching
recursion.

A number of mental models of recursion pos-
sessed by both novices and expert programmers in
the context of SOLO programming was identified
(Kahney, 1983). These include; 1) The Loop model:
novices are hypothesized to possess this model. They
view recursive procedures as a single object instead
of a series of new instantiations. 2) The Odd model:
students acquired the notion that the flow of control
statement, rather than the results of pattern matching,
acts as the stopping condition for recursion. 3) The
Syntactic ”Magic” model: a student is able to match
on syntactic elements and their positions, and make

predictions about the behavior of the recursive pro-
grams on this basis, but has no clear understanding of
how recursion works. 4) The Copies model: students
view recursive instantiations of a recursive procedure
as copies, as opposed to a single object, as in the Loop
model. It is interesting point that novices have the
Loop mental model of recursion. Some research sug-
gested that it is important to teach recursion before
loops not vice versa (Turbak et al., 1999).

The work of (Kahney, 1983) was extended by
(Wilcocks and Sanders, 1994). A number of con-
ceptual models to teaching recursion was evaluated.
These include the mathematical, tree, copies, analo-
gies, and graphical recursive structure models. They
found that the Copies Model is more viable than the
other models. It is believed that this Copies Model is
what expert programmers have of recursion (Kahney,
1983). However, (Kahney, 1983) cautioned that hav-
ing acquired the Copies mental model is not sufficient
to determining what students really know about recur-
sion. Since students can make predictions about re-
cursive procedures behavior without fully understand-
ing recursion.

There has been some previous research on us-
ing structured templates and worked-out examples for
teaching recursion in the context of LISP program-
ming (Pirolli and Anderson, 1985; Hamouda et al.,
2019). It was found that learning is facilitated by
using abstract representations of the structure of re-

CSEDU 2020 - 12th International Conference on Computer Supported Education

338

cursion examples to guide initial coding attempts of
students. The type of information exploited by this
mechanism is an example or demonstration supplied
by some source. However, (Rinderknecht, 2014)
mentioned that although examples can be used to de-
velop analogical problem solving skills, care should
be taken not to rely on them too early. This is in or-
der to prevent students from developing the magic or
syntactic model, identified by (Kahney, 1983).

3 SYSTEM OVERVIEW

ChiQat-Tutor is a modular tutoring system whose
goal is to facilitate learning of core CS data struc-
tures (e.g., linked lists, trees, stacks) and algorithmic
strategies (e.g., recursion). The interface of ChiQat is
shown in Figure 1. The use of RGraph is extended
in our system by implementing several interactive
tasks; described in Table 1. Students are able to inter-
act with RGraph representation of different recursive
problems (e.g., factorial, palindrome). The RGraph-
based interactive tasks can help students identify the
recursive structure of problems, understand recursive
processes and identify critical features of recursive so-
lutions to these problems. These tasks were designed
with different levels of difficulty, which will allow
users to progress from one task to another.

In ChiQat-Tutor we developed an approach to
teaching recursion that is based on the visual model
of RGraph; which is a clever visual representation of
recursive execution. It also uses ideas from the con-
ceptual model of teaching recursion in the form of
code structured templates. We believe that our ap-
proach, mixing ideas from both the conceptual mod-
els and visual aids approaches will help students learn
recursion more effectively. Capitalizing on the advan-
tages of both approaches, and avoiding misconcep-
tions presented by either of them. A similar approach
is followed by RecTutor (Hamouda et al., 2019). It
is found that student performance in learning recur-
sion was enhanced by doing more tracing and writing
exercises practice that addresses common recursion
misconceptions.

