Cloud Services Discovery and Selection Assistant

Hamdi Gabsi, Rim Drira and Henda Hajjami Ben Ghezala

RIADI Laboratory, National School of Computer Sciences, University of Manouba, La Manouba, Tunisia

Keywords:

Abstract:

Cloud Services Discovery, Cloud Services Selection, Cloud-based Software Development, Cloud Data-set,
Natural Language Processing, Cloud Services Clustering.

The surging popularity of cloud services has led to the emergence of numerous cloud providers who offer
various services. The great variety and the exponential proliferation of cloud services over the Web intro-
duce several functionally similar offers with heterogeneous descriptions and contrasting APIs (Application
Programming Interfaces). Due to this heterogeneity, efficient and accurate service discovery and selection,
based on developers-specific requirements and terminology, have become a significant challenge that requires
a high level of expertise and a steep documentation curve. In order to assist developers in handling these
issues, first, we propose a Cloud Services Discovery and Selection Assistant (DESCA) based on a developer’s
query expressed in natural language. Second, we offer to the developers a cloud data-set, named ULID (Uni-
fied cLoud servlces Data-set), where services offered by different cloud providers are collected, unified and
classified based on their functional features. The effectiveness of our contributions and their valuable insights

to improve cloud services discovery and selection are demonstrated through evaluation experimentation.

1 INTRODUCTION

Cloud services are becoming crucial building blocks
for developing scalable applications, given their im-
portant impact to reduce the management cost and the
time to market. The increasing interest in cloud ser-
vices has led to an expeditious diversity of services to
cover all developers’ requirements. Nonetheless, this
diversity brings several challenges, essentially, dur-
ing the discovery and selection process. The discov-
ery process is defined as the process of detecting au-
tomatically or semi-automatically services respond-
ing to functional requirements. The selection process
consists of retrieving the suitable service among dis-
covered services given a specific required Quality of
Service (QoS) (Sun et al., 2014) .

Cloud services discovery and selection is consid-
ered as a challenging task for different reasons. First,
cloud providers often publish their services descrip-
tions, pricing policies, and Service Level Agreement
(SLA) rules on their portals in various and heteroge-
neous formats. Therefore, most of the available cloud
services come with non-standard format (e.g., HTML
documentation and textual descriptions). To deal with
this heterogeneity, a steep documentation curve is re-
quired to clearly identify relevant services’ functional
features and compare several offers. Second, cloud

158

Gabsi, H., Drira, R. and Ben Ghezala, H.
Cloud Services Discovery and Selection Assistant.
DOI: 10.5220/0009403801580169

services are continuously evolving (the update of ex-
isting services and the emergence of new services),
handling this evolution during the discovery process
is known to be a challenging task for cloud applica-
tions’ developers.

Several studies have been carried out to address
these challenges using different approaches such as
semantic-based approaches (Martino et al., 2018),
syntactic-based approaches (Lizarralde et al., 2018),
and registry-based approaches (Abdul Quadir Md and
Mandal, 2019). Even though these approaches are
scientifically interesting, their main limitation is the
discovery scope, which is often limited to some ser-
vices that are published in a specific description stan-
dard. In fact, these approaches are based on either
semantic description standard such as OWL-S (Mar-
tino et al., 2018) or Web Services Description Lan-
guage (WSDL) (Lizarralde et al., 2018), (Bey et al.,
2017). This limitation is impractical since it expects
available cloud services to have semantic tagged de-
scriptions or WSDL describing files, which is not the
case in a real-world scenario.

In order to address the cited limitations, we pro-
pose a cloud services discovery and selection ap-
proach that does not make any assumptions about
the standard description languages of the provided
cloud services. Indeed, we assume, in our approach,

In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 158-169

ISBN: 978-989-758-421-3

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

that services descriptions are provided in natural lan-
guage and developer’s requirement are expressed in
keyword-based queries to offer a simple syntax in
terms of open vocabularies wherein the developers
can use their own terminology to express their needs.
In that respect, we define an automatic process for
services’ functional features extraction from natural
language descriptions, which deals with the hetero-
geneous nature of cloud service. Furthermore, we
propose a publicly available cloud data-set where ser-
vices are unified based on their functional features
and regularly updated. Thus, we manage the diversity
and the dynamic evolution characteristics of cloud
services that practically complicate the discovery pro-
cess. The proposed data-set contains more than 500
services including TaaS, PaaS and SaaS services and
provided by Amazon, Google, and IBM. It was re-
viewed and accepted by Elsevier Mendeley Data (El-
sevier Mendeley Data , 2019) and available on (ULID
,2019).

We detail, in this paper, our proposed discovery
and selection process. We go in-depth demonstrating
how cloud services capabilities are collected, stored,
matched with developer request and finally ranked.
The main contributions of this paper are as the fol-
lowing:

e Proposing a Unified cLoud services data-set
(ULID) which can automatically manage the het-
erogeneity and the evolving nature of cloud ser-
vices.

e Putting forward a unification strategy of scattered
cloud services based on functional clustering us-
ing a modified K-means algorithm.

e Proposing a Cloud Services Discovery and Se-
lection Assistant (DESCA) based on natural lan-
guage query aiming to meet developers’ func-
tional requirements.

e Demonstrating the effectiveness of DESCA
through experimental evaluation.

The remainder of this paper is organized as follows:
Section 2 presents a motivating scenario. In Section
3, we discuss the related work. Section 4 details our
discovery and selection assistant DESCA. Section 5
illustrates the evaluation of DESCA. Section 6 con-
cludes the paper and outlines our ongoing works.

2 MOTIVATING SCENARIO

Let consider a scenario where a company decides
to develop its e-commerce web site using cloud ser-
vices. After analyzing the specification, the develop-
ment team decides to use cloud services as much as

Cloud Services Discovery and Selection Assistant

possible and looks for the following services: rela-
tional database, a load balancer, data analysis service,
a high performance computing resource and a PHP
web development tool. To find candidate services for
each requirement, the first solution to think about is
to review manually several cloud provider web por-
tals or to use a search engine (such as Google). For
sure, the search result enables to find various services
of different providers. However, from one side, the
obtained results always contain irrelevant informa-
tion that must be manually discarded. From another
side, the content of each provider web portal needs
to be perused manually to identify services features
because their services descriptions are often scattered
in HTML pages. Then, comparing services manually
and selecting the most appropriate ones with regard to
the development team’s needs (i.e functional, budget
and QoS requirements) is a tedious and time consum-
ing task.

