
IoT-CryptoDiet: Implementing a Lightweight Cryptographic Library
based on ECDH and ECDSA for the Development of Secure and

Privacy-preserving Protocols in Contiki-NG

Eugene Frimpong a and Antonis Michalas b

Tampere University, Tampere, Finland

Keywords: Contiki-NG, Elliptic Curve Cryptography, Key Distribution, Privacy, Wireless Sensor Networks.

Abstract: Even though the idea of transforming basic objects to smart objects with the aid sensors is not new, it is only
now that we have started seeing the incredible impact of this digital transformation in our societies. There is
no doubt that the Internet of Things (IoT) has the power to change our world and drive us to a complete social
evolution. This is something that has been well understood by the research and industrial communities that
have been investing significant resources in the field of IoT. In business and industry, there are thousands of IoT
use cases and real-life IoT deployments across a variety of sectors (e.g. industry 4.0 and smart factories, smart
cities, etc.). However, due to the vastly resource-constrained nature of the devices used in IoT, implementing
secure and privacy-preserving services, using, for example, standard asymmetric cryptographic algorithms,
has been a real challenge. The majority of IoT devices on the market currently employ the use of various
forms of symmetric cryptography such as key pre-distribution. The overall efficiency of such implementations
correlates directly to the size of the IoT environment and the deployment method. In this paper, we implement
a lightweight cryptographic library that can be used to secure communication protocols between multiple
communicating nodes without the need for external trusted entities or a server. Our work focuses on extending
the functionalities of the User Datagram Protocol (UDP) broadcast application on the Contiki-NG Operating
System (OS) platform.

1 INTRODUCTION

The Internet of Things (IoT) encompasses the inter-
connection of small smart devices connected to the
Internet. In recent years, there has been a huge
surge in the adaptation of IoT technologies in ev-
eryday lives. The technology has been adopted by
huge corporations, small businesses, and individu-
als alike. One aspect of the IoT which continues
to receive a lot of attention is the area of Wire-
less Sensor Networks (WSN). WSNs are networks
that comprise of vastly resource constrained battery-
powered devices. These devices are deployed in vari-
ous environments to register the occurrence of differ-
ent environmental or targeted events, collect data on
said events, and exchange the collected data between
themselves and other digital components with little to
no human intervention. Typical applications of WSNs
can include disaster monitoring, asset monitoring, re-

a https://orcid.org/0000-0002-4924-5258
b https://orcid.org/0000-0002-0189-3520

mote sensing, habitat monitoring and military deploy-
ment (Liang et al., 2007).

As with any technology associated with data
collection, storage and transmission, there exists a
plethora of security and privacy threats that needs to
be considered during the deployment of such a net-
work. Design and development of secure and privacy-
preserving protocols for WSNs is a topic that attracts
extensive attention from both the academia and the in-
dustry (Schmidt et al., 2018). Asymmetric key cryp-
tography has become the standard for key exchange
and mutual authentication when working on the Inter-
net and is considered a viable option for WSN de-
vices. However, due to the resource constraints of
these devices, it is often challenging to implement
core public key cryptographic functions as these func-
tions are computationally expensive (Piedra et al.,
2013). Currently, the majority of key management
implementations on WSN devices are based on pre-
shared symmetric keys. The security keys in such im-
plementations are pre-installed on the devices before
deployment. This solution is not scalable for deploy-

Frimpong, E. and Michalas, A.
IoT-CryptoDiet: Implementing a Lightweight Cryptographic Library based on ECDH and ECDSA for the Development of Secure and Privacy-preserving Protocols in Contiki-NG.
DOI: 10.5220/0009405401010111
In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (IoTBDS 2020), pages 101-111
ISBN: 978-989-758-426-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

101

ments that involve tens of millions of devices. For
example, pre-installing 10,000 128-bit AES keys on
a device takes 160KB memory and also poses signifi-
cant look-up latency. Additionally, the de-centralized
ad-hoc nature of WSNs present significant limitations
to implementing traditional security solutions. In a
decentralized ad-hoc network setup, the individual
nodes do not have fixed positions before deployment
and also do not possess knowledge of neighbouring
nodes.

In this work, we present a lightweight secure
node-to-node key exchange communication protocol
implementation based on the Elliptic Curve Diffie-
Hellman (ECDH) and Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) (Strangio, 2005) on re-
source constrained devices. We extend the capabil-
ities of the Contiki-NG UDP (Contiki-Ng, 2019b)
broadcast application with a refined implementa-
tion of the ECC component of the Tinycrypt li-
brary (Wood, 2019). We do this in such a way that
will enable developers and researchers to easily build
and implement security and privacy-preserving proto-
cols by using our library as a baseline. As part of this
work, we evaluate the performance of our library by
running a toy protocol on the Zolertia Re-Mote board
and the Zolertia Orion Ethernet IP64 router. Our work
focuses on the communication between the individual
WSN devices.

Our Contribution. The main contribution of this
work is threefold. We first implement a lightweight
secure node-to-node key exchange communication
protocol based on the Tinycrypt (Wood, 2019) imple-
mentation of the ECDH and ECDSA algorithms. Our
construction was implemented and extensively tested
on the Zolertia IoT boards. Our work also extends the
Contiki-NG UDP communication application to sup-
port and facilitate the proposed implementation. This
work was designed and developed in such a way that it
can be easily adapted by different IoT operating sys-
tems and implemented on various brands of IoT de-
vices. Hence, allowing others to build even better and
more efficient secure and privacy-preserving IoT pro-
tocols.

