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Abstract: Estimation of missing sensor data is an important issue in control systems that are based on smart sensor 
networks, since it can support an adaptive functionality of the control network.  The paper investigates the 
extension of a low cost sensor network with a smart emulator module, able to act as a virtual sensor node on 
the network. The embedded emulator module should allow running of several pre-trained neural networks for 
estimating the values of faulty sensors. Training of the neural networks is made on a PC based on the records 
available at the level of the gateway module interfacing the control network. The proposed approach is 
exemplified for the case of a distributed control network system applied to smart homes.  

1 INTRODUCTION 

Originating from the field of biologic systems, the 
attribute “adaptive” is primarily referring the ability 
of a system to suit different conditions. In the case of 
distributed wired or wireless sensing networks, 
adaptive functionality is meant as an adaption of the 
network behaviour for achieving a predefined goal, 
like: tolerance to faulty nodes, optimization of energy 
saving (Duda et al., 2018), optimization of spatial 
coverage, etc. 

Estimation of the sensor data when the sensors 
become unavailable or defective allows the execution 
of performance or safety-related processes that rely 
on the continuous availability of those sensor data in 
the building. (Elnour et al., 2020) 

Zone-level sensor and actuator faults can 
substantially affect the energy and comfort 
performance of heating, ventilation, and air 
conditioning (HVAC) systems in commercial 
buildings (Gunay et al., 2020). 

In (Verhelst et al., 2017), is shown that sensor and 
actuator degradation occurs frequently in office 
buildings with a significant impact on energy use and 
thermal (dis)confort. The simulations are indicating a 
                                                                                                 
a  https://orcid.org/0000-0002-0368-9865 
b  https://orcid.org/0000-0001-8781-168X 
c  https://orcid.org/0000-0002-9788-0133 
d  https://orcid.org/0000-0003-4879-3401 

relative economic impact of simultaneous (realistic, 
randomly distributed and non-correlated) sensor and 
actuator faults, ranging from +7% to +1000%. 

An automatic fault management system consists 
of (Isermann, 2006): fault-tolerant actuators, fault-
tolerant sensors, active fault-tolerant controllers, fault 
detection module, fault management module. 

This paper addresses the issues associated with 
the improvement of adaptability for distributed 
sensing and control network. Several approaches are 
investigated in order that the network can operate in 
the presence of faults occurring at the level of its 
sensor nodes, based on estimations done by virtual 
sensors. 

Virtual sensors, originally introduced for 
estimating hard-to-measure variables in process 
industry (caused by high cost or lack of sensors) using 
easy-to-measure variables, have proven to be a 
valuable tool in many applications (Shan-Bin Sun, et 
al., 2017). Two types of virtual sensors are 
distinguished (Shan-Bin Sun, et al., 2017): model-
driven virtual sensors (based on physics’ equations 
that describe the input-output relations between the 
variables) and data-driven virtual sensors (based on 
measurement data history). Data driven virtual 
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sensors, as opposed to model based ones, require little 
prior knowledge, but a large amount of 
measurements. If a smart sensor network has a 
dedicated node able to record measurement values 
feed into network by other nodes and attach them a 
timestamp, then the measurement data history is 
available in the form of time series.  

Table 1: Comparison of major time series forecasting 
techniques (after (Chirag Deb et al., 2017)). 

 Advantages Disadvantages 

A 
N 
N 

▪ Precise input-output 
mapping.  
▪ Good performance for
non-linear modelling.  
▪ More general and flexible. 
 

▪ Dependent on weight 
values initialization.  
▪ Local minima and slow 
convergence problem.  
▪ Challenging to establish
a good trade-off between
generalization and
overfitting. 

A 
R 
I 

M 
A 

▪ Shifting and lagging of
time series data. 
▪ Improved accuracy by 
using a regression model 
with moving average.  
▪ Reliable confidence 
intervals for predictions.  

▪ Difficult model iden-
tification.  
▪ Not appropriate for 
long-term prediction.  
▪ Nonlinear patterns are
not fully captured. 

S 
V 
M 

▪ Good capability for fitting 
and generaliza-tion. ▪
Suitable for fore-castting 
long-term data. 
▪ Usage of a kernel function
introduces non-linearity and 
facilitates handling of
arbitrarily structured data. 