Actually, there are several commercial cross-
platforms’ services search, however most of them are
paying. Furthermore, the main important issue of
these platforms remains the neutrality and detachment
regarding commercial cloud providers.

This simple scenario sheds the light on the im-
portance of assisting developers in performing seam-
less cloud services discovery process. To do so, we
need to reference scattered cloud services regardless
of their providers and their heterogeneous descrip-
tions in unified data-set.

3 RELATED WORK

Many research efforts have been made in order to as-
sist the cloud services discovery and selection pro-
cess. They can be presented in two different points
of view, namely: architecture view and matchmaking
view (Martino et al., 2018).

From one side, the architecture view is divided
into centralized and decentralized. The centralized ar-
chitecture depends on one central node that provides
a complete view of all cloud services being offered
in the market. This architecture can be achieved by
proposing a cloud services registry or using cloud bro-
ker platforms.

Actually, several cloud broker platforms have
been proposed. (Jrad et al., 2015) developed a cloud
broker system to select cloud services based on the
user QoS requirements and SLA attributes. The au-
thors developed a utility-based algorithm for match-
ing user functional and non-functional requirements
to SLA attributes of cloud providers. (Rajganesh Na-
garajan and Selvamuthukumaran, 2018) proposed a

159

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

broker based cloud computing framework for en-
abling the users to specify their services requirements
in terms of numerical representation. With respect
to the user specification, the proposed broker con-
structs the cloud ontology to represent the available
services from the service repository. The appropri-
ate services are represented using semantic network
which enables the user to know about the available
services as per their posted requirements.

It is worth pointing that, even though cloud broker
platforms can provide assistance in the discovery pro-
cess, most of them are based on an additional layer
between the provider and the final cloud user which
can complicate the service’s delivery chain and cer-
tainly increase the services’ cost. In our work, we
aim to propose an assistance framework which allow
developers to fulfill seamless discovery process with-
out any intermediaries, so that, they can better assume
their decisions, and control their budgets.

The centralized architecture can be achieved using
public registries such as (Asma Musabah Alkalbani
and Kim, 2019) who provided a centralized cloud
service repository. The authors propose a harvesting
module to extract data from the web and make it avail-
able to different file format. The harvesting module
uses an algorithm for learning the HTML structure
of a web page. This work requires the user to de-
termine specific control parameters such as targeted
web page URL and the required information from in
the targeted web page. Moreover, the collected data
sets lack main service information such as services’
description and operations.

From another side, the matchmaking view is di-
vided into syntactic-based and semantic-based. The
semantic-based matchmaking approaches are based
on semantic description to automate the discovery and
selection process. (Martino et al., 2018) proposed
a cloud services ontology with automated reasoning
to support services discovery and selection. How-
ever, the discovery scope, in this work, is depending
on the pre-existence of providers specific ontologies
(OWL-S services description files) that require map-
ping techniques to coordinate the difference between
agnostic (abstract) and vendor dependent concepts to
support interoperability. Even though many seman-
tic approaches are scientifically interesting (Martino
et al.,, 2018), they require that the developers have
intimate knowledge of semantic services and related
description and implementation details which makes
their usage difficult. Moreover, from the service re-
questor’s perspective, the requestor may not be aware
of all the knowledge that constitutes the domain on-
tology. Specifically, the service requestor may not be
aware of all the terms related to the service request.

160

As a result of which many services relevant to the re-
quest may not be considered in the service discovery
process.

The syntactic-based approaches are, generally,
based on WSDL description of cloud services. (Bey
et al.,, 2017) proposed a clustering algorithm based
on similarity between users query concepts and func-
tional description parameters of cloud services ex-
pressed in a WSDL document. Despite the high pre-
cision values found in this work, generally assuming
that the candidate cloud services are described using
WSDL files, is considered as impractical limitation.

The analysis of several research studies illustrates
the main motivations of our proposal which are:

e First, the need for an efficient syntactic-matching
approach which does not make any assumptions,
such as particular standard or specific semantic
representation, about the description language of
available cloud services.

e Second, the relevance of a centralized architecture
that references scattered cloud services regard-
less of their providers and their heterogeneous de-
scriptions in unified data-set. This fact can prac-
tically assist the developers in a seamless search
for relevant cloud services.

4 DESCA: CLOUD SERVICES
DISCOVERY AND SELECTION
ASSISTANT

In order to practically assist developers in the discov-
ery and selection process, we need to efficiently deal
with several cloud services proprieties.

First, we manage the heterogeneous nature of
cloud service by properly extracting relevant services
capabilities from ambiguous services’ descriptions.
To do so, we propose an automated process for ser-
vices ’capability extraction in order to identify ser-
vices’ functional features. Based on these features,
we define a services’ functional clustering to unify
functionally similar services. Thus, we can reduce the
search scope and we improve the response time of the
discovery process.

Second, we deal with the huge diversity of scat-
tered cloud services by proposing a structured main
source that provides to the developer relevant services
meta-data and avoids laborious documentation task in
several providers web portals. In that respect, we in-
troduce ULID which presents a centralized cloud ser-
vice data-set to which the developer has access to.

Last but not least, we manage the dynamic evo-
Iution of cloud services by regularly updating our

data-set. Based on each commitment presented pre-
viously, we propose our discovery and selection as-
sistant (DESCA). Indeed, DESCA is mainly com-
posed of two components: ULID Construction Com-
ponent (UCC) and Discovery & Selection Compo-
nent (DSC). The input of our approach is keyword-
based queries presenting developers functional re-
quirements. The output of DESCA is a set of cloud
services meeting developers needs. Ranking services
according to QoS and budget is addressed in later
steps outside the scope of this paper. Figure 1 presents
the architecture of DESCA.