Organization. The rest of this paper is organized as
follows. In section 2, we present existing works that
relate to privacy preserving solutions and cryptogra-
phy in resource constrained devices. In section 3, we
formally define our system model. A description of
the cryptographic primitives used for our work and
the threat model are presented in section 4. In sec-
tion 5, we give a brief overview of current security im-
plementations in Contiki-NG and provide a detailed

description of our proposed implementation. We then
delve into a security analysis of the cryptographic li-
brary we have chosen and the proposed toy protocol
in section 6. Section 7 provides an extended evalu-
ation of our proposed implementations and finally in
section 8 we conclude the paper.

2 RELATED WORK

In (Eschenauer and Gligor, 2002) authors introduced
a key-management scheme designed to meet the op-
erational and security requirements of distributed sen-
sor nodes (DSN). Their proposed scheme included se-
lective distribution and revocation of keys to sensor
nodes as well the capability of nodes to re-key with-
out substantial computational overhead. This pro-
posed scheme relied on three primary phases: key pre-
distribution, shared-key discovery and path-key es-
tablishment. Authors used probabilistic key sharing
among nodes and implemented a simple but effective
shared-key discovery protocol to achieve the primary
features of their scheme (i.e. key distribution, revo-
cation and node re-keying). Unlike this scheme, our
implementation eliminates the need to pre-distribute
keys and focuses on enabling the WSN nodes gener-
ate shared keys.

Another design of a secure network access sys-
tem for wireless sensor networks in (Sun et al., 2009)
used an elliptic curve public key cryptosystem, a
polynomial-based weak authentication scheme, and
hardware-based symmetric key cryptography. The
authors used ECC as a network admission control
to add new nodes to their environment. Further-
more, they introduced a controller node in their net-
work to authenticate new nodes using self-certified
ECDH protocol. The hardware-based symmetric key
cryptography was implemented using the hardware
security interface offered by TinyOS (Community,
2019) with the Imote2 sensor (Technology,) running
TinyOS. The Imote2 platform comes with 256KB
SRAM, 32MB SDRAM and 32MB flash. However,
contrary to this implementation, our work does not
require the use of a controller node or any third party
entity to verify nodes.

In (Zhou et al., 2019) authors present a re-
designed NIST P-256 and 256 SM2 (Feng, 2017)
cryptographic algorithm to fit low-end IoT platforms
such as the 8-bit AVR processor. The authors adopt
an optimized finite field arithmetic and elliptic curve
group arithmetic for optimum performance on their
selected IoT platform. The primary focus of the pa-
per is the use of techniques for various modular re-
duction and the adoption of the fastest method of big

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

102

integer multiplication and regular scalar multiplica-
tion algorithms. Authors used an optimized masked
operand technique for the modular addition and sub-
traction to reduce the latency while using Karatsuba
technique (Hutter and Wenger, 2011) to achieve sub-
quadratic complexity. Additionally, authors in (Raza
et al., 2017) proposed an end-to-end secure commu-
nication architecture between the IoT and a cloud
backend. Their implementation focused primarily
on the communication between the IoT smart de-
vices and the cloud platform rather than the inter-
communication between IoT nodes. The effort of au-
thors centered on extending the functionalities of the
SicsthSense cloud platform for IoT with secure CoAP
features and DTLS. The results of their experimenta-
tions showed the DTLS handshake to be challenging
due to the utilization of public key cryptography.

3 SYSTEM MODEL

In this section, we introduce our system model by
explicitly defining the main entities that are consid-
ered in our design and their capabilities. For the pur-
poses of our implementation, we let S = {s1, . . . ,sn}
be the set of all sensor nodes (SN) in the WSN that
are deployed to register the occurrence of a specific
event and R = {r1, . . . ,r j} be the set of all router
nodes (RN) deployed to aggregate data collected from
the sensor nodes. Furthermore, we assume that an
si ∈ S , registers a specific event by using sensed data.
The set of all sensed events by si is denoted as Ei =
{ei

1, . . . ,e
i
k}.

Sensor Node: An si is a device responsible
for registering the occurrence of an environmental
or a specified events and sending data about the
event to a router r j. In our setup, the set S of
all sensor nodes consists of Zolertia Re-Mote board
devices that are based on the Texas Instruments
CC2538 ARM Cortex-M3 system on chip (SoC) (S.L,
2017b). The board has 512KB of programmable flash
and 32KB of RAM and possesses a built-in battery
charger (500 mA) with energy harvesting capabili-
ties. We chose this Zolertia Re-Mote board due to
its industrial-grade design, ultra-low power consump-
tion capabilities and the very low amount of resources
available to it. The operations that an si can perform
are:

1. Register the occurrence of a specific event, ei
k;

2. Generate a unique ECC private and public key
pair (sksi/pksi);

3. Generate a unique ECDSA signing and verifying
key pair (sigsi/versi);

4. Exchange the generated public key (pksi) with a
neighbouring node sm or a router r j;

5. Generate a shared symmetric key (Ki,j) based on
a received public key;

6. Share data on a sensed event securely with the
other device partaking in the protocol;
The shared symmetric key is used to secure the

communication medium between the two communi-
cating entities.
Router Node: In our WSN environment, an r j is a
more powerful device in the network that is respon-
sible for aggregating data sent from sensor nodes in
S and then forwarding to a service or a cloud ser-
vice provider (CSP) for the benefits of external users.
For this work, the set R of all router nodes consists
of Zolertia Orion Ethernet IP64 Router (S.L, 2017a)
board has 512KB flash and 32KB RAM (16KB re-
tention) and 32MHz. This board is also an IPv4/IPv6
routing device with an Ethernet 10BASE-T interface.
As with the Zolertia Re-Mote board, we chose this
board due to its high resource constraints, power con-
sumption and industrial-grade design. Every router
node out of those in the set R is able to connect to a
central service (e.g. a CSP) via its Ethernet interface.
An r j is able to perform the following operations:
1. Generate a unique ECC private and public key

pair (skrj/pkrj);
2. Generate a unique ECDSA signing and verifying

key pair (sigrj/verrj);
3. Exchange the generated public key pkrj with an si

that wishes to share data on a sensed event, ei
k;

