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Abstract: Anomaly detection plays a significant role in the area of Smart Grids: many algorithms were devised and
applied, from intrusion detection to power consumption anomalies identification. In this paper, we focus on
detecting anomalies from smart meters power consumption data traces. The goal of this paper is to replicate to
a much larger dataset a previously proposed approach by Chou and Telaga (2014) based on ARIMA models.
In particular, we investigate different model training approaches and the distribution of anomalies, putting
forward several lessons learned. We found the method applicable also to the larger dataset. Fine-tuning the
parameters showed that adopting an accumulating window strategy did not bring benefits in terms of RMSE.
While a 2σ rule seemed too strict for anomaly identification for the dataset.

1 INTRODUCTION

An anomaly (also known as an outlier, deviation, data
irregularity, among other synonyms) has been defined
as any data point significantly different from the re-
maining datapoints (Aggarwal, 2015). The impor-
tance of identifying such elements is given by the fact
that we can discover unexpected behaviours in the
process that generated the data under analysis (e.g., a
series of readings from sensor data to represent a fail-
ure in the sensor itself or a network trace that signals
an intrusion in the system). This is the main reason
why anomaly detection has gained more and more im-
portance in recent years in many fields, like network
intrusion detection, law enforcement to detect crim-
inal activities, detection of anomalies in IoT devices
communication / behaviour, and many more (Cramer
et al., 2018; Caithness and Wallom, 2018).

In the context of Smart Grids (SG), varieties of
data analysis approaches have been applied to dis-
parate research problems, such as power consump-
tion forecasting, demand response optimization, non-
intrusive appliances load monitoring, false data injec-
tion attacks (Rossi and Chren, 2019). In this paper, we
focus in the area of power consumption anomaly de-
tection. Power consumption data traces are typically
collected from smart metering devices that signal the
levels of energy usages within (smart) homes (Chren
et al., 2016). In this area, anomaly detection is a very
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relevant activity, as the identification of anomalies can
give indications about potentially malicious actions
(Jung. et al., 2019), such as data injection attacks
or data theft. For this reason, many techniques have
been adopted (Zhang et al., 2011; Chou and Telaga,
2014; Saad and Sisworahardjo, 2017; Sial et al., 2018;
Buzau et al., 2018; Liu and Nielsen, 2016; Rossi et al.,
2016; Garcı́a et al., 2018).

The main goal of this paper is to provide a replica-
tion of a previous approach (Chou and Telaga, 2014)
for the detection of anomalies in power consumption
data. Running replications of previous empirical stud-
ies is a popular way to increase the confidence in the
results of previous studies (Gómez et al., 2010). How-
ever, common in replication is the modification of
some conditions of the original study (e.g., study sub-
jects) (Juristo and Vegas, 2011), to look at the impact
of variations of the context to the final results. Our in-
dependent external replication is focused on running
the same approach (with some small inevitable varia-
tions discussed in the threats to validity sections), but
on a different (larger) dataset than in the original pa-
per. By running the replication, we can summarize
then lessons learned based both on the results of the
replication and on running the experimentation on a
different dataset. Furthermore, we can discuss some
of the main algorithms proposed over time and their
peculiarities. We have the following contributions:

• The application of a previous method of power
consumption anomaly identification (Chou and

288
Rossi, B.
A Large-scale Replication of Smart Grids Power Consumption Anomaly Detection.
DOI: 10.5220/0009396402880295
In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (IoTBDS 2020), pages 288-295
ISBN: 978-989-758-426-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Telaga, 2014) to a large dataset of power con-
sumption traces (more than 9M events from the
Smart* dataset (Barker et al., 2012) vs. 171K
events processed in the original paper), looking
at the impact of a different training process and
different thresholding;

• A series of lessons learned derived by the applica-
tion of the approach. Looking at aspects such as
automation, streaming data in the context of cur-
rent algorithms;

The paper is structured as follows. Section
2 discusses background about power consumption
anomaly detection, providing some of the main algo-
rithms that were proposed over the time for anomaly
detection in the area. In Section 3, we report about
the results of re-implementation of the algorithms
in (Chou and Telaga, 2014) for power consumption
anomaly detection applied to a larger dataset. In Sec-
tion 4, we provide the lessons learned both from the
literature review and the experimental results. Sec-
tion 5 concludes the paper with also some future
works.