ULIT Construction Component Services Discovery & Selection Component

Update Request
@ Detection Semantic Query
Enrichment dovar
jeveloper
@ Meta-Data l
Cloud providers] | xraction&
Web-portals _ Unffication)= yur =) Semantic
Matching ﬁ
Morgna & | > =
g ici List of relevant
Clustering QoS & Pricing Lofre
Matching ervices

Figure 1: DESCA overview.

4.1 ULID Construction Component
(UCO)

Our data-set is based on three main steps which are:
Meta-data Extraction & Unification, Merging & Clus-
tering and Update detection. We give further details
about these steps in the next sections.

4.1.1 Meta-data Extraction & Unification

This step aims to collect cloud services meta-
data which are scattered in HTML pages of cloud
providers web portals. To do so, we use a HTML
parser to harvest relevant cloud services meta-data
from these portals. The collected meta-data is stored
in conformance with a unified meta-model of services
description given in figure. 2. Our meta-model de-
fines relevant services meta-data that can facilitate
services discovery and assist selection decisions.

The class ”Service” provides the name, the de-
scription, the endpoint and the available regions of
the service. Each cloud service has a category and
offers multiple products, a service product is defined
as a business operation characterized by a price per
unit (for example 0.01$ per GB for a storage service),
a product family (such as data request), a begin range
and an end range for payment. The class "Provider”
presents information related to the service’s provider.
The class ”QoS” presents the QoS which are; the re-
sponse time, availability and reliability.

Identifying services functional features is consid-
ered as an important pillar in cloud services discovery.

Cloud Services Discovery and Selection Assistant

Services_Metadata

<enumeration» Service ’ s
Service_Layer Provider

“+name: string
1aas +description: string

Paas “+unctional_keywords: string
Saas +layer: Sewvice_Layer
“endpoint: string
+available_regions: array

s proch t] | | t 1
'1/ ‘\|

Category Products

“+metric_name: string

+name: string +value: real

+url: string

Response_Time| [Availability | [Retiability |
[1T 1 f 1

Price «enumeration»
Pricing_Model

“+name: strin “+name: string
+description: string +input: string

+output: string
+version: string
+product_Family: string

+has
*.1 | +pricing_model: Pricing_Model
+price _per _unit: real On_demand
+begin_range: real Reserved
+end_range: real Bidding

Figure 2: Meta-Model of cloud services meta-data.

In order to automatically extract relevant keywords
presenting the functional features of cloud services,
we use a natural language processing tool named
Stanford Parser (Marneffe and Manning, 2015). The
Stanford Parser can identify the grammatical structure
of each sentence of service descriptions by creating
grammatical relations or type dependencies among el-
ements in the sentence. These dependencies are called
Stanford Dependencies SDs (Marneffe and Manning,
2015). In our work, we model keywords as a set of
binary relations < action,object >, where action de-
notes the functional feature of the service. Object de-
notes the entities affected by the action. Then, we use
the SD sets to properly identify the grammatical re-
lations between < action,object >. In fact, each SD
is a binary relation between a governor (also known
as a regent or a head) and a dependent (Marneffe and
Manning, 2015).

To illustrate, let’s suppose this sentence ~ This ser-
vice offers compute capacity in order to deploy work-
loads in a public cloud.”. We use the following SD:

e Relation direct object: dobj(governor, dependent)
generally appears in the active voice, in which the
governor is a verb, and the dependent is a noun
or noun phrase as the direct object of governor.
In our case, we obtain dobj(offers, capacity) and
dobj(deploy, workloads) .

e Relation adverbial clause modifier: ad-
vcl(governor, dependent), an adverbial clause
modifier of a verb phrase or sentence is a clause
modifying the verb (consequence, conditional
clause, purpose clause, etc.). For instance,
advcl(offers, deploy).

e Relation prepositional modifier: prep(governor,
dependent), is any prepositional phrase that serves
to modify the meaning of the verb, adjective,
noun, or even another preposition. In our case,
we obtain prep_in(deploy, cloud).

The basic keywords extracted above may not present
relevant functional features semantics. For exam-
ple, the pair {offers, capacity}, we expect that it
is {offers, compute capacity}. Likewise, the pair

161

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

'is', 'web service'), (‘provides’, 'compute capacity’)]
"nake’, 'computing easier')]

"obtain’, 'capacity’), (*configure’, 'capacity’)]

; omputing environment')]

: e'), ("scale’, "capacity’)]

, "instances')]
use', "Micro instances')]
“increase', 'capacity'), ('decrease’, 'capacity')]
commission’, ' instances')]
maintain’, ' availability'), ('scale’, 'fleet'), ('maximize’, 'performance’), ('minimize', 'cost')]
[(*scale’, ' services'), (‘use’, "AWS Auto Scaling')]
[Finished in 1.45]

[
[
[
[
[
[
[
[
[
[
[
[

(
(
(
(
(
(
(
(
(
(
(
(

Figure 3: Functional keywords extraction.

{deploy, cloud} was expected to be {deploy, public
cloud}. Therefore, the semantic extension of the ba-
sic extracted keywords is necessary. The semantic ex-
tension mainly refers to the noun part of the service
functional feature. In fact, the semantic extension of
nouns mainly includes qualifiers, adjectives, nouns,
gerunds, and adverbs. Through the analysis of the text
description of cloud services, we note that qualifiers,
adverbs do not provide the semantic information, we
need only a few adjectives to contain useful business
semantic information. Therefore, we consider nouns
and gerunds as modifiers for semantically extending
the keywords. In the Stanford Parser, we mainly con-
sider the noun compound modifier; nn(governor, de-
pendent) relationship, which indicates that both the
governor and dependent are nouns, and dependent is
treated as a modifier to modify the governor.

Finally, we created a stop-word list to remove the
meaningless functional features which contain verbs
such as “allow, get, can, helps, etc.”. Figure 3 illus-
trates a real example tested on a text description of a
compute service offered by AWS (Amazon compute
service description, 2019).

