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Abstract: Deep Learning (DL) identifies features of medical scans automatically in a way very near to expert doctors 
and sometimes over beats in treatment procedures. In fact, it increases model generalization as it doesn’t 
focus on low level features and reduces difficulties (eg: overfitting) of training high dimensional data. 
Therefore, DL becomes a prioritized choice in building most recent Computer-Aided Diagnosis (CAD) 
systems. From other prospective, Autism Spectrum Disorder (ASD) is a brain disorder characterized by 
social miscommunication and confusing repetitive behaviours. The accurate diagnosis of ASD through 
analysing brain scans of patients is considered a research challenge. Some appreciated efforts has been 
reported in literature, however the problem still needs enhancement and examination of different models. A 
multi-phase learning algorithm combining supervised and unsupervised approaches is proposed in this paper 
to classify brain scans of individuals as ASD or controlled patients (TC). First, unsupervised learning is 
adopted using two sparse autoencoders for feature extraction and refinement of optimal network weights 
using back-propagation error minimization. Then, third autoencoder act as a supervised classifier. The 
Autism Brain fMRI (ABIDE-I) dataset is used for evaluation and cross-validation is performed. The 
proposed model recorded effective and promising results compared to literatures. 
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1 INTRODUCTION 

Deep Learning is an artificial intelligence approach 
that offers automatic learning features similar to 
experts in many fields but especially in computer 
vision and imaging domains. The potential satisfying 
feedback of applying deep learning methods in 
medical imaging encouraged many researchers to 
prioritize the approach while solving their research 
challenges and faced problems (Krizhevsky et al., 
2012, Najafabadi et al., 2015;Litjens et al., 2017, 
Ravì D., et al., 2017). Many neural network models 
of varies number of layers to transform input images 
to outputs through accurate extraction of most 
discriminative features were proposed. However, the 
convolutional neural network (CNN) (Bengio et al., 
2013) is highly a recommended selection. CNN 

contains layers that transform the input with 
convolution filters of a small extend. It is preferred 
as it doesn’t waste time in learning separate 
detectors for identical objects placed differently in 
an image, and it reduce the number of network 
training parameters as weight have no direct relation 
with image size. 

For many years, autism disorder has received 
more attention as an important disease. It is a 
significant crisis for many families in Arabic society 
because unknown reasons for causing and poor 
background of the characteristic of the disease. 
Autism appears since birth and it recorded a variant 
and multiple symptoms of illness. Many researches 
tried to diagnose the disease from different data 
types using machine learning techniques (SE. 
Schipul et al., 2012; M. Plitt et al,2015; A. Abraham, 
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et al.,2017; ). ABIDE-I is a large autism brain scans 
images dataset. Knowledge discovery in this datasets 
is a challenge for many researchers. Therefore 
several machine learning approaches (G. Chanel, et 
al., 2016; XA. Bi,2018; G. Chanel, et al.,2019 ) and 
deep learning (Xi. Li, et al., 2018; H. Li, et al., 2018) 
have been reported on ABIDE dataset. The data 
contains 1035 individuals between autistic (ASD) 
and controlled patients (TCs). These models may 
suffer from lack of generalization of low reported 
classification accuracy. Also, some researchers used 
the full set of data while others used it partially due 
to availability of resources and/or characteristics of 
the used technique. However, the domain still opens 
and encourages competition with different novel 
hybridization methods and/or enrichment of 
knowledge extraction or mining results from 
medical data such ABIDE.  
In this paper, an attempt to build a generalized 
model for dealing with large medical imaging data is 
proposed. It is a new Deep Learning framework 
based on sparse autoencoder where it allows 
machines to learn very complex data representation 
that can subsequently be used to perform accurate 
data classification in a fully treatment for ABIDE 
datasets. Two conventional sparse autoencoders 
(SAE) are unsupervised learning used in training to 
extract discriminative features. The third one is a 
supervised learning used to classify the extracted 
features and to diagnose the ASD. These three stages 
were jointed to form a stacked framework. The rest 
of the paper is as follow:  Section 2 presents related 
work on ABIDE. Section 3 shows our contributions 
framework construction, features extraction and 
images classification. Section4 discusses computa-
tional results and section 5 concludes the paper. 