4. Generate a shared symmetric key Ki,j based on
the received pksi to create a secure communica-
tion medium;
The method by which the router nodes commu-

nicate to the CSP is beyond the scope of this paper
and as such will not be discussed. We however as-
sume this is done by means of a secure communica-
tion channel.
Cloud Service Provider (CSP): For the purposes of
our implementation, we assume the existence of a
CSP similar to the one described in (Paladi et al.,
2017; Paladi et al., 2014). The CSP can be seen as an
abstract external platform that consists of cloud hosts
operating virtual machines that communicate through
a network. The CSP will be the final destination of
messages aggregated by R within the WSN. Specific
capabilities and features of the CSP are beyond the
focus of this paper and as such is not discussed into
detail. However, we assume CSP that takes advan-
tage of the benefits of trusted computed – similar to
the one presented in (Paladi et al., 2017).

IoT-CryptoDiet: Implementing a Lightweight Cryptographic Library based on ECDH and ECDSA for the Development of Secure and
Privacy-preserving Protocols in Contiki-NG

103

4 CRYPTOGRAPHIC
PRIMITIVES AND THREAT
MODEL

In this section, we formally define the cryptographic
primitives that are used throughout the paper. Addi-
tionally, we describe the threat model that we consider
to ensure the security of our work.

4.1 Cryptographic Primitives

We utilize the ECDH key exchange protocol to se-
curely generate a shared symmetric key over a pre-
viously insecure medium. ECDH is an anonymous
key agreement protocol based on the popular Diffie-
Hellman algorithm implemented using elliptic curves.
With ECDH, two communicating parties both pos-
sessing an ECC public and private key pair are able
to establish a shared secret. The established shared
secret can be used directly as a symmetric key or used
to derive another symmetric key. We also implement
the ECDSA scheme to ensure message integrity in
the form of digital signature creation and verification.
In our ECDH implementation, every si in the set S
and every r j in the set R , generate an ECC key pair
(sksi ,pksi) and (skrj ,pkrj) respectively. The key ex-
change protocol is completed when each communi-
cating entity exchanges their ECC public key to es-
tablish Ki,j. in our work we utilize the P-256, which
we denoted simply as P−256.

The following notations for cryptographic func-
tions are used throughout this paper.

1. ECC GenKeyPair : A probabilistic key generation
algorithm that takes as input, a prime p, a base-
point G, and the order of the ECC curve P− 256
and outputs an ECC private and public keypair. It
is used by all entities in our work to generate their
ECC private and public key pairs. We denote this
by (ski,pki)← KeyGen(P−256).

2. ECDH GenSharedKey : A probabilistic algorithm
that takes as input the ECC private key ski of si
and the ECC public key pkj of r j. After a success-
ful run, it outputs a shared symmetric key Ki,j. We
denote this by (Ki,j)← Gen(ski,pkj).

3. AES Encrypt : A probabilistic algorithm that
takes as input a symmetric key Ki,j and a mes-
sage m. After a successful run of this algorithm,
a ciphertext cK is outputted. We denote this by
cK← Enc(Ki,j,m).

4. AES Decrypt : A deterministic algorithm that
takes as input a symmetric key Ki,j and a ciper-
text cK. A successful run of this algorithm out-

puts the original message m. We denote this by
Dec(Ki,j,cK)→ m.

5. ECDSA sign : A probabilistic algorithm that takes
as input the ECDSA private key sigi and the hash
of a message H(m) and outputs a signature. We
denote by sigi(m)→ σi(H(m)).

6. ECDSA verify : A deterministic algorithm that
takes as input the signed message, m, the signature
σi(H(m)) and the corresponding ECDSA public
key sigi. A successful run of the algorithm out-
puts a boolean value: valid or invalid.

4.2 Threat Model

This paper focuses primarily on the implementation
of cryptographic operations described in Section 4 as
part of Contiki-NG OS for IoT devices with very high
resource constraints. As such, we do not define a strict
threat model under which these operations are con-
sidered secure. However, our work lays a foundation
for protocols that consider the Dolev-Yao adversar-
ial model (Dolev and Yao, 1983) and the semi-honest
threat model. WSNs are particularly susceptible to
types of attacks performed in a number of arbitrary
ways such as denial of service attacks (Michalas et al.,
2010; Michalas et al., 2011b; Michalas et al., 2011a;
Michalas et al., 2012), privacy violation attacks (Dim-
itriou and Michalas, 2014), physical attacks, and node
replication attacks. We denote both a local and remote
adversary as ADV and we focus explicitly on privacy
violation attacks. Due to resource and computational
restraints on WSNs, it is almost impossible to guard
against a well-orchestrated and powerful ADV ca-
pable of performing denial-of-service attacks as well
as sensor communication jamming. To this end, we
make the following assumptions as extensions to the
adversarial model in (Dolev and Yao, 1983).
Cryptographic Security: We assume encryption
schemes are semantically secure and the ADV can-
not obtain the plain text of encrypted messages. We
also assume the signature scheme is unforgeable, i.e
ADV cannot forge the signature of an entity from our
system model and that the underlying cryptographic
hash functions can correctly verify the integrity and
authenticity of the exchanged messages. We assume
that the ADV , with a high probability, cannot predict
the output of a pseudorandom function. We explicitly
exclude denial-of-service attacks and focus on ADV
that aim to compromise the confidentiality and pri-
vacy of participating SNs. However, we would like
to stress that for our main cryptographic schemes, we
use the TinyCrypt library (Wood, 2019). Develop-
ers of TinyCrypt state that the cryptographic schemes
implemented are not meant to be fully side-channel