4.1.2 Merging & Clustering

We classify services referenced in our data-set in uni-
fied categories. Our main purpose, in this step, is to
provide to the developers unified services categories
regardless of cloud providers. Several cloud providers
organize their offered services in different categories.
We take advantage of the disposed categories in our
unification process. indeed, common categories over
different providers can be easily unified, while oth-
ers are merged using a clustering algorithm based
on the textual description of services categories. To
do so, first of all, we extract appropriate keywords
expressing the functional features of services cate-
gories as explained previously for services descrip-
tion. Second, we calculate the semantic similarity
between each pair of categories based on extracted
keywords. Finally, we gather categories into clusters
using a modified K-means clustering algorithm. We
detail each step as the following:

162

Classes Similarity Computation. We base our clus-
tering approach on the following heuristic: Services’
categories over different providers tend to respond to
the same business requirements if they share the same
or similar keywords describing their functional fea-
tures.

After identifying categories’ functional features
which are the set of pairs < action,ob ject >, we cal-
culate the similarity SCc, c,) between services cat-
egories over different providers. We denote C; =
{pi1,pi2, Pi3,---, Pin} @ category’s functional features,
where p;, is the pair < action,object > and |C;| the
cardinality of C;, (the number of pairs p;).

The similarity SCc, c,) is inspired from (Lin,
1998). Indeed, the authors prove the relevance of
the proposed similarity formula in the context of
words pairs similarity. The main asset of this work
is defining similarity in information theoretic terms
which ensure the universality of the similarity mea-
sure. The main issue of many similarity measures
is that each of them is tied to a particular applica-
tion or assumes a particular domain model. Dealing
with this issue, the proposed similarity measure has
significantly improved words’ pairs similarity. The
similarity formula SCc, c,) presents the sum of the
similarities between each pair py; of Cy, and the pairs
{p2,,p2,,P23---, P2, } of Co, normalized by the cardi-
nality of C;. Formally, we obtain;

G
Ci|, L2 S(p1ispaj)
T (R

$Ceic = c| (1

where S(p1;, p2;j) is the pairs similarity.
We define the pairs similarity as follows:

e Let Ay and A, respectively denote the actions in
the pair p; and p».

e 0O;1 and Oj; respectively denote objects in the pair
P1 and p2.

e wi, wy denote the weight of the action part and
the object part. We suppose that some predefined
action has a higher weight such as; offer, provide,
deliver, etc. These weights are defined by the de-
velopers.

e m is the minimum number of objects of the pair
p1 and py (min_number objects(p1, p2)) whereas
n is the maximum number of objects of the pair
pi1 and py (max_number_objects(py, p2)).

The pair similarity is calculated as:

YL S(041,00)

)

S(p1.p2) = W1S(a1.4,) +W2

where S(g,, 0,) 1s words similarity. We use Jacard
Similarity Coefficient to calculate the word similarity.

In fact, the Jaccard coefficient measures similarity be-
tween finite sample sets, and is defined as the size of
the union divided by the size of the intersection of the

sample sets.
EUF
J(E’F)_EOF 3)
where E and F are two given sets of words. We cre-
ate a feature set F(w) for each word *w’ (i.e for each
object which is presented by a word in our context)
containing the synonym set, generic word and inter-
pretation of the word w. F(w) is created using Babel-
Net (Pamungkas et al., 2017). Based on (Lin, 1998),
we define the similarity between the two words as fol-
lows:
2xI(F(wi)NF(wy))
N (wi,wp) = 4
I(F(w1)) +1(F(w2))
where I(S) represents the amount of information con-
tained in a set of features S. () is calculated as:

1(S) ==} logP(f) (5

fes

The probability P(f) can be estimated by the percent-
age of words that have the feature f among the set of
words that have the same part of speech in the entire
BabelNet library database. When two words have the
same feature set, then the maximum similarity is 1.
The minimum similarity is O when the intersection of
two words’ features is empty.

Modified K-means Clustering Algorithm. The K-
means algorithm is an algorithm widely used in the
field of data mining. It aims to partition n elements
(observations) into k clusters presented by k data cen-
troids. Usually, k-means uses the Euclidean distance
or Manhattan distance to assign each observation to
the nearest cluster. We propose a modified K-means
algorithm in order to have meaningful clusters and en-
hance the basic K-means algorithm results.

To do so, first, we left frequent and rare words
unclustered. This fact is approved by the (Informa-
tion Retrieval) IR community in order to have the best
performance in automatic query expansion and avoids
over-fitting.

Second, we enhance the cohesion and correlation
conditions defined in the basic K-means algorithm by
quantifying the cohesion and correlation of clusters
based on our semantic functional similarity instead of
Euclidean distances used in the basic K-means algo-
rithm. The Euclidean distance is not consistent in our
context because it does not provide meaningful infor-
mation related to semantic similarity.

Third, to ensure that we obtain clusters with high
cohesion, we only add an item (in our case a services’

Cloud Services Discovery and Selection Assistant

category) to a cluster if it satisfies a stricter condition,
called cohesion condition. Given a cluster C, an item
’1’ is called a kernel item if it is closely similar to at
least half of the remaining items in C. Our cohesion
condition requires that all the items in the cluster be
kernel items. Formally;
. . e IC][=1
i€C=|VjeCi# j,Simi.j) = —7— (6
We illustrate the major steps of the modified K-means
algorithm as follows.
Modified K-means Algorithm
Input: classes scopes set (S = sl, ..., sn)
k the number of clusters
Output: k clusters
Let sim(sl, s2) be the similarity function

C={cl, c2,... , ck }
(set of cluster centroids)
L= {L(s_1)|1 =1, 2, ..., n}

(set of cluster labels)
for all c_i in C do
ci <-- sj {Initialize Centroid (ci) }

end for

for all s_i in S do

1(s_i) <-- index_max_Sim(s_i,c_3j)
end for

Centroid_Change <--False
cohesion_condition() <--True

repeat

for all c_i in C do UpdateCentroid(c_1)
end for

for all s_i in S do

M <-- index_max_Sim(s_i,c_j)

if M /= 1(s_i) then

1(s_1) <—- M

Centroid_Change <-- True

end if

Verify (cohesion_condition(s_1i, s_1))
1in (1, 2, ..., n) 1 /=1

end for

until (Centroid_Change == False and

Verify (cohesion_condition()))

To keep our data-set up-to-date and manage the dy-
namic evolution of cloud services, we verify, first, if
a cloud provider offers a services update’s detection
API In this case, we take advantage of this API by
using an agent-based system able to execute exist-
ing update’s APIs. Otherwise we revisit providers’
web portal periodically using the web scraper to de-
tect new cloud services or those frequently updated.
After updating ULID, we apply the clustering algo-
rithm in order to assign each new service to the suit-
able cluster.