2 RELATED WORK 

Autism is neurological developmental disorder  that 
the disorder  ,affect many families and recently

spread due to many unclarifed reasons.  More 
attention focuses on rehabilitation of families to 
handle their cases however an intensive research 
currently focusing on the treatment and/or 
knowledge discovery in autism medical imaging. 
fMRI scans of brain are a kind of medical imaging. 
Each fMRI scan is actually a group of tiny cubic 
elements called voxels(X,Y, Z or 3D) and if time is 
added during data gathering , it become 4D. A time 
series is extracted from each voxel to save its 
activity change over time. One of the famous brain 

scans for autism is ABIDE. In the following, some 
related work on ABIDE with different techniques.  
 
(H. Chen, et al., 2016), investigated the effect of 
different frequency bands for constructing brain 
functional network, and obtained 79.17% accuracy 
using SVM technique applied to 112 ASD and 128 
healthy control subjects. (Brown et al., 2018), 
proposed framework based on an element-wise layer 
for deep neural networks. Then they incorporate the 
data-driven structural priors. They select 1013 of 
539 healthy control and 474 with ASD and reported 
68.7%. (XA. Bi, et al., 2018), selected the support 
vector machines (SVM) as a classifier but used 
multiply SVM architecture to enhance the results as 
single SVM gives poor results. Their selected 
samples included 46 TC and 61 ASD and recorded 
96.15%. (Bi Xia-an, et al, 2018), proposed genetic-
evolutionary SVM and validated by data of 157 
participants (86 AS and 71 TC). The classification 
accuracy reached to 97.5%. (XA. Bi, et al, 2018), 
presented multiple Random Neural network (NNs) 
based model on ABIDE. They focused on 50 ASD 
and 42 TCs samples. A random 5 NN clusters were 
built using 5 different NNs. The highest accuracy 
cluster is selected as the best base classifier. Then, 
valuable features were used to retrieve abnormal 
brain regions.  

In addition, several deep learning models have 
been proposed recently. (Xi. Li, et al, 2018), used 
3D CNN to detect features based on the spatial 
characteristics, then they voted the results through 
visualization and interpretation to choose the most 
competent for ASD or TCs output. They 
implemented their proposed on subset of 82 
diagnosed with autism child and 48 controlled. They 
obtained higher accuracy. (X. Guo, et al., 2017), 
proposed a DNN with a novel method for extraction 
of features for high dimensional rs-fMRI. They used 
multiple trained sparse auto-encoders for feature 
extraction, and then used DNN for high-quality 
representations of the whole-brain function 
connectivity patterns. They considered 110 samples 
(55 ASD and 55 TCs) and recorded 86.36%. (M. 
Khosla, et al., 2018), proposed 3D deep learning 
model and used subset of data. They classified 
healthy controld individuals by  76 67% classifcation 
accuracy of using subset of 178 samples for training. 

However generalization of proposed models is 
affected by small samples. 

A two phase’s method was proposed in (Xi. Li, 
et al., 2018). First, a deep neural network classifier 
was trained with original scans. Then a corruption 
on the regions of interest (ROIs) of the brain scans 
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were feed to the trained network to enhance 
perdition. Their approach was tested on 82 subset 
and reached 85.3% accuracy. (Heinsfeld et al., 
2018), proposed the usage of respective neural 
patterns of functional connectivity in rs-fMRI as a 
main discriminative features guide in classifying 
healthy versus autism patients. They implemented 
unsupervised phase, where they used 2 stacked 
denoising autoencoders. Then they used multi-layer 
perceptron as a supervised classifier. They applied 
the proposed method on the whole data set and 
reported 70%, it is considered an improvement with 
almost full data. 

(H. Li,, et al., 2018), proposed a deep transfer 
learning NN framework. They trained a stacked 
sparse autoencoder offline extract the functional 
connectivity patterns. They selected a subset of 310 
samples, and reported a range between 62.3% and 
70.4%. (Eslami, T., et al., 2019), proposed a new 
joint learning procedure combining autoencoder and 
a single layer perceptron. Then continued with 
results of first phase and applied a data 
augmentation strategy, based on linear interpolation 
to produce synthetic training datasets. They used 
only 13 sites from 17 and reported 80%.  