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

104

resistant but rather offer certain generic timing-attack
countermeasures.
Physical Security: We assume the physical security
of the environment where the WSNs have been de-
ployed. This assumption is important due to the fact
that the WSN devices are not tamper resistant. Any
ADV with physical access to the devices can bypass
all security implementations.

5 EXTENSION TO Contiki-NG

In this section, we provide a brief overview of the
Contiki-NG OS and its current support for various
application-layer and link-layer security strategies.
We describe with the aid of a toy protocol, the exten-
sions that this work makes to the Simple UDP appli-
cation provided by Contiki-NG to implement a secure
end-to-end communication medium between multiple
communicating WSN nodes.

5.1 Contiki-NG

Contiki-NG is the most recent version of the popular
Contiki Project (Kurniawan, 2018). The Contiki-NG
OS uses Protothread which combines the merits of
both multithreading and event driven programming.
The OS uses the C programming language for writ-
ing applications and provides hardware abstractions
that enable it to work with various different WSN
hardware. The general architecture of Contiki-NG
OS consists of the Kernel, Program loader, Language
run-time, Communication service, and the Loaded
program modules. Currently, Contiki-NG comes
with support for application-layer security in the way
of DTLS and link-layer security for IEEE.802.15.4
TSCH (Contiki-Ng, 2019a). The application-layer se-
curity is achieved by modifying a version of the Tiny-
DTLS cryptographic library (Eclipse, 2018) which
comes with support for DTLS with pre-shared key
mode. DTLS is the standard for communications pri-
vacy when using User Datagram Protocols (UDP).
It enables client/server applications to communicate
in a secure way to prevent eavesdropping, message
forging and tampering (Michalas and Murray, 2017)
with a design based on the stream-oriented Transport
Layer Security (TLS) protocol. The obvious limita-
tions with the Contiki-NG implementation of appli-
cation security is the client/server nature of DTLS,
pre-shared key mode of DTLS and the size of hand-
shake messages (DTLS and TLS handshake messages
are up to 224−1 bytes while UDP datagrams are of-
ten limited to < 1500 bytes). Developers also provide
support for both the unsecure CoAP and the secure

CoAPs over DTLS. CoAP is an application-layer pro-
tocol quite similar to HTTP but transported over UDP
instead of TCP.

The secure implementation of CoAP integrates
DTLS to encrypt both the CoAP header and pay-
load, as well as authenticate the communication be-
tween client and server. To the best of our knowl-
edge, the only secure CoAP mode implemented by
Contiki-NG is the pre-shared key mode based on the
specific DTLS mode implemented by TinyDTLS. The
primary disadvantage with using the pre-shared node
is the amount of memory consumed by the DTLS key.

5.2 Extension to Contiki-NG

In this section, we present an overview of the exten-
sions made to the native UDP broadcast application
provided by Contiki-NG to provide an end-to-end se-
cure communication between multiple nodes. The
objective of the UDP broadcast application is to en-
able one node (i.e a sensor node si) broadcast data
to other nodes (i.e a router node r j or another sen-
sor node sm). As part of its design, the application is
based on the simple_udp_connection module pro-
vided by Contiki-NG developers and is comprised
of three core functions. The simple_udp_sendto()
function used for sending broadcast messages, the
simple_udp_register() function which registers
and initializes a UDP connection, and attaches a call-
back to it and the udp_rx_callback() function for
listening for incoming UDP broadcast messages. The
functions are defined as follows:

simple udp sendto()
simple_udp_sendto
(struct simple_udp_connection *c,
const void *data,
uint16_t datalen,
const uip_ipaddr_t *to)

simple udp register()
simple_udp_register
(struct simple_udp_conection *c,
uint16_t local_port,
uip_ipaddr_t *remote_addr,
uint16_t remote_port,
udp_rx_callback)

IoT-CryptoDiet: Implementing a Lightweight Cryptographic Library based on ECDH and ECDSA for the Development of Secure and
Privacy-preserving Protocols in Contiki-NG

105

udp rx callback()
udp_rx_callback
(struct simple_udp_connection *c,
const uip_ipaddr_t *sender_addr,
uint16_t sender_port,
const uip_ipaddr_t *dest_addr,
uint16_t dest_port,
const uint8_t *data,
uint16_t datalen)

The broadcast message is transmitted in
plaintext as the data variable in both the
simple_udp_sendto() and udp_rx_callback()
functions. Therefore, to secure the contents
of the broadcast message, we implemented
the ECC GenKeyPair, ECDH GenSharedKey,
AES Encrypt, AES Decrypt, ECDSA sign and
ECDSA verify functions, presented in Section4, in
the native UDP application. To give a clear under-
standing of the extensions we made, we first describe
the current implementation and then we proceed with
the description of the designed algorithms.