4.2 Discovery & Selection Component
(DSC)

The DSC is responsible for discovering and select-
ing cloud services that meet the developer’s require-

163

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

ments. Itis composed of three modules: 1) the seman-
tic query enrichment module, 2) the semantic match-
ing module, and 3) the QoS & pricing matching mod-
ule.

4.2.1 Semantic Query Enrichment

The Semantic Query Enrichment (SQE) aims to se-
mantically enrich the keywords introduced by the de-
veloper using BabelNet (Pamungkas et al., 2017).
Indeed, as a dictionary, BabelNet covers some spe-
cific terms from every word related to their terms.
It maps all the stemmed words into their lexical
categories. BabelNet groups nouns, verbs, adjec-
tives, and adverbs into sets of synonyms called
synsets. The synsets are organized into senses, giving,
thus, the synonyms of each word, and also into hy-
ponym/hypernym (i.e. Is-A), and meronym/holonym
(i.e. Part-Of) relationships, providing a hierarchical
tree-like structure for each word. In order to have
meaningful enrichment, we filter BabelNet response
by choosing the synsets which are part of the concept
”Cloud Computing” having the id ” bn:01225375n”.

4.2.2 Semantic Matching

The semantic matching module is responsible for
identifying cloud services that best match the ex-
tended developer’s keywords. In fact, after specify-
ing the cluster of cloud services meeting developer’s
requirements, we use the ranking function “Okapi
BM25” (BM stands for Best Matching) (Whissel and
Clarke, 2011) which is basically a TF-IDF enhanced
function. BM2S5 is a bag-of-words retrieval function
that ranks a set of documents based on the query terms
appearing in each document. A document, in our
case, is defined by the service’s name and its descrip-
tion, the search query is the introduced keywords by
the developer. One of the most prominent instantia-
tions of the function is as follows;

Given a query Q, containing keywords ¢y, ...,qn,
the BM25 score of a document ’D” is:

f(gi,D)(K1+1)
£(gi:D)+Ki(1-b+bz20)

)

Score(D,Q) = zn: IDF (g;)
i=1

f(qi,D): is ¢;’s term frequency in D

|D]: is the length of the document D in words

Avgdl: is the average document length in ULID

ki and b are free parameters, usually chosen,
in absence of an advanced optimization, as
ky € [1.2,2.0] and b = 0.75

164

e IDF(q;): 1is the Inverse Document Frequency
weight of the query term g;. It is usually com-
puted as:

N—n(g;)+0.5
n(g;)+0.5

e N is the total number of documents in ULID

IDF(g;) = log ®)

e n(g;) : is the number of documents containing g;

In order to enhance ”Okapi BM25 ” results, we take
into account the location of the keywords in the ser-
vice description text. Indeed, if keywords are located
at the beginning or in the middle of the service de-
scription text, probably, the main service’s purpose
is responding to the functional requirements designed
by these keywords. Consequently, this service is more
important than others where keywords are located in
the end. To do so, we propose a multiplicative factor:

N—i
N

where N is number of sentences in the service descrip-
tion text and i is the position of the sentence contain-
ing the keyword in the description text (i.e i = 1 for
the first sentence, etc.), we multiply the rating given
by “Okapi BM25 by M. We demonstrate the effec-
tiveness of our proposition in the experimental evalu-
ation.

My=1+

®

4.2.3 QoS & Pricing Matching

After discovering the cloud services meeting the de-
velopers’ functional requirements, the QoS & Pricing
Matching module is responsible of identifying ser-
vices which respond to the developers’ budget and
QoS constraints. We proposed in our previous works
(Gabsi et al., 2018), (Gabsi et al., 2019) a person-
alized Simple Additive Weighting (SAW) algorithm
aiming to identify suitable IaaS services meeting de-
velopers non-functional requirements. The elabora-
tion of the QoS & Pricing Matching module to take
into consideration other cloud services models speci-
ficities (PaaS & SaaS services) is the subject of our
ongoing work.

S RESULTS AND ANALYSIS

In order to illustrate DESCA, we set up, firstly, by
evaluating each step of the UCC as well as the modi-
fied K-means clustering algorithm. Then, we proceed
by evaluating the overall performance of the DSC.

5.1 ULID Construction Component
Evaluation

To ensure a proper evaluation of the UCC, essentially,
the merging & clustering step, we proceed by an ex-
ternal evaluation, namely, the clustering results are
evaluated based on data that was not used for the
clustering, such as known class labels and external
benchmarks. These types of evaluation methods mea-
sure how close the clustering is to the predetermined
benchmark classes (Rendan et al., 2011). To do so,
we test the UCC on a real data-set presenting Azure
Microsoft cloud services. The test-set is composed of
205 cloud services offered by Azure Microsoft (Mi-
crosoft Azure Services, 2019). It is created by parsing
Azure Microsoft web portal (Microsoft Azure Ser-
vices, 2019) and collecting services meta-data.

5.1.1 Services Functional Keywords Extraction

By analyzing the description of 205 services using the
Stanford Parser, it is worth pointing that the functional
keywords extraction highly depends on the terms used
by the service providers in describing their services.
In some cases, we obtain non-meaningful pairs <
action,object > due to the abundant use of adjectives
for commercial purpose. In our case, we obtained 14
non-meaningful pairs. In order to verify the effective-
ness of our method of extracting functional keywords
(pairs < action,object >), we randomly selected 50
services as experimental data. We ask five developers
to manually extract the sets of functional keywords
pairs for each service, and compare them to the sets
of functional keywords pairs automatically extracted.
We evaluate the experimental results by calculating
the precision and recall rate. The formula of the pre-
cision and recall rates are defined as follows:

SaNS SaNS
Precision = “A-°M Recall = A °M (10)
Sa
= 2 X Precision x Recall an

Precision+ Recall

Where Sy, represents the set of functional keywords
pairs that is extracted manually, S4 denotes the set
of functional keywords pairs that is automatically ex-
tracted. The Table 1 shows the experimental results
(for reason of space restraint, we display a sample of
five sets). For the extraction result, we have 0,7 as
precision average, 0,98 as recall average and 0.817 as
F- Measure average.