Previous research has shown the importance of us-
ing graphical representations, in the form of diagram-
matic traces and animations of recursive problems,
which allowed novice programmers develop correct
mental models of recursion (Wilcocks and Sanders,
1994). The tasks that can be carried on RGraphs in
ChiQat combine characteristics from different con-
ceptual models of teaching recursion. These include
Stack Simulation, the Copies Model, and Tree Model
(Wu et al., 1998). For example, the animation task

represents a stack simulation approach to teaching re-
cursion. Tracing, validating, and constructing RGrahs
tasks can enforce the Copies and tree mental models
of learning recursion. This allows students to look
at recursion solutions from different angles. We be-
lieve that the use of RGraphs coupled with the differ-
ent tasks that students can perform on them can help
students develop the Copies Model that expert pro-
grammers are hypothesized to possess.
Our approach for teaching recursion also embodies
a much widely used strategy of using structure tem-
plates of recursive code and worked-out examples as
an instructional material (Pirolli and Anderson, 1985;
Hamouda et al., 2019). The cognitive processes re-
quired to learn from a solved example are well un-
derstood. The learner must: (a) store in procedural
memory the steps in the example; (b) interpolate the
missing steps, since solved examples are necessarily
incomplete to some extent; (c) infer the purpose of at
least the main steps in the example; and (d) generalize
over the specifics of the example. Working through
examples is pervasive in instructional situations, and
much appreciated by students. The ChiQat-Tutor will
serve as an effective visualization tool with which hid-
den effects of nested function calls would become ev-
ident when applied to a whole range of problems that
can be solved recursively.

4 DATA AND METHODS

The recursion module was evaluated using multi-
ple experiments conducted at both UIC and CMUQ.
Ethical approvals were obtained from IRB offices at
CMUQ and UIC prior to the conducting of experi-
ments. Table 1 provides a summary of number of stu-
dents who participated in these experiments. First, a
general description of the experiments is given. Sec-
ond,experiments at both CMUQ and UIC experiments
are discussed separately. Finally, an analysis of the
two groups of students which relate to the correla-
tions between tasks performed with learning gain is
presented.

4.1 Experimental Protocol

All students were asked to complete a consent form.
Then they were asked to complete a pre-test. The
test included problems that involved recursive prob-
lem decomposition, utilizing RGraphs, as tutored in
ChiQat. The consent form and pre-test time was
capped at 10 minutes. Then, they were asked to solve
problems using ChiQat-Tutor, the allotted time was
30 minutes. For each of the problems, all of the

Learning Recursion: Insights from the ChiQat Intelligent Tutoring System

339

Table 1: Task Description.

Task Name Description

Answering questions Students answer multiple choice questions related to the current recursive problem. This task is designed to
test learners’ understanding of the recursive problem and recursion in general.

Animating Learners play a prepared animation and observe the execution order of the recursive code. The node’s color
changes as the animation progresses; green indicates an active function call; gray indicates a terminated call
or an intermediate result, which is explained in a legend next to the RGraph.

Tracing Users click on the nodes of the RGraph and follow the right order of execution. The nodes’ color will
change as users make progress.

Validating Students work on two types of RGraph: an incomplete RGraph, and an RGraph that contains errors. Given
a sample code, students are required to fill the partial RGraph, and then validate their solution. Similarly,
they are required to correct the errors in the flawed RGraph, and then validate their solution.

Constructing Learners build an RGraph for a given recursive code. The first few nodes of the RGraph are provided to
them. Students need to validate their solution after finishing constructing the RGraph.

tasks described in Table 1 were presented. Students
were asked to complete the three recursion problems
Power-of-two, Factorial, and is-Palindrome, but they
were allowed to peruse them in whatever order they
wanted , and no mechanism was used to enforce
completion of any of the problems, or of the activi-
ties. Students were then asked to complete a post-test
(identical to the pre-test) after finishing working on
the problems. The time allotted for the post-test was
also 10 minutes.