On runtime, a node si that wishes to send a broad-
cast message initializes and registers a UDP connec-
tion using the function simple_udp_register().
Once this step is completed, si searches its rout-
ing table to find any nodes that have initial-
ized and registered their UDP connections with
NETSTACK_ROUTING.node_is_reachable()
function. The IP address of any discov-
ered node (r j or sk) is retrieved using the
NETSTACK_ROUTING.get_root_ipaddr() func-
tion. With the retrieved IP address, si generates the
message to be sent and transmits it in plaintext by
using the simple_udp_sendto() function.

All communicating nodes run the
udp_rx_callback() function continuously in
the background to listen for any incoming messages.
Once a node receives a broadcast message, it retrieves
the data and sender addr variables for any further
back and forth communication. We note that there are
no operations performed on the data being transmit-
ted between nodes. We leverage the functionalities of
the simple UDP application to implement an efficient
three-phased secure communication protocol. The
phases incorporated in our implementation are the
Handshake Phase, Shared Key Generation Phase,
and the Secure Communication Phase.

Handshake Phase: All nodes generate an ECC key
pair by running the ECC.GenKeyPair function. Once
the key pairs have been generated, each node ini-
tializes and registers a UDP connection using the

simple_udp_register() function. To broadcast
data about a sensed event, si scans its routing table
for neighboring nodes and retrieves their IP addresses.
The handshake phase between si and another node
(e.g a router node r j) is complete when si utilizes
the simple_udp_sendto() function to send pksi to
r j and receives pkr j from r j by listening for responses
using the udp_rx_callback() function.

Algorithm 1: ECC GenKeyPair.

Input: P−256
Output: ski,pki
function call;
if GenKeyPair == True then

return ski,pki;
else

Key Generation Failed!;
end

Algorithm 2: ECDH GenSharedKey.

Input: ski,pkj,P−256
Output: Ki,j

function call;
if (Ki,j)← Gen(ski,pkj) == True then

return Ki,j;
else

Shared Key Generation Failed!;
end

Algorithm 3: AES Encrypt.

Input: Ki,j,m
Output: cK
initialize function call;

cK← Enc(Ki,j,m);
return cK to the node

Algorithm 4: AES Decrypt.

Input: cK,Ki,j

Output: m
initialize function call;

Dec(Ki,j,cK)→ m;

Algorithm 5: ECDSA sign.

Input: sigi,m,P−256
Output: σi(H(m))
initialize function call;

HASH(m)→ H(m);
Return σi(H(m)) to node;

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

106

Algorithm 6: ECDSA verify.

Input: veri,œi(H(m)),m,P−256
Output: True / False
initialize function call;

HASH(m)→ H(m);
ECDSA verify(veri,H(m),curve);

if ECDSA verify(veri,H(m),curve) == True
then

Signature Verification Successful!;
else

Signature Verification Fail!;
end

Shared Key Generation Phase: We assume that
the participating nodes have successfully exchanged
their public keys from the previous phase. In this
phase, si and r j compute a shared symmetric key Ki,j

by running the ECDH.GenSharedKey function (algo-
rithm 2). This phase is considered successful when
both nodes obtain the same Ki,j based on the ex-
changed public keys.

Secure Communication Phase: Now that a shared
key Ki,j has been successfully computed by the com-
municating nodes, si is now ready to securely broad-
cast the data about a sensed event. To do so, si en-
crypts a message m with Ki,j to produce a ciphertext
cK which is sent to r j using simple_udp_sendto().
Upon reception of the broadcast message, r j recovers
m by decrypting cK.

5.3 Toy Protocol

To further elaborate how our implementation can be
used by researchers and developers to build secure
and privacy-preserving protocols, we describe a sim-
ple secure end-to-end protocol between a sensor node
si and a router node r j. The si is deployed in an en-
vironment to monitor a specified event. This protocol
seeks to ensure that messages between si and r j are
secure, fresh and integrity protected.

At the beginning of our toy protocol, si and r j gen-
erate an ECDH key pair, (sksi ,pksi) and (skrj ,pkrj),
and an ECDSA key pair for message signing and sig-
nature verification (sigsi ,versi) and (sigrj ,verrj). To
establish a secure channel, si exchanges pksi and versi
with r j and vice versa (Step 1 and 2 in Figure 1). Now
si computes Ki,j using the ECDH GenSharedKey
function with inputs 〈sksi ,pkrj〉 while r j also com-
putes Ki,j with inputs 〈skrj ,pksi〉.

To send a message m to ri, si generates a ran-
dom number R1 and encrypts m with Ki,j to produce
the ciphertext cK. The hash of cK and R1 is signed
with sigsi to output σsi(H(cK||R1)) (algorithm 5).

Once this is done, si generates a message, msg1 =
〈R1,cK,σsi(H(cK||R1))〉 and sends it to r j. This mes-
sage format is used with the aim of achieving message
freshness and integrity. Upon reception of msg1, r j
decrypts cK with Ki,j and verifies σsi(H(cK||R1)) with
versi (algorithm 6). The protocol is successful when
ri successfully verifies the signature. A high-level il-
lustration of the protocol is presented in Figure 1. It
is worth mentioning that our extension to Contiki-NG
can be used to secure any protocol that involves the
communication of two parties without the need to in-
volve any other entity such as a server or a trusted
authority.

r jsi

pksi ,versi

pkr j ,verr j

msg1 = R1,cK ,σsi(H(cK ,R1))

Figure 1: End-to-End Communication.

6 SECURITY ANALYSIS

In this section we elaborate on the security of our ap-
proach. To do so, we first discuss the security of Tiny-
Crypt and the schemes that we used (AES, ECDH,
and ECDSA) and then move on by providing a brief
security analysis of the toy protocol presented earlier
in the presence of a malicious adversary. At this point,
it is worth mentioning that the security of the main
cryptographic schemes is not examined since their se-
mantic security has been already proved. However,
we elaborate on the security of the actual TinyCrypt
implementation.