2 POWER CONSUMPTION
ANOMALY DETECTION
ALGORITHMS

To show how anomaly detection is a non-trivial ac-
tivity, some authors introduce a categorization of dif-
ferent types of anomalies: point anomalies, context
anomalies, and collective anomalies (Chandola et al.,
2009; Aggarwal, 2015). The usual understanding
about anomalies might be about single point anoma-
lies, that is a single instance that could be considered
anomalous from the rest of the data (e.g., by some
frequency threshold). Context anomalies take into ac-
count other factors, so the same data point, for exam-
ple, might or might not be an anomaly depending on
seasonality of time series. Collective anomalies move
away from these concepts and consider a data point as
an anomaly only if taking place within specific pat-
terns identified over time. This categorization gives
the clear idea that, in some cases, the identification of
anomalies by looking at threshold intervals, might not
be enough.

There are different ways in which an anomaly can
be detected. Some probabilistic models might look
into data distributions, defining properties for anoma-
lies, other models might look at data proximities (such
as k-nearest neighbour, looking at distances of k-data
points in space), others might look into the time series
properties (Aggarwal, 2015).

In the areas of power consumption anomaly detec-
tion, the goal is to detect anomalous data traces that
could represent a relevant domain event, like an at-
tempt to steal energy, to tamper with smart meters,
or simply a device failure. In this area, time series
are typically used to represent power traces changing
over the time with the option to use multiple time se-
ries (e.g., power traces and weather data) to identify
data anomalies.

Discussing some of the representative models in
time (Table 1), there is a significant variation of the
models applied. In general terms, some models look
at some statistical properties, with temporal aspects
that are taken into account by the majority of the mod-
els. At the base level, we can distinguish between
several models for anomaly detection: linear (e.g.,
regression-based), proximity (e.g., k-nearest neigh-
bour), statistical (e.g., two sigma rule), density-based
(e.g., clustering). However, a clear-cut distinction
might be complex, as multiple approaches might be
combined in ensemble models (e.g., using some time
series forecasting method with some extreme values
anomaly detection approach).

There are further distinctions we can make about
algorithms for power consumption anomaly detec-
tion. On one side, each algorithm might be different
in the level of granularity of the results, e.g., one tech-
nique might be just binary (anomaly / normal), while
other techniques might have some level of abnormal-
ity, that allows ranking of the anomalies (Aggarwal,
2015). Another distinction is about whether the tech-
nique is supervised or unsupervised (or in-between,
semi-supervised). Supervised anomaly detection re-
lies on the availability of labelled instances of anoma-
lies, while such information is not available to unsu-
pervised methods.

Initial models, such as the one in (Zhang et al.,
2011), were using estimation of regression models
for power consumption and temperature, marking as
anomalies all data points in which estimated val-
ues and real values were deviating by a pre-defined
threshold. A similar approach was used in (Chou and
Telaga, 2014)—the approach replicated in this paper.
In this case, however, models built were based on Au-
toRegressive Integrated Moving Average (ARIMA)
on the single power consumption time series. Simi-
lar approach based on Periodic Auto Regression with
eXogenous variables (PARX) was proposed in (Ar-
dakanian et al., 2014), and then replicated / improved
in (Liu and Nielsen, 2016). Other approaches took
into account clustering of power consumption data by
temporal properties (Saad and Sisworahardjo, 2017),
or even data anomaly detection heuristics based on the
domain, like in (Sial et al., 2018), proposing grouping
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Table 1: Some Representative Algorithms Applied for Power Consumption Anomaly Detection (S=supervised,
U=unsupervised, Bi=binary Output, Rk=ranking Output).

Algorithm Type U S Bi Rk Authors
Long Short Term Memory (LSTM)
Network - clustering user profiles and
looking at errors from LSTM regres-
sion

Proximity + linear models 4 — 4 — (Fenza et al., 2019)

K-NN + SVM + Linear Regression +
XGBoost

Proximity — 4 4 — (Buzau et al., 2018)

Heuristic based on clustering + k-
Nearest Neighbour (k-NN)

Extreme Values + Proxim-
ity

4 — — 4 (Sial et al., 2018)

Contextual clustering based anomaly
score

Proximity 4 — — 4 (Saad and Siswora-
hardjo, 2017)

Periodic Auto Regression with eX-
ogenous variables (PARX) + Gaus-
sian statistical distribution.