Each question of the pre and post tests was graded
by two graders on a scale from 0 to 5 following a
written guideline. There were two questions per test,
which brings the total of each test to 10 points. Scores
were then rescaled between 0 and 1. Hake’s normal-
ized learning gain (g) was then computed according
to the formula in equation 1. It is defined as the ratio
of the difference in total score to the maximal possi-
ble increase in score (Hake, 1998). We also computed
and used of absolute learning gain as defined in equa-
tion 2.

g =
post − pre

1− pre
(1)

g = post − pre (2)

4.2 Experiments at CMU Qatar

The students from CMUQ were a mix of Informa-
tion Systems, Biology, and Business majors. They
were exposed to recursion while taking the 15-112
class Fundamentals of Programming and Computer
Science, which is an introductory Python program-
ming course. This class devoted two weeks to recur-
sion, and the experiments were conducted during the
second week, when the students were still being ex-
posed to these concepts. Both CMUQ experiments
took place in two single lab sessions. The differ-
ence between pre-test (µ = 5.27, σ = 1.87) and post-

Table 2: Recursion Experiments - Student Distribution.

Semester & School No. of Students

Fall 14, CMUQ 16
Fall 15, CMUQ 21
Fall 14, UIC 37
Spring 15, UIC 21
Total 95

test (µ = 6.26, σ = 1.79) is significant (t = 3.9,d f =
36, p < .001) for the two combined CMUQ students
experiments. However, analyzing the two CMUQ
experiments separately, no significant difference be-
tween pre- and post-test for Fall 14 is observed. On
the other hand, there is a significant difference be-
tween pre- and post-test for the Fall 15 experiments
(p = 0.004, t = 3.29).

4.3 Experiments at UIC

Recursion is introduced to students at UIC while they
enrolled in the CS151 Mathematical Foundations of
Computing class. The CS151 class is required of CS
and Computer Engineering majors. The CS151 class
devoted four weeks to induction and recursion. In Fall
2014, the experiments took place about two weeks af-
ter the end of the lectures on recursion. But in Spring
2015, they took place about seven weeks later towards
the end of the semester (15 weeks semester).

In Fall 2014, the experiment took place in two
lab sessions during the same day. The difference
between pre-test (µ = 6.74, σ = 2.59) and post-test
(µ = 7.19, σ = 3.01) is only marginally insignificant
(t = 1.98,d f = 36, p < .055). In Fall 2015, the exper-
iment was conducted in three laboratory sessions, and
no significant difference between pre-test and post-
test scores can observed. There is also no signifi-
cant difference between pre-test and post-test scores
for combined populations of both UIC experiments.

CSEDU 2020 - 12th International Conference on Computer Supported Education

340

Table 3: Recursion Experiments Test Scores and Learning Gains.

Semester and school Pre-test Post-test Absolute Gain Normalized Gain
µ σ µ σ µ σ µ σ

Fall 14, CMUQ 5.43 1.71 6.03 1.33 0.6 1.43 0.09 0.3
Fall 15, CMUQ 5.14 2.01 6.43 2.09 1.29 1.75 0.21 0.41
Fall 14, UIC 6.74 2.59 7.46 1.90 0.72 2.20 0.01 0.54
Spring 15, UIC 7.19 3.01 7.05 2.16 -0.14 2.89 -0.28 1.28

Table 4: Tasks - Derived Variables.

Task Derived Variable Description

Answering Qs
No of Answering Qs Number of questions attempted

Answering Correct Number of correct answers out of all answers given

Animating No of animation Number of Animations attempted

Tracing

No of Tracing Number of tracing tasks attempted

Tracing Correct Number of tracing tasks correctly completed

Node Tracing Correct Number of nodes students clicked in correct order

Node Tracing Errors Number of nodes students clicked in incorrect order

Validating
No of Validating Number of Validating tasks attempted

Validating Correct Number of validating tasks correctly completed

Constructing

No of Constructing Number of Constructing tasks attempted

Constructing Correct Number of constructing tasks correctly completed

Constructing Validation Attempts Number of validation attempts while constructing RGraphs

However, if all students scores from both CMUQ and
UIC are combined, a significant difference between
pre- (µ = 6.27, σ = 2.55) and post-test (µ = 6.9, σ =
1.97) can be observed (p< 0.006, t = 2.79). The next
section will analyze these experiments in terms of the
correlation of activities students performed and their
learning gains.