The literature showed that a few studies have 
considered sparse autoencoder in the classification 
of individuals with autism based on fMRI. Also, 
only one reference implemented their proposed 
system on the dataset fully. Hence, the motivation of 
our proposed method where a full treatment of 
ABIDE database is evaluated. 

3 PROPOSED SPARSE AES 
BASED DL FRAMEWORK 

3.1 Sparse Autoencoder 

Autoencoder consists of basically three-layers, input, 
hidden, and output, respectively. The hidden layer is 
fully connected to the input and output layers 
through weighted connections. It is trained to 
reconstruct similar input at output layer effectively. 
One of autoencoders disadvantages is the limited 
number of hidden units. The Spar Autoencoder 
(SAE) (Makhzani & Frey., 2013; fgJanowczyk, A.., 
et al., 2017;  Hou, L., et al.,  2019) tried to solve this 
by adding a sparsity constraint, to tune a large 
number of neurons with low average output and 
hence neurons appear schematic inactive most of the 
time. This can be implemented by setting a loss 
function during training.  Assume hidden neurons 
activation function = haj, then average activation of 
it is in Eq.1 

A୤ ൌ
ଵ

୫
∑ ሾhୟ୨x୬ሿ୫

୬ୀଵ                     (1) 

The objective of sparsity constraints is to minimize 
Af so that Af =A , where A  is a sparsity constraint 
between 0 such as 0.05 , A ĵ, the average activation 
of hidden unit j (in the sparse autoencoder), pt is the 
penalty term and N= number of neurons in the 
hidden layers 

p୲ ൌ ∑ KLሺA||A෡ୟ୨ሻ
୒
ୟ୨                       (2) 

 

 

Figure 1: Proposed Sparse autoencoder based deep learning model for medical data classification. 
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Figure 2: Un-supervised sparse autoencoders for feature extraction. 

To enforce sparsity constraints regularizes 
complexity and prevent over-fitting, a penalty term 
is added to cost function which penalizes A ̂, de-
weighting significantly from A. Since A and A ,̂ can 
be seen as the probabilities of Bernoulli random 
variables, a Kullback-Leibler (KL) divergence (Shin 
et al.,2013), represented by Eq.3. 

KLሺA|หA෡ୟ୨൯ ൌ A log
୅

୅෡ౠ
൅ ሺ1 െ Aሻlog

ଵି୅

ଵି୅෡ౠ
       (3) 

3.2 Proposed Architecture & 
Extracting Features 

The proposed architecture is shown in Figure 1. It is 
composed of two Sparse AEs as unsupervised 
learning for feature extraction and followed by AE  
 

for classification task: 

 Input layer: receiving the pre-processed fMRI 
scans. 

 Two Sparse AEs: are two unsupervised 
autoencoders; for deeper feature extraction and 
refinement of highly important set of unique 
features. Figure 2, shows the unsupervised role 
of the two SAE to reconstruct input while 
learning most valuable feature. 

 Output layer: is a supervised autoencoder to 
classify cases into ASD or TC. 

The unsupervised Sparse AEs receives data without 
labels. Each Sparse autoencoder contains two 
convolutional (CNN) layers. Normalization and 
Max-pooling are necessary for smoothing the 
learning process. Then the identical set of 
parameters are kept for decoding phase (eg: kernel 
size (3,3,3) for dimensionality reduction). To reach 
the nearest reconstruction of its input at the output 
layer, the AE is forced to infer major information 

preserving a reduction while representing the input 
in the hidden layer, then mapped to the output layer. 
Therefore, each hidden node represents a feature of a 
reduced but accurate copy and this can be evaluated 
through visualization, See figure 2. SAE has a 
sparsity constraint that is imposed on the mean 
activity of hidden layer (Shin et al.,2013) to 
overcome overfitting. 