From Table 1, it can be concluded that the results
of the functional keywords extracted by developers
are different. The reason is that each developer has

Cloud Services Discovery and Selection Assistant

a different understanding of services description. The
recall rate of the extracted results is almost close to
1.0. This shows that the automatically extracted sets
of functional keywords pairs can cover all the key-
words sets of each service. The precision average
of the extraction results is 0,7, lower than the recall
rate. The F-measure average is 0.817. This means that
the automatically extracted functional keywords pairs
provides acceptable results, but it leaves scope for en-
hancements due to the non- standardized description
used by services providers.

5.1.2 Modified K-means Clustering Algorithm

While presenting our approach, we mention that we
take advantage of the proposed services categories al-
ready offered by services providers. Thus, we ap-
plied our clustering algorithm on services’ categories
to unify them over different providers. Our approach
remains accurate if we apply it directly on cloud ser-
vices, namely we cluster services instead of services’
categories. In that respect, we test our clustering al-
gorithm on the test-set composed of 205 services of-
fered by Azure Microsoft (Microsoft Azure Services,
2019). These services are functionally clustered, by
the provider, in 18 categories (Machine learning, An-
alytics, Compute, Management services, etc) which
present the predetermined benchmark classes.

We use the Purity of the Cluster as a metric to an-
alyze the effectiveness of the modified K-means al-
gorithm (Rendan et al., 2011). The following is the
definition of cluster purity: suppose that D is the set
of services to be clustered and C is the result of a clus-
tering on D. C; € C denotes a cluster in C, whereas S
denotes the standard classification result on D, s € S
denotes a class s in S, p; denotes the largest number of
services in the cluster C; which are in common with s.
The cluster purity CP (C;) is defined as:

! max(p;) (12)

CP(C) = 1

The clustering purity of the whole set of service to be
clustered is defined as:

CP(C) = i 1G]
= 1Dl

CP(Cy) (13)

We set up our modified K-means algorithm on k=18.
Figure 4 presents the clusters returned by the algo-
rithm. To correctly interpret our results, we compare
the purity values given by our algorithm to those given
by he basic K-means algorithm. Table 2 shows the
clustering results.

Using the modified K-means algorithm, the num-
ber of services in each cluster is slightly different

165

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 1: Extracted functional keywords results.

Automatically extracted set of func- | Manually Extracted set of func- | Precision| Recall | F- Mea-
tional keywords pairs tional keywords pairs sure
S1:{< Create,Virtual_machine >} | S;:{<Create,Virtual_machine >} | 1 1 1
S> : {< 1% : {< | 0,67 1 0,8
Create,Mobile_application > | Create,Mobile_application >,<
,< Build,Mobile_application > | Deploy,Mobile_application >}
,< Deploy,Mobile_application >}
S3 1 {< Detect,Human_faces > | S3 : {< Detect,Human_faces > | 0,83 1 0,9
, < Identify, People > |, < Identify, People >
, < Organize,images > |, < Compare,Image >
,< Compare,Image > |, < Verify,Features >, <
, < Verify, Features >,< | Provide,Face_algorithm >}
Provide, Face_algorithm >}
S4 1 {< Create,Data_pipelines > | Si : {< Create,Data_pipelines > | 0,75 1 0,86
,< Monitor,Data_pipelines >,< | ,< Monitor,Data_pipelines >,<
Orchestrate,work flows >} Accelerate, Data_integration >, <
Orchestrate,workflows >}
Ss : {< Protect,Data >,< | Ss : {< Protect,Data >,< |1 1 1
Provide,Backup >} Provide, Backup >}
Table 2: Cluster purity results.
Cluster Results Central Service Numb.er Purity K]_SIE;CHS
of Cluster of Services values .
purity
Cluster 1: Analytics i Apalysm 15 0,87 | 0,67
Services
Cluster 2: Compute Virtual Machines 13 0,85 0,62
Cluster 3: Containers Container Registry 7 1 0,57
Cluster 4: Databases Azure Database 11 0,91 0,72
Cluster 5: Al + Machine Learning Machslne Learmng 31 0,90 | 0,65
ervices
Cluster 6: Developer Tools Azure Lab Services 9 1 0,67
Cluster 7: DevOps Azure DevOps Projects 8 0,88 | 0,63
Cluster 8: Identity Azure Active Directory 6 0,67 | 0,50
Cluster 9: Integration Event Grid 5 0,60 | 0,40
Cluster 10: Web Web Apps 7 0,86 0,57
Cluster 11: Storage Storage 13 0,92 | 0,69
Cluster 12: Security Security Center 11 0,55 0,42
Cluster 13: Networking Virtual Network 13 0,85 0,62
Cluster 14: Mobile Mobile Apps 8 0,88 | 0,50
Cluster 15: Migration Azure Migrate 5 1 0,60
Cluster 16: Media Media Services 8 1 0,75
Cluster 17: Management Tools AzAure Managed 21 0,67 | 0,48
pplication
Cluster 18 : Internet of Things IoT Central 14 0,92 0,64
Clustering Purity | 0,78 0,60

from that obtained according to the pre-classified ser-
vices. This difference is due to some confusing de-
scriptions basically for services in the integration and
management tools clusters as well for the security and

identity clusters. This explains the reason why the CP
value is not very high for these clusters.

In light of the clustering results, we have 0,78 as
purity value. It is worth mentioning that the proposed

166

Figure 4: Services clustering results.

modifications (the cohesion condition, the weak cor-
relation and the semantic similarity function) made on
the basic K-means algorithm have contributed to bet-
ter purity values (0,78 instead of 0,60).