6.1 Tinycrypt Library Security

It should be noted that developers of Tinycrypt em-
phatically state that the library is not intended to
be side-channel resistant due to the large variety
of side-channel attacks available. In an attempt to
make the library safe for use, they implement spe-
cific generic timing-attack countermeasures (Fan and
Verbauwhede, 2012) which do not affect the overall
code size. Tinycrypt seeks to implement all cryp-

IoT-CryptoDiet: Implementing a Lightweight Cryptographic Library based on ECDH and ECDSA for the Development of Secure and
Privacy-preserving Protocols in Contiki-NG

107

tographic schemes with a minimum set of standard
cryptographic primitives. The library is built entirely
with the goal of ensuring security, minimum footprint
possible and flexibility. In an effort to ensure the secu-
rity of the implemented schemes, the library utilizes
a reliable pseudo-random generator that is claimed to
be vetted by a community of experts.

When implementing SHA-256, the number of
hashed bits in any state is not checked for data over-
flow. However, this becomes an issue if one intends to
hash a message of more than 264 bits. The library also
does not provide support for AES key lengths greater
than 128. This limitation is based on the fact that
AES-256 requires key schedules almost 40% larger
than AES-128 with double the key size. Considering
the fact that we are working with resource constrained
devices, this limitation of the AES implementation is
not considered critical. Concerning the ECDH and
ECDSA implementations, a cryptographically secure
pseudorandom number generator (PRNG) function is
initiated to ensure the secure generation of random
numbers. In an effort to reduce the code size, all large
integers are represented with little endian words. Us-
ing little endian words enable efficient writing of mul-
tiple precision math routines utilized by the library (
i.e operations can be performed on the least signifi-
cant bytes while the most significant bytes are being
fetched from memory).

To verify the correctness of the schemes imple-
mented, the library also provides a set of test val-
ues that can be used to test each cryptographic prim-
itive against publicly available validated test vectors.
The ECDH and ECDSA implementations are tested
against vectors from the NIST Cryptographic Algo-
rithm Validation Program (CAVP) (Division et al.,).
During our experiments, we tested all the adopted
schemes from Tinycrypt against these NIST CAVP
vectors and successfully verified their correctness and
integrity.

6.2 Toy Protocol Security

Realistic Assumption: We assume that all nodes are
able to verify the owner of a public key. By doing this,
we eliminate the possibility of a man-in-the-middle
attack.

Our goal here is to show that by using our work,
researchers can build protocols that will ensure secure
communication between two or more entities. To do
so, we will briefly prove the security of the toy pro-
tocol presented in figure 1 by assuming the existence
of a malicious adversary ADV that tries to fool any
of the participating entities either by replaying old
messages or by replacing original messages with fake

ones.

Proposition 1 (Message Compromise). Let ADV
be a malicious adversary that seeks to tamper with
the contents of msg1 or create a fake message msgi

1.
ADV successfully completes this attack if she tam-
pers with the contents of the message msg1 or creates
a new message, msgi

1, such that neither si nor r j is
able to distinguish between the real message and the
modified or fake message.

Proof. ADV can choose either to tamper with the
random number R1 or with the actual ciphertext cK .
However, since both of these values are included in
the signature, σsi(H(cK||R1)), part of the real msg1,
changing them implies forging si’s signature. How-
ever, based on our threat model where we have as-
sumed cryptographic security, this attack can only
happen with negligible probability. Thus, r j, would
understand that the message has been tampered with,
and drop the connection

Proposition 2 (Message Replay). Let ADV be a
malicious adversary that seeks to deceive one of the
communicating parties by replaying an old message,
msg1 = 〈R1,cK,σsi(H(cK||R1))〉, with a valid signa-
ture σsi . ADV will successfully launch this attack if
r j accepts the message as valid.

Proof. Here we consider the scenario where ADV
replays an old message msg1 to r j in an attempt to
convince r j that she is a legitimate sensor node in
the network. ADV can either choose to generate a
new random R2 or reuse the same random number R1
that was used in an old run of the protocol between
si and r j. Even though the structure of the message
is correct and it also contains a valid signature σsi ,
r j can easily identify that the received message is not
fresh. This is because R2 is not the same as the ran-
dom number hashed in the second part of the mes-
sage, σsi(H(cK||R1)), or that the re-used R1 is part of
an old message. Therefore, the verification step of the
protocol will fail and r j will drop the connection.

7 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our
implementation on the WSN devices. Our testbed
consisted of a sensor node (a zolertia Re-Mote board
with 512KB programmable flash and 32KB of RAM)
and a router node (a zolertia Orion Ethernet IP64
Router with 32KB RAM (16KB retention and 512KB
flash). All programming for this section was in C
language on the Contiki-NG OS platform. We also

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

108

utilized a modified version of the Tinycrypt library
to implement all the cryptographic functions required
for our work. To facilitate the performance of our
work, we built a Contiki-NG testing application pur-
posely to evaluate all functions introduced in Sec-
tion 4. Once completed, we integrated the functions
into the native Contiki-NG UDP broadcast applica-
tion and analysed the difference in specific perfor-
mance metrics. Due to the resource constrained na-
ture of the WSN devices, our experiments mainly
aimed at analysing the processing time of the under-
lying encryption schemes, code size and the amount
of data being used by the applications.