Statistical model — 4 4 — (Liu and Nielsen, 2016;
Ardakanian et al.,
2014)

Two-Sigma Rule applied to time se-
ries after Neural Network ARIMA for
power forecasting

Statistical model — 4 4 — (Chou and Telaga,
2014)

Regression, Entropy, Clustering Linear models, information
theoretic, proximity

4 — 4 — (Zhang et al., 2011)

of data traces depending on time and type of the day,
and then looking at the distance (e.g., by kNN) of sim-
ilarly grouped smart meters. (Buzau et al., 2018) use
several machine learning approaches (k-NN, SVM,
Logistic Regression, XGBoost) for the identification
of anomalies from users’ power consumption profiles.
Recent models push in the direction of the importance
of the stochastic nature of the underlying processes.
For these reasons, detecting concept drifts—changes
in the behaviour of users over time—is an important
feature of such models, like in (Fenza et al., 2019).

3 EXPERIMENTAL RESULTS

To showcase the challenges in power consumption
anomaly detection, we replicated a previous method
proposed by (Chou and Telaga, 2014) with differ-
ences discussed in section 4.1 Threats to Validity.
This method is particularly interesting, as it repre-
sents an instance of a time series based method that
is typical in the area of power consumption anomaly
detection. We are particularly interested in looking at
a much larger dataset than in the original paper, and
issues that derive from the application to a different
context. In running the replication, we have the fol-
lowing research questions:

RQ1. Given the importance of historical patterns
considered by newer models, what is the impact of
an accumulating window training approach com-
pared to sliding windows from the original paper?

RQ2. Given the training/test periods and the σ-rule
level parameters, are these acceptable parameters

Figure 1: Anomaly Detection Process.

for the new dataset?

Following (Chou and Telaga, 2014) approach, the
process of anomaly detection is shown in Fig. 1. The
input is a set of time series of power consumption data
for which we compute anomalies. The first step is on
parsing the data and replacing missing values by lin-
ear interpolation. Training and test windows are de-
termined next. As in the original paper, the ARIMA
model is trained on a sliding window of 4 weeks and
then tested on the subsequent week/day (Fig. 3). The
window is then moved and the process is repeated
for each of the defined windows to compute the er-
ror from the forecast and the predicted ones. Anoma-
lies are defined following the 2-σ rule, as any value
greater than 2 Standard Deviations from the average
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of the errors in the prediction from the ARIMA model
(so-called error residuals). Final results are summa-
rized in terms of plots showing anomalies on top of
the original time series. Fig. 2 shows the final result
for one time series as implemented in our replication,
in which the identified anomalies parts of the time se-
ries are marked in red (parts in which ARIMA resid-
uals errors are greater than 2-σ from the average).

Figure 2: Example of Anomalies Identified (in Red) Plotted
on Top of a Daily Testing Data Window.

In (Chou and Telaga, 2014) paper, authors per-
formed an experiment with real smart meters, col-
lecting data for a 17-weeks period on a minute gran-
ularity (we can estimate overall 171 360 datapoints,
60m∗24h∗7d ∗17w). In this experiment, we use the
Smart* dataset providing energy traces for series of
smart homes of 114 apartments (Barker et al., 2012).
We considered data from each apartment taken from
2016 (the dataset comprises also years 2014, 2015).
Each apartment dataset represents power consump-
tion at a granularity of 1 minute, and each apartment
contains traces for around 500K events, with some
variation. In this work, we consider each apartment as
a time series. Overall, for the whole analysis, we an-
alyzed the first 80K events of each of the apartments,
overall more than 9,120,000 events2.
Method. We replicated the approach of (Chou and
Telaga, 2014) and analyzed the results of the applica-
tion of the method to 114 apartments of the Smart*
public dataset for year 2016. Based on RQ1, RQ2, we
aim at evaluating two aspects:

• The evaluation of three different training and test
strategies: a sliding window of 4 weeks (SL4W,
Fig. 3) - the same applied in the paper (Chou
and Telaga, 2014), a sliding window of 1 week
(SL1W), and an aggregated window training and

2since in the method we used a sliding / accumulating
window for testing the models, a small ending part of events
was not included, to keep the test window of the same size

testing (AGGRW, Fig. 4). While the sliding win-
dow has a limited history about previous periods
for training, the accumulating window keeps more
information about previous periods of time series
to build the ARIMA models;

• The distribution of anomalies on the Smart* pub-
lic dataset after the application of the method, that
is how many anomalies are detected for each of
the apartments;

Figure 3: Sliding Window Training and Testing of the
Model (as Applied Originally in (Chou and Telaga, 2014)).

Figure 4: Accumulating Window Training and Testing of
the Model.