5 RESULTS AND DISCUSSION

The focus now is on analyzing features of interaction
of students with the ChiQat system. This is in order to
shed light on which tasks are conductive to learning.
For this analysis, few subjects (4 from the UIC Fall
14 group, and 2 from the CMU Fall 15 group) were
excluded. These students took pre- and post-test, and
did use the system, but for some unforeseen reason,
their logs could not be matched. This leaves us with
89 students in total, of which 35 at CMUQ and 54 at
UIC.

The pre-tests of the two groups of students at
CMUQ (µ = 0.52, σ = 0.19) and UIC (µ = 0.68, σ =
0.28) still significantly differ (unpaired t-test, p <
0.0023, t = 7.5050,d f = 87); however the two groups
do not differ as gains, or normalized gains are con-

cerned.
We decided to examine the correlation between

the activities the students perform in the system and
learning, to inform future research on which activities
should be emphasized in the system. In this type of
analysis, new variables are added to well-known vari-
ables that often have an effect on learning such as time
(because of the practice effect) and pre-test (previous
knowledge). Indeed, through a simple linear regres-
sion, we first analyzed the effect of time on task on
learning (this is the total time students interacted with
the system.

The reason time is explored as a predictive vari-
able is that a significant difference is found in time
spent on system between students at CMUQ (µ =
25.30, σ = 4.06) and UIC (µ = 14.26, σ = 6.01) (un-
paired t-test, p < 0.0001, t = 9.1412,d f = 87). Stu-
dents at both CMU and UIC were given 30 minutes
to work on the system, however, the different ex-
perimental settings clearly had an effect. The CMU
experiments took place during formal lectures of 75
minutes long. While the UIC experiments took place
during laboratory sessions which are 50 minutes long,
exactly the length of the whole experiment (10 min-
utes pre-test + 30 minutes system usage + 10 minutes
post-test). The time on system did not correlate with
learning gains, or normalized learning gains. A linear

Learning Recursion: Insights from the ChiQat Intelligent Tutoring System

341

Table 5: Regression Models: Absolute Gain as Dependent
Variable.

Students M Predictor β R2 P

All

A Time 0.003 0.421 ns
Pre-test −0.573 < 0.001

B

Time 0.019

0.421

ns
Pre-test −0.599 < 0.001
Answering questions 0.033 ns
Animations −0.219 0.051
Tracing −0.233 ns
Node Tracing Correct 0.020 ns
Node Tracing Errors 0.056 ns
Validating −0.096 ns
Validating Correct −0.096 ns

CMUQ

A Time 0.052 0.212 ns
Pre-test −0.439 0.004

B
Time 0.055

0.223
ns

Pre-test −0.411 0.004
Answering questions −0.058 ns

UIC

A Time 0.043 0.496 ns
Pre-test −0.653 < 0.001

B

Time 0.049

0.564

ns
Pre-test −0.675 < 0.001
Answering questions 0.154 0.014
Animations −0.218 ns
Tracing −0.083 ns
Node Tracing Errors 0.063 ns
Validating −0.160 0.086
Validating Correct 0.312 ns

regression analysis between time on system and learn-
ing gain/normalized learning gain was not significant.

After ascertaining that time was not explanatory,
a systematic multiple linear regressions was run. It
included time, pre-test, and number and type of tasks
attempted by students. The tasks are defined in Ta-
ble 1. We also define derived variables of the original
tasks which are listed in Table 4. In this regression
analysis, collinear variable with VIF (Variance Infla-
tion Factor) value greater than 5 was excluded.