7.1 Performance of Cryptographic
Functions

To comprehensively measure the performance of each
function of the WSN devices, we repeatedly run the
functions on both the router node and the sensor node.
The performance of a function comprises the execu-
tion time, energy usage and memory usage. Our test
application aimed to measure the execution times of
these functions. To ensure accurate readings, we ran
each test 50 times.

Execution Time. We measured the execution times
of the proposed functions by using the timer li-
brary provided by Contiki-NG. Essentially, we mea-
sured the time period for the completion of a spe-
cific function. During our experiments, we observed
that the system time in most WSN platforms, includ-
ing the CC2538 platform for which all our devices
are based on, is represented as CPU ticks and lim-
ited to long unsigned values. Due to this limita-
tion, all performance figures received from our ex-
periments were recorded in ticks and externally con-
verted to seconds. We derived specific figures by di-
viding the number of recorded ticks by 128 (CPU
ticks per second is 128 as defined in Contiki-NG).
The results of this phase of the experiments can be
seen in Table 1. As can be seen from the table,
ECC GenKeyPair function requires around 167 CPU
ticks to complete which corresponds to 1.305sec.
ECDH GenSharedKey function’s execution time is
approximately 165 CPU ticks which corresponds
to 1.289sec. AES Encrypt and AES Decrypt both
needed around 1 CPU tick corresponding to 0.007sec
to complete. ECDSA sign executes in around 176
CPU ticks while ECDSA verify in 198 CPU ticks cor-
responding to 1.375sec and 1.547sec respectively.

Table 1: Function Execution Times.

CPU Ticks Time(sec)
ECC GenKeyPair 167 1.305

ECDH GenSharedKey 165 1.289
AES Encrypt 1 0.007
AES Decrypt 1 0.007
ECDSA sign 176 1.375

ECDSA verify 198 1.547

Memory Usage. In this phase of the experiments,
we shift our focus to the application components sizes
in memory. More specifically, we compared the mem-
ory usage of the native UDP broadcast application
without our extensions and the new application which
integrates all of our proposed functions. It is worth
mentioning that the Contiki-NG OS provides support
for two forms of data storage (external and internal
MCU). Our work focuses on the internal MCU stor-
age model which comprises the ROM and RAM com-
ponents (in the future, we plan to look at exploiting
external storage models to provide support for imple-
mentations with larger data requirements). Altogether
with the necessary drivers and the Contiki-NG OS,
the native UDP broadcast application fits in 41998-
bytes of ROM and consumes a total of 12807-bytes
of RAM. However, when our functions are integrated
with the application, it fits in 46015-bytes of ROM
and consumes a total of 13943-bytes of RAM. Table 2
provides a breakdown of memory utilization of both
programs. It can be observed that the primary differ-
ence between both programs is the size of the data
section of the RAM. This can be associated to the
additional data variables included to store the cryp-
tographic data.

Table 2: Application Memory Usage.

ROM RAM RAM
Native Application 41998 544 12263

Extended Application 46015 1616 12327

Energy Consumption. For this phase, we utilized
the Energest module provided by Contiki-NG. This
module offers lightweight software-based energy es-
timations for resource constrained WSN devices by
monitoring the operations of the device’s various
hardware components (i.e. CPU and Radio).

In our experiments, the CPU active and radio lis-
tening modes were active and the measurements for
these correlate directly to the execution times of the
underlying functions. In other words, the more time it
takes to execute a function, the more energy is con-
sumed. We utilized the CPU current consumption
values from (S.L, 2017b) to calculate the energy con-
sumption of each of the designed functions. Table 3

IoT-CryptoDiet: Implementing a Lightweight Cryptographic Library based on ECDH and ECDSA for the Development of Secure and
Privacy-preserving Protocols in Contiki-NG

109

Table 3: Energy Consumption based on Execution Times.

Time(s) Energy(mJ)
ECC GenKeyPair 1.305 78.3

ECDH GenSharedKey 1.289 77.34
AES Encrypt 0.007 0.42
AES Decrypt 0.007 0.42
ECDSA sign 1.375 82.5

ECDSA verify 1.547 92.82

provides a summary of the CPU energy usage for each
of the described functions.

7.2 Open Science & Reproducible
Research

As a way to support open science and reproducible
research and to give the opportunity for other re-
searchers to use, test and hopefully extend/enhance
our scheme, we have made available the code of the
actual scheme publicly through Gitlab1. Additionally,
the script used for testing the performance of the cryp-
tographic components has also been uploaded as a re-
search artefact (Open Access) on Zenodo2.

8 CONCLUSION

WSN devices have become a huge part of basic
smart environment design and development among
researchers and industrial key players. Implementing
standard security protocols on these devices has gar-
nered a lot of interest from all stakeholders. In this
paper, we implemented a lightweight cryptographic
library that we used to design a simple secure key
exchange protocol on Zolertia devices. Our work
was based on the modification of the ECDH and
ECDSA components of the Tinycrypt library. Our
implementation extends the functionalities of the na-
tive UDP broadcast application on Contiki-NG to pro-
vide Key Generation, Encryption, Decryption, Sign-
ing and Signature Verification. One of the primary ad-
vantages of our work over the currently implemented
DTLS on the Contiki-NG OS platform is that our im-
plementation has no need for a server or any trusted
third party. We believe this work will lay the founda-
tion for researchers to design and securely implement
privacy-preserving protocols as well as to implement
additional cryptographic schemes that will meet the
specific needs of IoT.

1https://gitlab.com/nisec/iot-cryptodiet-experiments.git
2https://zenodo.org/record/3686865

ACKNOWLEDGEMENT

This research has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation
Programme under grant agreement No 825355 (CY-
BELE).