5.2 Discovery & Selection Component
Evaluation

We evaluate the DSC using the recall (R), the pre-
cision (P), the Top-k precision (P) and the R- pre-
cision (P.) metrics. In this context, the precision
evaluates the capability of the system to retrieve top-
ranked services that are most relevant to the develop-
ers need, and it is defined to be the percentage of the
retrieved services that are truly relevant to the devel-
opers’ query. The recall evaluates the capability of the
system to get all the relevant services in the data-set.
It is defined as the percentage of the services that are
relevant to the developer need.
Formally, we have;

S, S
_ | Rell _ | Rel| (14)
|SRer| |Rel|
|SRelJ<| ‘SRel \Rell

where Rel denotes the set of relevant services, Sger
is the set of returned services, Sg.; is the set of re-
turned relevant services and Sg. « is the set of rele-
vant services in the top k returned services. Among
the above metrics, P, is considered to most precisely
capture the precision and ranking quality of the sys-
tem. We also plotted the recall/precision curve (R-
P curve). An ideal discovery and selection assistant
has a horizontal curve with a high precision value; an
inappropriate assistant has a horizontal curve with a
low precision value. The R-P curve is considered by
the (Information Retrieval) IR community as the most
informative graph showing the effectiveness of a dis-
covery system (Davis and Goadrich, 2011).

In order to evaluate DSC, we present in Table 3 the
results of some queries (for reason of space restraint,
we display the top-4 retrieved services). The region
“Ireland” is chosen by default for all the queries. We
evaluated the precision of the retrieved services for

Cloud Services Discovery and Selection Assistant

different queries, and report the average top-2, top-
5, and top-10 precision. To ensure the top-10 preci-
sion is meaningful, we selected queries which return
more than 15 relevant services. DSC returns a total of
20 services per query. Figure 6 illustrates the results.
The top-2, top-5, and top-10 precisions of DESCA us-
ing the enhanced BM25 function are 98%, 87%, 74%
respectively, while the basic BM 25 results are 89%,
72%, 59% respectively. This demonstrates that tak-
ing into account the location of the keywords in the
services text description (the enhanced BM25 func-
tion) can effectively improve the precision of the sys-
tem. We plot the average R-P curves to illustrate the
overall performance of DESCA. As mentioned pre-
viously, an ideal discovery assistant has a horizontal
curve with a high precision value. Typically, preci-
sion and recall are inversely related, ie. as precision
increases, recall falls and vice-versa. A balance be-
tween these two needs to be achieved by a discovery
assistant. As illustrated by figure 5 and figure 6, for
a recall average equals to 0,65 we have 0,87 as preci-
sion value. In fact, as an example, for the query con-
taining { Virtual Machine, Compute Capacity, Server}
as keywords, we have 30 services considered as rel-
evant in ULID i.e |Rel| = 30, DESCA returns a total
of 20 services per query i.e |Sge| = 20, among them
18 services are considered relevant i.e |Sg.;| = 18. We
obtain a precision value P = 18/20 = 0,9 and a recall
value R = 18/30 =0, 6.

It is worth pointing out that in some cases, de-
pending on particular requirements, high precision at
the cost of a recall or high recall with lower precision
can be chosen. Thus evaluating a discovery and se-
lection assistant must be related to the purpose of the
discovery and the search process. In our case a com-
promise between the recall and the precision values is
necessary. Therefore, we can announce that DESCA
provides accurate results for cloud services discovery
and selection.

Top-k Precision

Top-2 Top-5 Top-10

—e—Enhanced BM25 function —e—Traditional BM 25 function

Figure 5: Top-k precision for retrieved services.

We present in figure 7 an extract of the returned re-
sult for our motivating scenario presented in Section
2. We suppose that the e-commerce website devel-

167

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

° °
E %

Precision

°

02

Recall

Figure 6: R-P curves of DESCA.

oper look for a data analysis service to evaluate the
sales data. He/She may introduce the followings set
of keywords: ” Sales data, Evaluate, Analyze”. The
result is presented by DESCA as a set of services (and
their short descriptions). The developer can access to
all the details about each service. Moreover, we pro-
pose for each service a link of the related cloud pat-
terns (Cloud Patterns, 2019) to explain and illustrate
its relevant development use cases.

FIND A SERVICE!

ble ol

AWS Data Pipeline AWS X-Ray

Figure 7: Services discovery results.

6 CONCLUSIONS

Cloud computing offers several services that change
the way applications are developed. The key pillar in
cloud applications development is an efficient and ac-
curate cloud service discovery and selection meeting
developers requirements. After conducting a compre-
hensive investigation of cloud services discovery ap-
proaches, we concluded that proposing a discovery
and selection assistant based on a developer’s query
expressed in natural language can greatly simplify
and expedite the discovery and selection process. Our
discovery assistant DESCA is based on a public cloud
service data-set named ULID which is available on
(ULID , 2019). ULID services are classified accord-
ing to their functional features using our clustering
algorithm. Indeed, we enhance the basic K-means al-

168

gorithm to ensure a better cohesion of clusters and a
meaningful semantic similarity between them. Our
enhancements have contributed to better clusters pu-
rity values.

Our ongoing research includes further investiga-
tions on supporting more QoS metrics. The crucial
challenge is to take into consideration the fluctua-
tion of some QoS metrics between runtime and de-
sign time such as throughput and bandwidth. In ad-
dition, we plan to extend DESCA to support more
cloud providers and propose relevant recommenda-
tions based on developers previous searches.

REFERENCES

Abdul Quadir Md, V. V. and Mandal, K. (2019). Efficient
algorithm for identification and cache based discovery
of cloud services. In Journal of Mobile Networks and
Applications, pages 1181-1197.

Amazon compute service description (2019). Amazon com-
pute service description. URL: https://aws.amazon.
com/ec2/ncl=h_lIs [accessed: 05-01-2020].

Asma Musabah Alkalbani, W. H. and Kim, J. Y. (2019).
A centralised cloud services repository (ccsr) frame-
work for optimal cloud service advertisement discov-
ery from heterogenous web portals. In IEEE Access,
volume 7, pages 128213 — 128223.

Bey, K. B., Nacer, H., Boudaren, M. E. Y., and Ben-
hammadi, F. (2017). A novel clustering-based ap-
proach for saas services discovery in cloud environ-
ment. In Proceedings of the 19th International Con-
ference on Enterprise Information Systems, volume 1,
pages 546-553. SciTePress.