Different Training-testing Strategies. We run
the method based on ARIMA and residuals thresh-
old anomalies on all the 114 apartments for the year
2016 in the Smart* dataset, applying the different
training and testing strategies. To evaluate the dif-
ferences, we calculated the testing Root Mean Square
Error (RMSE), that is how well the ARIMA model
was approximating the real data. RMSE is calcu-

lated as: RMSE =
√

1
n ∑

n
i=1(ŷi− yi)2, where ŷ are pre-

dicted values, yi observed values, and n is the sample
size. RMSE is an indication of how well the ARIMA
model fits the data. The lower the value the better,
though absolute values cannot be compared to dif-
ferent contexts, as they are dependent on the mea-
sure used for building the ARIMA model (power con-
sumption in this case kWh).

We can see in Fig. 5 the comparison of the dis-
tribution of RMSE for the three different strategies.
The effort of taking more historical data in the train-
ing process by using the AGGRW strategy does not
bring benefits, on the contrary, the best strategy is
SL4W, while differences are lower between a one-
week training vs. four-weeks training as in the orig-
inal paper. Furthermore, by automating such large
number of time series predictions with ARIMA mod-
els, we lose the possibility to fine-tuning predictions

A Large-scale Replication of Smart Grids Power Consumption Anomaly Detection

291



Figure 5: RMSE of SL4W, SL1W, AGGRW Training Test
Methods on the 114 Apartments.

on a time series-by-time series. For example, resid-
uals should follow a non-normal distribution of the
errors in fitting the ARIMA model.

To look if the differences are statistically signif-
icant, we run Wilcoxon Signed-Rank Tests, paired
tests to evaluate the mean ranks differences between
the different strategies. For Wilcoxon Signed-Rank
Test, we calculate effect size as r = Z/

√
N, where

N = # cases ∗ 2, to consider non-independent paired
samples, using Cohen’s definition to discriminate be-
tween small (0.0−0.3), medium (0.3−0.6), and large
effects (> 0.6). The difference is statistically sig-
nificant for SL1W vs. SL4W (p-value <.00001 –
p ≥ 0.05, two-tailed, medium effect size (r = 0.50)),
SL1W vs. AGGRW (p-value 0.00064, p ≥ 0.05,
two-tailed, small effect size (r = 0.22)), and SL4W
vs. AGGRW (p-value <.00001, p≥ 0.05, two-tailed,
medium effect size (r = 0.49)).

Findings. Considering the Smart* dataset, there
are no tangible benefits in terms of fitting ARIMA
models with an accumulating window strategy. A
sliding window strategy brings statistically equiva-
lent results.

Performance of the Three Training Strategies. We
compared the time performance of the three test-
ing strategies (Fig. 6). Overall, the AGGRW strat-
egy is the most expensive in terms of time required
(mean 25min. per iteration), compared to SL4W
(mean 12min.), vs. SL1W (mean 5min.). Further-
more, the time required for the accumulating win-
dow strategy grows linearly with the dataset size for
each training-testing iteration, making it unbearable
for larger datasets. As specified in the previous anal-
ysis, considering the specific Smart* dataset, such
strategy is not worth the application in terms of final
results.

Findings. The AGGRW testing-training strategy
becomes unbearable in case of large datasets as it
grows linearly at each iteration with the size of the
datasets. If historical information in training does
not give benefits (as in the current datasets), sliding
windows might be a better choice. In the case of
the Smart* dataset, a 1-week training with a 1-day
testing gives the best in terms of results.

Figure 6: Distribution of Running Time (Seconds) of
Training-Testing Strategies SL4W, SL1W, AGGRW.

Distribution of Anomalies: 2σ vs 3σ Rules. We
looked also at the difference between running a 2σ

rule (as in the original paper) and 3σ rules for filtering
anomalies from the ARIMA models residuals (Fig.
7). Running 2σ rules, as in the original paper brings to
5%-8% anomalies identified for each apartment time
series, while 3σ rule bring 2%-4% of the total items
identified as anomalies. We believe the latter to be a
more realistic scenario given the Smart* dataset. It is,
however, responsibility of domain experts to evaluate
events tagged by the algorithms to see if false posi-
tive or false negative, or at least to focus on specific
patterns of events in time like concatenating anoma-
lies. There is not a large difference in the detection by
using the three different testing strategies.

Findings. Using the original 2σ rule used in (Chou
and Telaga, 2014) in the context of the Smart*
datasets brings anomalies in the range of 5%-8% of
each subset, which might be excessive for domain-
experts to be evaluated. A 3σ rule might be more
appropriate, taking the anomalies to 2%-4%.
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Figure 7: Percentage of Anomalies Detected by Applying SL1W Training-Test Strategies with 2σ and 3σ Rules.