REFERENCES

Community, T. (2019). Tinyos project.
Contiki-Ng (2019a). Contiki-ng: Communication security.
Contiki-Ng (2019b). Contiki-ng: Documentation.
Dimitriou, T. and Michalas, A. (2014). Multi-party trust

computation in decentralized environments in the
presence of malicious adversaries. Ad Hoc Networks,
15:53–66.

Division, C. S., Laboratory, I. T., of Standards, N. I., Tech-
nology, and of Commerce, D. Cryptographic algo-
rithm validation program.

Dolev, D. and Yao, A. (1983). On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198–208.

Eclipse (2018). Elipse - tinydtls.
Eschenauer, L. and Gligor, V. D. (2002). A key-

management scheme for distributed sensor networks.
ACM Conference on Computer and Communications
Security, (3):41–47.

Fan, J. and Verbauwhede, I. (2012). An updated survey
on secure ecc implementations: Attacks, countermea-
sures and cost. Cryptography and Security: From The-
ory to Applications Lecture Notes in Computer Sci-
ence, page 265–282.

Feng, D. (2017). Trusted computing: Principles and Appli-
cations. De Gruyter.

Hutter, M. and Wenger, E. (2011). Fast multi-precision mul-
tiplication for public-key cryptography on embedded
microprocessors. Cryptographic Hardware and Em-
bedded Systems – CHES 2011 Lecture Notes in Com-
puter Science, page 459–474.

Kurniawan, A. (2018). Practical Contiki-NG: Program-
ming for Wireless Sensor Networks. Apress.

Liang, Z., Walters, J. P., Chaudhary, V., and Shi, W. (2007).
Wireless sensor network security. Security in Dis-
tributed, Grid, Mobile, and Pervasive Computing,
page 367–409.

Michalas, A., Komninos, N., and Prasad, N. (2011a). Multi-
player game for ddos attacks resilience in ad hoc net-
works. In Wireless Communication, Vehicular Tech-
nology, Information Theory and Aerospace Electronic
Systems Technology (Wireless VITAE), 2011 2nd In-
ternational Conference on, pages 1–5.

Michalas, A., Komninos, N., and Prasad, N. R. (2011b).
Mitigate dos and ddos attack in mobile ad hoc net-
works. International Journal of Digital Crime and
Forensics (IJDCF), 3(1):14–36.

Michalas, A., Komninos, N., and Prasad, N. R. (2012).
Cryptographic puzzles and game theory against dos

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

110

and ddos attacks in networks. International Journal
of Computer Research, 19(1):79.

Michalas, A., Komninos, N., Prasad, N. R., and Oleshchuk,
V. A. (2010). New client puzzle approach for dos re-
sistance in ad hoc networks. In Information Theory
and Information Security (ICITIS), 2010 IEEE Inter-
national Conference, pages 568–573. IEEE.

Michalas, A. and Murray, R. (2017). Keep pies away from
kids: A raspberry pi attacking tool. In Proceedings of
the 2017 Workshop on Internet of Things Security and
Privacy, IoTS&P ’17, pages 61–62, New York,
NY, USA. ACM.

Paladi, N., Gehrmann, C., and Michalas, A. (2017). Pro-
viding user security guarantees in public infrastruc-
ture clouds. IEEE Transactions on Cloud Computing,
5(3):405–419.

Paladi, N., Michalas, A., and Gehrmann, C. (2014). Do-
main based storage protection with secure access con-
trol for the cloud. In Proceedings of the 2014 Inter-
national Workshop on Security in Cloud Computing,
ASIACCS ’14, New York, NY, USA. ACM.

Piedra, A. D. L., Braeken, A., and Touhafi, A. (2013).
Leveraging the dsp48e1 block in lightweight crypto-
graphic implementations. 2013 IEEE 15th Interna-
tional Conference on e-Health Networking, Applica-
tions and Services (Healthcom 2013).

Raza, S., Helgason, T., Papadimitratos, P., and Voigt, T.
(2017). Securesense: End-to-end secure commu-
nication architecture for the cloud-connected inter-
net of things. Future Generation Computer Systems,
77:40–51.

Schmidt, S., Tausig, M., Koschuch, M., Hudler, M.,
Simhandl, G., Puddu, P., and Stojkovic, Z. (2018).
How little is enough? implementation and evaluation
of a lightweight secure firmware update process for
the internet of things. Proceedings of the 3rd Interna-
tional Conference on Internet of Things, Big Data and
Security.

S.L, Z. (2017a). Zolertia/orion ethernet ip64 router.
S.L, Z. (2017b). Zolertia/re-mote platform.
Strangio, M. A. (2005). Efficient diffie-hellmann two-party

key agreement protocols based on elliptic curves. Pro-
ceedings of the 2005 ACM symposium on Applied
computing - SAC 05.

Sun, K., Liu, A., Xu, R., Ning, P., and Maughan, D. (2009).
Securing network access in wireless sensor networks.
Proceedings of the second ACM conference on Wire-
less network security - WiSec 09.

Technology, C. M. Wireless sensor networks: Imote2.
Wood, M. (2019). Tinycrypt.
Zhou, L., Su, C., Hu, Z., Lee, S., and Seo, H. (2019).

Lightweight implementations of nist p-256 and sm2
ecc on 8-bit resource-constraint embedded device.
ACM Transactions on Embedded Computing Systems,
18(3):1–13.

IoT-CryptoDiet: Implementing a Lightweight Cryptographic Library based on ECDH and ECDSA for the Development of Secure and
Privacy-preserving Protocols in Contiki-NG

111