▪Lack of transparency in
results.  
▪ High computational 
complexity for large 
datasets. 
 

F 
u 
z 
z 
y 

▪ Close to human reasoning. 
▪ Appropriate for solving 
uncertainties  

▪ High computational 
complexity.  
▪ Lack of stability 

C 
B 
R 

▪ Similar to human 
cognitive processes. 
▪ Doesn’t search rules 
between parameters. 

▪ Require introduction of
new aspects. 
▪ Require huge data sets.

G 
R 
E 
Y 

▪ Capability of pre-dictions
with incomplete 
information.  
▪ Reduced computational 
complexity. 

▪ Not appropriate for 
recognition of random 
component. 
 

M 
A  
&  
ES 

▪ Reduced computational 
complexity. 
▪ Usage of a low number of
observations. 

▪ Not appropriate for
long-term and nonlinear
prediction 

K 
N 
N 

▪ Intuitive and ease to
implement  

▪ Challenging to
determine the exact 
number of neighbors 

H 
y 
b 
r 
i 
d 

▪ Combination of different 
machine learning methods 

▪ High computational 
complexity.  
▪ Challenging to 
determine the appropriate 
methods to combine. 

An extensive overview of the techniques used for 
time series forecasting in building energy 
consumption applications is presented in (Chirag Deb 
et al., 2017). The authors identified 9 models (ANNs 
- Artificial Neural Networks, ARIMA - 
Autoregressive Integrated Moving Average, SVM - 
Support Vector Machines, CBR - Case-Based 
Reasoning, Fuzzy time series, Grey prediction model, 
MA & ES - Moving average and exponential 
smoothing, kNN - K-Nearest Neighbor prediction 
method and hybrid models - combinations of two or 
more machine learning techniques) that can be used 
for fault detection, prediction of future consumption 
scenarios and for analysing energy consumption in 
relation to other building variables (eg. occupancy 
scheduling). Each of these techniques has a set of 
advantages and disadvantages presented in Table 1. 

2 MATERIALS AND METHODS 

Figure 1 presents a schematic representation of a 
building with multiple rooms as a collection of 
spatially distributed cells.  

 

Figure 1: Schematic representation of a building as multiple 
cells and data sources. 

Each room is usually monitored by a smart sensor 
with dedicated transducer for air temperature, 
humidity, CO2 level, VOC (Volatile organic 
compounds) level, etc. Each sensor node can be 
modelled as a data source (DS) which is feeding 
environmental variables values at a specified 
sampling rate. 
The basic problems addressed by the paper are: 
 investigate algorithms appropriate for 

estimating an environmental variable in the cell 
X, when either: a) the sensor node DSX is not 
communicating or b) a specific transducer of 
DSx is faulty, 

 propose an estimation technique whose 
computational complexity and running time are 
appropriate for constructing a virtual sensor 
able to support the real time operation of a 
control application, 
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 prototype an embedded implementation that 
can serve as a basis for a cost efficient 
realization of the devices involved in ensuring 
of an acceptable level of fault tolerance. 

2.1 Description of the Analysed 
Platform 

The analysed platform, called Physis, (Moga et al., 
2015) is based on a multi-master/multi-slave 
architecture (Figure 2). It integrates wired and 
wireless networks having several node types: sensor, 
controller, actuator, and gateway. The network 
architecture of Physis is appropriate for low cost 
monitoring and control application in building 
automation. Since a low cost implementation is 
targeted, all the nodes are built around low cost, low 
power 8 bit and 32 bit microcontrollers. 

 

Figure 2: Physis platform architecture. 

Wireless sensor nodes can be integrated with the 
wired components through a wireless hub node. Its 
role is to act as a sink node in the wireless network 
while presenting multiple identities (addresses) on the 
wired side: each wireless sensor will be identified 
through an associated address on the multidrop bus, 
and the request messages to all these addresses are 
handled by the hub. 

The gateway module (Figure 3), based on an 
ARM Cortex-M7 microcontroller, is interfaced on the 
network side by an RS-485 port and presents an 
Ethernet interface that allows communication with 
other gateway modules / applications. A NOR flash 
memory is used for storing configuration parameters 
and embedded web server pages. The micro SD card 
is used for storing the network nodes values and 
states. 