Tables 5 and 6 report the results of our regression
analyses. We report the smallest significant model
(A) which always includes time on task and pre-test.
Then the best significant model (B) that includes other
variables, in addition to the pre-test, that are signifi-
cantly correlated with absolute, or normalized, learn-
ing gain. Models B have higher adjusted R2 (other
than for absolute gain, for all students in Table 5) and
highlight which specific tasks are significantly corre-
lated with learning. For absolute gains, the alternative
models B are not significantly different from the sim-
pler models A, whereas for normalized learning gains,
models B are always significantly better than their A
counterparts, for all groups of students (all together,
only CMUQ, only UIC). The two tables 5 and 6 al-
low us to draw some tentative conclusions on which
tasks may be effective for learning. The conclusions
are tentative because they do not generalize across the
two groups of students (CMUQ and UIC) and because
the β coefficients are small.

First, pre-test is always included, as a measure of
previous knowledge. It may be surprising to see that
pre-test is included in the analysis of normalized gain,

Table 6: Regression Models: Normalized Gain as Depen-
dent Variable.

Students M Predictor β R2 P

All

A Time 0.007 0.137 ns
Pre-test −0.105 < 0.001

B

Time 0.010

0.155

ns
Pre-test −0.111 < 0.001
Answering questions 0.022 ns
Animations −0.043 ns

CMUQ

A Time 0.023 0.191 0.069
Pre-test −0.075 0.023

B

Time 0.009

0.269

ns
Pre-test −0.093 0.008
Answering questions −0.007 ns
Animations −0.061 0.046
Tracing −0.026 ns
Node Tracing Correct 0.014 0.033

UIC

A Time 0.007 0.103 ns
Pre-test −0.118 0.023

B

Time −0.014

0.212

ns
Pre-test −0.145 0.002
Answering questions 0.073 0.012
Animations −0.032 ns
Tracing −0.015 ns
Node Tracing Errors 0.027 ns
Validating −0.058 ns
Validating Correct 0.237 0.012

since the definition itself of normalized gain takes pre-
test into account. However, in this particular case,
pre-test functions as a negative confounder, or sup-
pressor, that hides the (weak) effect of other indepen-
dent variables on learning. As concerns the tasks that
appear in the model we reported, the constructing task
never appears in any of the models. This may be due
to the lengthy nature of the construction task itself.
Students needed more time working on this task, and
consequently small number of students managed to
attempt an complete the task. If we look at all students
together, the only task that trends towards significance
is the number of animations; this task is negatively
correlated with absolute gains, but not with normal-
ized gains.

For CMUQ students, no tasks correlate with abso-
lute gains, but as concerns normalized gains, the num-
ber of animations negatively correlates, and the num-
ber of tracing tasks correctly completed positively
correlates with gains. The models for UIC students,
for absolute gains, have the most explanatory power,
with an adjusted R2 = 0.564. For this model, an-
swering questions positively correlates with learning
gains; the number of validating tasks exhibits a trend
towards significance, but a negative correlation with
gains. For UIC students, for normalized gains, the
model is not as strong, but still answering questions is
positively correlated with gains, and so is the number
of correctly completed validating tasks.

CSEDU 2020 - 12th International Conference on Computer Supported Education

342

6 CONCLUSIONS

We discussed the importance and difficulty of teach-
ing recursion to novice computer science students.
Different approaches to teaching recursion were also
discussed, with a focus on conceptual and visual mod-
els. Our approach to teaching recursion in ChiQat-
Tutor was then introduced. Results from our exper-
iments showed that answering questions, animation,
tracing tasks have significant correlation with learn-
ing. The validating task has a trend towards signifi-
cant. The constructing task didn’t have a significant
effect on learning, and this may due the small number
of students who managed to attempt the task. These
results suggest that interactive visual representation of
recursion algorithms may help students learn. More
work is needed in order to help students develop ac-
curate mental models of recursion. Future work will
be focused on adding structured templates for writing
code, scripting capabilities, intelligent feedback, and
student modeling.