The input and output layers for the first 
autoencoder have 17668 features fully connected to 
hidden bottleneck of 3015 units from the hidden 
layer. The second autoencoder maps 3015 inputs 
from the output of the previous autoencoder to 
outputs through a hidden layer of 983 units and then 
to 271 units. The batch size=256 and epoch=80. To 
classify the individuals with ASD, we used 
supervised autoencoder, inserted in the last layer 
(output layer) of the proposed neural network. The 
discriminative features were injected to last 
autoencoder, in addition to the correspondence 
vector of numbers for each class of output (one-hot). 
The vector consists of only 1 for the class it 
represents and all others are zeros. Softmax function 
is used for regression of output. Batch size=1024 
and epoch=100, are used. 

3.3 Training, Validation and Testing  

First, each raw rs-fMRI data was preprocessed, and 
the whole-brain function connectivity patterns (FCP) 
were obtained by calculating the Pearson’s 
Correlation coefficient (CC) of Time series (TSs) 
from any pair of ROIs. Given two times series, Ts1 
and Ts2, each of length TL, the Pearson’s correlation 
can be computed Eq.4  

𝜌 ೞ்భ, ೞ்మ ൌ
∑ ሺ ೞ்భ೟ି ೞ்భതതതതതሻሺ ೞ்మ೟ି ೞ்మതതതതതሻ೅

೟సభ

ට∑ ሺ ೞ்భ೟ି ೞ்భതതതതതሻ೅
೟సభ

మ
ට∑ ሺ ೞ்మ೟ି ೞ்మതതതതതሻ೅

೟సభ

          (4) 
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Multiple SAEs were used in training phase to 
conclude low but valuable and most discriminative 
representations of data. In fact single SAE usually 
gives less expectation, however two SAEs deeper 
the learning and enrich result. These in turn will 
affect the classifier positively.  Training, testing, 
optimizing parameters, and 10-fold cross validation 
flow of the proposed model, is shown in Figure 3. 

First, the original fMRI is consisting of a number of 
slices. Applying region segmentation on each slice, 
then calculating functional connectivity analysis. 
The normalization of input is necessary for 
autoencoder in general. 
 
 
 

 

Figure 3: The proposed Deep framework for training, validation, and testing. 

 

Figure 4: Sample of focused and excluded slices during training. 
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Table 1: ABIDE-I providers class distribution of genders, ASD and TC. 
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Ts 37 27 48 63 52 175 26 34 56 30 36 39 47 98 140 71 56 
ASD 19 14 20 29 24 75 12 19 29 15 14 19 22 54 66 46 28 
Male 15 11 16 25 21 65 12 15 25 15 13 15 22 48 57 46 20 

Female 4 3 4 3 3 10 0 3 4 0 1 4 0 6 9 0 8 
TC 18 13 28 34 28 100 14 15 27 15 22 20 25 44 74 25 28 

Male 14 9 20 29 27 73 14 13 23 15 16 16 25 38 57 25 20 
Female 4 4 8 5 1 27 0 2 4 0 6 4 0 6 17 0 8 

 
Accuracy versus number of epoch (1-100) (b) 
classification loss and validation loss versus number 
of epoch (1-100). 
After training and validation are accomplished, an 
optimized set of parameters are saved for later 
testing. The data were divided 70% training and 
30% testing.  

The performance of the system was evaluated 
based on the four criteria: Sensitivity (SE), 
Specificity (SP), Accuracy (ACC) and Matthew’s 
Correlation Coefficient (MCC). These are calculated 
based on the accurate identification of positive 
(ASD) or negative (TC) samples. A True Positive 
(TP) would indicate that autism fMRI labeled and 
identified correctly through data description, while a 
False Positive (FP) indicates that fMRI is identified 
as normal individual. Conversely, True Negatives 
and False Negatives (FN) are calculated for 
controlled individual. The metrics are defined by the 
following equations: 

Aୡୡ ൌ
୘౦ା୘ొ

୒
,Sୣ ൌ

୘ౌ

୘ౌା୊ొ
, S୔ ൌ

୘ొ

୘ొା୊ౌ
      (5) 

𝑀௖௖ ൌ
்ು

ேିௌൈ௉ൗ

ඥ௉ൈௌൈሺଵିௌሻൈሺଵି௉ሻ
                      (6) 

Where N=TN+TP+FN+FP, S=(TP+FN)/N and 
P=(TP+FP)/N. 