4 LESSONS LEARNED FROM
THE REPLICATION

By means of the independent external replication on
the Smart* public power consumption data traces, we
can derive several indications based on the application
of the replicated anomaly detection approach.
The Selection of the Model is Context-based. As
in other domains, the selection of the best model is
context-based. However, since power consumption
traces translate into time-series, consideration of data
temporal contextual properties are quite relevant in
this area. The generation process is stochastic in na-
ture, so models have to take into account temporal,
as well as contextual information. The approach by
(Chou and Telaga, 2014) that we replicated, is a rep-
resentative of such time series based models—based
on a single time series, while more advanced models
take into account several time series, like power and
weather data, e.g., (Liu and Nielsen, 2016).
Assumptions are Relevant in the Application of a
Method. As usual in Data Science, all models are
based on specific assumptions. Replications follow
the same set of assumptions as in the replicated pa-
per. As an example, (Chou and Telaga, 2014) model
is based on the assumption that errors from ARIMA
models are normally distributed to apply sigma rules,
like the fact that 95% of the values lie within two stan-
dard deviations to the mean. What happens, however,
if the dataset has a skewed distribution? Applied a
method with wrong parameters / assumption can be
ineffective in the identification of anomalies.
Concept Drift. Most of the models assume no change
of underlying process over time, however, consider-
ing concept drifts like changes in owners of an apart-
ment (Fenza et al., 2019) might be necessary for the
accuracy of anomaly detection. Recent models seem
to go into this direction, by considering a more dy-
namic process model, rather than static processes.
Ground Truth & Anomaly Injection. Gathering
datasets in which anomalies have been tagged is diffi-

cult, most of the datasets do not come with an indica-
tion of anomalies. If supervised techniques have to be
applied, can be good practice to ”inject” some known
anomalies as series of datapoints that can be detected
by supervised learning. Domain knowledge is very
important in this area. For example, the method of
(Chou and Telaga, 2014) that we replicated, in the
original paper was fine-tuned to consider in some
cases the duration of events, given knowledge of some
device that was generating false positives.
Effort to Re-implement the Algorithms. Many
techniques might be time-consuming to re-implement
and validate based on the information provided in re-
search papers. There is need of replications and plat-
forms that can allow the comparability of the results,
such as the NILMTK platform (Batra et al., 2014).
Fine-tuning and Automation. When we extend the
analysis to larger datasets (as in our case, around
57M events vs. the original estimated 171K events
in (Chou and Telaga, 2014)), we lose the possibility
of fine-tuning several aspects. In our case, ARIMA
was fitted with the autoarima function, as any man-
ual optimization would be unfeasible due to the large
number of running iterations (114 apartments per sev-
eral training / test sets). Q–Q plots can be used to look
at the normality of residual errors of the models, but
become unfeasible to evaluate when building tens of
models for fitting data of different training-test itera-
tions. Likely, models that are easier to fine-tune will
be preferred in case of larger datasets.
Online Learning. Related to automation, early mod-
els were tested on smaller datasets. With the emer-
gence of Big Data, online learning becomes a more
effective domain of application, to test if models
can scale to streaming datasets (Lipčák et al., 2019;
Drakontaidis et al., 2018). Online learning can also
be ”simulated” with public datasets by generating
new itemsets with similar properties as the underly-
ing data. Generators should take into account not only
data properties to generate realistic streams of data,
but also some delays in generation / receiving of data
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that is specific of windowed data streams (Liu et al.,
2016).

4.1 Threats to Validity

Replicating previous research based on the informa-
tion provided in articles is a challenging task as many
parameters are not reported, as well as some of the
underlying software versions used. We can report the
following threats to validity in our replication.

We tried to use the same programming languages
mentioned in the original article (Chou and Telaga,
2014), that is R (R Core Team, 2018) with the fore-
cast library for time series analysis. Where not speci-
fied, we used the standard parameters provided by the
methods (e.g., nnetar). Our environment used R 3.4.4,
forecast 8.9, 0.10-47, under Ubuntu 18.04.3 LTS:
even with the same implementation, some differences
might be due to changes in defaults of the libraries.
The analysis was run on an Intel(R) Core(TM) i7-
3632QM CPU @ 2.20GHz, plus the support for vir-
tual machines on CERIT-SC Center infrastructure.