Cloud Patterns (2019). Cloud Patterns. URL: http:/www.
cloudpatterns.org/ [accessed: 05-01-2020].

Davis, J. and Goadrich, M. (2011). The relationship be-
tween precision-recall and roc curves. In Information
Retrieval, pages 233-240.

Elsevier Mendeley Data (2019). Elsevier Mende-
ley Data . URL: https://www.elsevier.
com/authors/author-services/research-data/
mendeley-data-for-journals [accessed: 05-01-2020].

Gabsi, H., Drira, R., and Ghezala, H. H. B. (2018). Person-
alized iaas services selection based on multi-criteria
decision making approach and recommender systems.
In International Conference on Internet and Web Ap-
plications and Services, pages 5—12.

Gabsi, H., Drira, R., and Ghezala, H. H. B. (2019). A hybrid
approach for personalized and optimized iaas services
selection. In International Journal on Advances in In-
telligent Systems.

Jrad, F., Tao, J., Streit, A., Knapper, R., and Flath, C.
(2015). A utility based approach for customised cloud
service selection. In International Journal of Compu-
tational Science and Engineering, volume 10, pages
32-44.

Cloud Services Discovery and Selection Assistant

Lin, D. (1998). An information-theoretic definition of simi- Table 3: Top-4 retrieved services.
larity. In International Conference on Machine Learn-
ing, volume 1, pages 296-304. "~

Lizarralde, 1., Mateos, C., Rodriguez, J. M., and Zunino, E o
A. (2018). Exploiting named entity recognition for m |= b5y Q o0 =
. . .] . = =) IN] S =) 23
improving syntactic-based web service discovery. In Q S8, slS| [s 51518
Journal of Information Science, volume 45, pages 9 § m|s 2 5= s % %DE S| ‘g ; o
-12. = 518l l=lglelsl<€Olz1ElE|Elz|ElE

. 32NN Q S 8> M ==

Marneffe, M.-C. and Manning, C. D. (2015). The stan- § A s § 8 E =& =] 8 g g ig =§ g
ford typed dependencies representation. In Proceed- E o 2 5)'] Mg O|& AR = 2|0 E 2 %E
ings of the workshop on Cross-Framework and Cross- 2 |S0 2= |(E I g % = - % B0 %
Domain Parser Evaluation, pages 1-8. 3 &9) o |<C Ao f) g g 'Ebéng —; <=3]

Martino, B. D., Pascarella, J., Nacchia, S., Maisto, S. A., 2 o %D Sl = 2 B <= = % oo
Tannucci, P., and Cerr, F. (2018). Cloud services cate- E 23 S8 = O Sl I=|8|E %’D
gories identification from requirements specifications. 2 o) @ =) S| B < S
In International Conference on Advanced Information 1 &)
Networking and Applications Workshop, volume 1, S
pages 436—-441.

Microsoft Azure Services (2019). Microsoft Azure 2l
Services. URL: https://azure.microsoft.com/en-us/ 91 o "8 Q g
services/ [accessed: 05-01-2020]. :«: = % 3 5}

Pamungkas, E. W., Sarno, R., and Munif, A. (2017). B- 8 %g éﬂ ol8 E ._S‘
babelnet: Business-specific lexical database for im- Sl ST 218 § m
proving semantic analysis of business process models. N =]e)e) Ol IE S § g8 g ,ng @)
In Proceedings of the workshop on Cross-Framework iS5G b5 52|03 p= =-S5 o 5

. . ISR ol & o o (=R = e m S|S0 Q.
and Cross-Domain Parser Evaluation, volume 15, s %N Shals é 8 ~1'ols a IS o
pages 407-414. mlseedRZLIA [512eRIEETE
. . B= 3 () — —

Rajganesh Nagarajan, R. T. and Selvamuthukumaran @ & 22 I 2 5 R ft_“ Al cl: aa [
(2018). A cloud broker framework for infrastructure g g S ;; = e l=g=
service discovery using semantic network. In Interna- 5 — g = A i
tional Journal of Intelligent Engineering and Systems, o 2 & o 8 S
volume 11, pages 11-19. 8 s = =2

Rendan, E., Abundez, 1., Arizmendi, A., and Quiroz, E. M. E
(2011). Internal versus external cluster validation in-) =

. . 17 =}
dexes. In International Journal on Advances in Intel- 5 p= ehl o
] Y) o =N) =12
ligent Systems, volume 1 A . : 2 o g)2 g £|5 s|z

Sun, L., Dong, H., Khadeer, F., Hussain, Hussain, O. K., = S o k= 3 = 5 218 .2‘3'% 8 < =
and Chang, E. (2014). Cloud service selection: State- 3 (% S| |E| <|g § ElGl= a2 =
of-the-art and future research directions. In Journal < § <[4 ‘é A er=le 8 Z = E ‘g SN
of Network and Computer Applications, volume 45, SHES 2 A2l &) @ ®) 8le § o LE L:) 2‘8 8
pages 134-150. HEGB%%Q>§£Sm§DgEQ§

ULID (2019). ULID . URL: http://dx.doi.org/10.17632/ 2 O|g SEINBEEEEEEIEE
Tcy9zb9wtp.2 [accessed: 05-01-2020]. g E © g % go § < |4 3‘05 < 8 g

Whissel, J. S. and Clarke, C. L. A. (2011). Improving doc- i <z go| B2 <
ument clustering using okapi bm25 feature weighting. = =]

In Information Retrieval, volume 14, pages 466—487. /g
)
g
g o
8 S .5 o
= 5 E 8
2 25 |3
on 17} = 8 Q
8 |5 1) .S £ s » 20 ,q:': g g =
&2 Sml E s | ELE 2SS 8
Sle €85 E|2EB |88¢e2¢
o |s SE|l 2~ |58 IBEE 28
2 z £ 35| 8 A e s g¢ [, 80
[= YN} o = ©C X0 |29 & «»
a o5 5 @ g < . 0oT o |[E 0 Q@
< 0 3| 0o] D |5 s 9
SIS PR Qo O E ko] o Lo] 0= = 9
S csos 8 8 O 222 O BP S Q
nANOA| LKD | » A7 <A<

169