4 DATA ACQUISITION & 
EXPERMINTES 

The Autism data ABIDE I used in this paper was 
acquired public through request for Autism Brain 
Imaging Data Exchange to use it in research purpose 
only. Table 1, shows the class and gender from 17 
sites participation of (ABIDE I), (ADi. Martino, et 
al., 2014) Pre-processed Connectomes Project 
(http://preprocessed-connectomesproject.org/). C-
PAC pipeline was chosen for pre-processed version 

(Y. Behzadi, et al., 2007). Actually, the project 
offers four pipelines to download data all provide 
basic requirement of handling data but they are 
different in the pre-processing algorithm. C-PAC 
was chosen to compare our results with other 
research paper that used same pipeline data. 

 

Figure 5: (a) Classification accuracy and validation, (b) 
loss accuracy and validation. 

For more details about pre-processing the raw data 
please read (ADi. Martino, et al., 2014). 1035 
samples were obtained after excluding the corrupted 
samples, 505 ASD and 530 TC.  Technical 
Implementation All aspects of data pre-processing, 
analysis, feature extraction and building the 
classifier are implemented using python and 
colaboratory resources. The used lab top is with intel 
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(R) core (TM) i5, 7200 U processor 2.5 GHz and 8 
GB of RAM specification.  

The data 3D volume is 61×73 ×61. First, during 
visualization, the centred slices provides clearer and 
consistent information while the beginning 10 slices 
and last as well seems to be a burden while training, 
validating and testing and provide no valuable 
information from our prospective. Therefore, the 
centred 40 slice were chosen as in figure 4. 
Additionally, the data was smoothed and masked, 
and ROI are calculated from time difference in slices 
as seen in figure 1. Sparse autoencoder like the basic 
autoencoder needs normalization (scaling issues and 
vectors flatten) for data to be suitable for neural 
network. The model was trained over 70% of the 
data and 30% for testing and was used in a cross-
validation 10-fold schema. 

The main performance measure is the accuracy 
of correctly classify ASD from TC patients. 
Therefore the proposed network training accuracy 
and validation accuracy, training loss and validation 
loss, versus epochs is depicted in Figure 5. The 
mean values are higher with increase of epoch 
number. The results are reasonable as more training 
epoch increase the classification and validation 
accuracy and reduce the loss as in Figure 5(b). 

 

Figure 6: Results comparison of Techniques in (A. 
Heinsfeld, et al., 2018) and SAE-DL. 

Also, a comparison of accuracy, sensitivity and 
specificity with author that applied Support Vector 
Machine (SVM, Acc=0.65, Se=0.68, Sp=0.62), 
Random Forest (RF, Acc=0.63, Se=0.69, Sp=0.58) 
and Deep Neural Network (DNN, Acc=0.70, 
Se=0.74, Sp=0.63), on the full data set (A. 
Heinsfeld, 2018). Figure 6, shows these values in 
comparison with our method in two cases. Case1: 
selecting 40 centred slices (SAE-DL-40, Acc=0.76, 
Se=0.78,  Sp=0.67), and Case2: using full slices 
(SAE-DL-full slices(73), Acc=0.65, Se=0.67, 
Sp=0.57),). Based on mentioned literatures, and the 
depicted similar case of using full database sample, 

the proposed classification accuracy in case1, 
reported higher classification accuracy due to 
removing the burden of useless slices of patients that 
provide poor information and reduces the learning 
capabilities.  

5 CONCLUSIONS 

In the present paper, a two sparse autoencoders deep 
learning framework was developed for classifying 
ASD individuals and TD controls based on fMRI 
brain scans. The first contribution of this work is the 
proposed architecture for feature selection based on 
multiple sparse AEs to improve the quality of the 
extracted features and treats issues like over fitting 
and generalization. The second contribution is using 
full data sets with accompany complexities, where 
many researchers avoid full set and preferred a 
partial sub set of ABIDE. The proposed framework 
trained and evaluated by the 10-fold evaluation was 
implemented. An accuracy of 76% was achieved 
with fMRI data, thus achieving higher predicative 
performance than the literatures of techniques 
applied on the same data.  
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