Compared to (Chou and Telaga, 2014), we also
skipped one step in the process, that is the usage of
k-means clustering on time-series. In the original pa-
per, the clustering step was done after interpolation
to decide whether to perform the training on a daily
or weekly basis. To be consistent with the origi-
nal paper, we use the same 4-weeks windows train-
ing period that we compare with alternative strate-
gies. Also, in the original paper there is a comparison
between ARIMA and Neural Network Auto Regres-
sive (NNAR) models, we only focused on ARIMA
as it was not our goal to compare different time se-
ries fitting methods. Another difference is on the way
anomalies were calculated, in the original dataset it
was observed that there was a printing activity usually
taking less than five minutes that was often tagged as
anomaly—for this reason authors decided to mark as
anomaly any activity over 2 Standard Deviations and
at least 5 min. of duration. This was an ad-hoc rule
based on the specific domain, so we did not consider
the additional timing constraint, rather we only com-
pared different σ rules.

The time series approach examined is univari-
ate, but multiple time series could be exploited for
anomaly detection, as having support of weather in-
formation time series could be useful to detect anoma-
lies. To be consistent with the original paper, we
also used a single time series, even though weather
data is available in the Smart* dataset. The other is-
sue is the availability of ground truth, as without in-
sider knowledge about the datasets, can be difficult
to understand which elements could be really posi-

tive cases of anomalies. For this reason, we could not
calculate performance of the models in terms of false
positives – false negatives. One approach to overcome
such issue could be based on injecting anomalies and
looking at the performance of the models, but we kept
this as future work.

5 CONCLUSIONS

The area of power consumption anomaly detection
has adopted many approaches for the identification
of anomalous patterns for issues such as energy theft
prevention. The goal of this paper was to run an in-
dependent external replication of a previous approach
by (Chou and Telaga, 2014) on a larger dataset (∼9M
datapoints compared to the original ∼170K).

Overall, we evaluated different strategies of train-
ing and testing (RQ1): sliding and accumulating win-
dows, to keep more into account history of time series
in learning the models, and the impact of different
threshold options on the newer dataset (RQ2). First
of all, we found that the method of (Chou and Telaga,
2014) was applicable without issues to a much larger
dataset that in the original paper. The original slid-
ing window training strategy is performing equiva-
lently to an accumulating window strategy in terms
of RMSE. A training of one week and one day testing
had the best results in terms of RMSE for the Smart*
dataset considered. Using a 2σ rule reports too many
data traces as anomalous—likely as in the original
paper this threshold was combined with another ad-
hoc temporal rule. Furthermore, the real presence
of anomalies is difficult to evaluate as in both the
original paper and the current replication there is
no ground truth about anomalies. Some anomaly-
injection activities could be performed to evaluate the
quality of the anomaly identification technique.

Based on the results, we discussed several lessons
learned for current and future power anomaly de-
tection algorithms, like the impact of automation on
larger datasets, the impact of concept drifts and avail-
ability of ground truth for the evaluation of models’
performance. With so many approaches proposed
over the time for power consumption anomaly detec-
tion, and the many datasets available, replications can
be a useful instrument to understand how an approach
applies to different contexts.

ACKNOWLEDGEMENTS

The work was supported from European Regional De-
velopment Fund Project CERIT Scientific Cloud (No.

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

294



CZ.02.1.01/0.0/0.0/16 013/0001802). Access to the
CERIT-SC computing and storage facilities provided
by the CERIT-SC Center, provided under the pro-
gramme ”Projects of Large Research, Development,
and Innovations Infrastructures” (CERIT Scientific
Cloud LM2015085), is greatly appreciated.

REFERENCES

Aggarwal, C. C. (2015). Outlier analysis. In Data mining,
pages 237–263. Springer.

Ardakanian, O., Koochakzadeh, N., Singh, R. P., Golab,
L., and Keshav, S. (2014). Computing electricity con-
sumption profiles from household smart meter data. In
EDBT/ICDT Workshops, volume 14, pages 140–147.

Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P.,
Albrecht, J., et al. (2012). Smart*: An open data set
and tools for enabling research in sustainable homes.
SustKDD, August, 111(112):108.

Batra, N., Kelly, J., Parson, O., Dutta, H., Knottenbelt,
W., Rogers, A., Singh, A., and Srivastava, M. (2014).
Nilmtk: an open source toolkit for non-intrusive load
monitoring. In Proceedings of the 5th international
conference on Future energy systems, pages 265–276.
ACM.

Buzau, M. M., Tejedor-Aguilera, J., Cruz-Romero, P.,
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