ACKNOWLEDGEMENTS

This work is supported by award NPRP 5–939–1–155
from the Qatar National Research Fund, and is partly
supported by a UIC University Scholar award to Di
Eugenio.

REFERENCES

Bower, R. W. (1998). An investigation of a manipulative
simulation in the learning of recursive programming.

Dann, W., Cooper, S., and Pausch, R. (2001). Using visual-
ization to teach novices recursion. In Proceedings of
the 6th annual conference on Innovation and technol-
ogy in computer science education, pages 109–112.

Edgington, J. (2007). Teaching and viewing recursion as
delegation. J. Comput. Sci. Coll., 23(1):241–246.

Ford, G. (1984). An implementation-independent ap-
proach to teaching recursion. ACM SIGCSE Bulletin,
16(1):213–216.

Ginat, D. and Shifroni, E. (1999). Teaching recursion in
a procedural environment—how much should
we emphasize the computing model? SIGCSE Bull.,
31(1):127–131.

Götschi, T., Sanders, I., and Galpin, V. (2003). Mental mod-
els of recursion. SIGCSE Bull., 35(1):346–350.

Hake, R. R. (1998). Interactive-engagement versus tra-
ditional methods: A six-thousand-student survey of
mechanics test data for introductory physics courses.
American journal of Physics, 66(1):64–74.

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V.,
and Shaffer, C. A. (2019). Recurtutor: an interactive

tutorial for learning recursion. ACM Transactions on
Computing Education (TOCE), 19(1):1.

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T.
(2002). A meta-study of algorithm visualization effec-
tiveness. Journal of Visual Languages & Computing,
13(3):259–290.

Kahney, H. (1983). What do novice programmers know
about recursion. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems,
CHI ’83, pages 235–239, New York, NY, USA. ACM.

Kehoe, C., Stasko, J., and Taylor, A. (2001). Rethink-
ing the evaluation of algorithm animations as learning
aids: an observational study. International Journal of
Human-Computer Studies, 54(2):265–284.

McCauley, R., Grissom, S., Fitzgerald, S., and Murphy,
L. (2015). Teaching and learning recursive program-
ming: a review of the research literature. Computer
Science Education, 25(1):37–66.

Pirolli, P. L. and Anderson, J. R. (1985). The role of
learning from examples in the acquisition of recursive
programming skills. Canadian Journal of Psychol-
ogy/Revue canadienne de psychologie, 39(2):240.

Rinderknecht, C. (2014). A survey on teaching and learn-
ing recursive programming. Informatics in Education,
13(1):87–119.

Sa, L. and Hsin, W.-J. (2010). Traceable recursion with
graphical illustration for novice programmers. In-
Sight: A Journal of Scholarly Teaching, 5:54–62.

Stasko, J., Badre, A., and Lewis, C. (1993). Do algorithm
animations assist learning?: An empirical study and
analysis. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing
Systems, CHI ’93, pages 61–66, New York, NY, USA.
ACM.

Tessler, J., Beth, B., and Lin, C. (2013). Using cargo-bot to
provide contextualized learning of recursion. In Pro-
ceedings of the Ninth Annual International ACM Con-
ference on International Computing Education Re-
search, ICER ’13, pages 161–168, New York, NY,
USA. ACM.

Turbak, F., Royden, C., Stephan, J., and Herbst, J. (1999).
Teaching recursion before loops in cs1. Journal of
Computing in Small Colleges, 14(4):86–101.

Wilcocks, D. and Sanders, I. (1994). Animating recur-
sion as an aid to instruction. Computers & Education,
23(3):221 – 226.

Wu, C.-C., Dale, N. B., and Bethel, L. J. (1998). Concep-
tual models and cognitive learning styles in teaching
recursion. SIGCSE Bull., 30(1):292–296.

Learning Recursion: Insights from the ChiQat Intelligent Tutoring System

343