The application running on the gateway module 
offers the following functionalities (Moga et al., 
2015): Web server for implementing a HMI, 
functionalities required for monitoring the network 
elements, data logging, alarming (by sending emails 

to a preconfigured address or by informing the 
connected clients through TCP sockets) and alarms 
history, translation and forwarding of the user 
commands to the network elements, FTP server for 
facilitating the transfer of the logged data, TCP 
sockets for remote monitoring and control.  

 

Figure 3: Schematic of the gateway module. 

2.2 Fault Tolerant Network 
Architecture 

Figure 4 presents the architecture of the adaptive 
control network. 

 

Figure 4: Platform architecture for increasing network 
adaptability and enduring fault tolerant behaviour. 

The logged data, stored at the level of the gateway 
module, is periodically read by the application 
running on the PC, and used for training the models 
that allow estimation of sensor values based on the 
time series recorded from other sensors. The model 
parameters are transferred to the smart emulator 
module and used for estimating sensor values. When 
notified by the gateway that a sensor is faulty, the 
smart emulator acts as a virtual sensor node on the 
network, handling all the messages addressed to the 
faulty node. 

In the fault tolerant network architecture indicated 
in Figure 4, the hardware platform of the gateway 
module (Figure 3) is reused and reprogrammed as a 
smart emulator module.  
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2.3 Modelling Strategy 

Principal component analysis (PCA) based methods 
are reported as being successfully used in HVAC 
applications for sensor fault detection, diagnosis and 
data reconstruction (Yunpeng Hu et al., 2016), 
(Cotrufo et al., 2016).  

Neural networks are preferred due to their ability 
to create a feasible model for environmental variables 
based on time series as training sets.   

A neural network model, E-αNet, appropriate to 
implementing soft sensors for spatial forecasting of 
environmental parameters, is introduced in 
(Maniscalco et al., 2011). The E-αNet architecture 
has the capability of modifying the hidden units’ 
activation functions, reducing the network 
complexity in terms of number of hidden units and 
improving the learning ability. 

The AAAN (Auto-Associative Neural Network) 
approach is compared  in (Elnour et al., 2020) with a 
PCA-based algorithm and the results show an 
improvement by 40% in the diagnosis accuracy, 22% 
in missing data recovery, and 10% in error correction. 

LSTM (Long Short-Term Memory) networks are 
a class of recurrent neural networks, able to make 
predictions in time series forecasting based on the 
learned context.  In (Chiou-Jye Huang et al., 2018) a 
neural network composed of CNN (Convolutional 
Neural Network) and LSTM is applied for particulate 
matter forecasting in smart cities. CNN is used for 
feature extraction and LSTM for analyzing the 
features extracted by CNN and estimating the PM2.5 
concentration for the next point in time. 

The LSTM method, introduced in (Hochreiter et 
al., 1997), was designed to overcome the back 
propagated error problems encountered with 
conventional BPTT (Back-Propagation Through 
Time) or RTTL (Real Time Recurrent Learning) by 
usage of an efficient, gradient based algorithm on an 
architecture enforcing constant error flow through 
internal states of the network units. LSTM networks 
have the ability to store representations of both recent 
input events and longer term input events. 

A short description of the LSTM algorithm and 
network topology is presented in what follows 
according to (Hochreiter et al., 1997).  

An LSTM unit (memory cell) consists in an input 
gate, an output gate and a central linear unit (Figure5).  

The gates have the role of protecting against 
perturbations (from irrelevant inputs, irrelevant 
memory content of the linear unit) the memory 
content stored in the linear unit and the other units. 

Each memory cell, cj, in addition to netcj, gets input 
from the input gate inj and from the output gate outj. 

 

Figure 5: Architecture of a LSTM memory cell (Hochreiter 
et al., 1997). 

Activations at time t of inj and outj are: 
ሻݐೕሺݕ ൌ ݂ೕሺ݊݁ݐೕሺݐሻሻ (1)

ሻݐ௨௧ೕሺݕ ൌ ݂௨௧ೕሺ݊݁ݐ௨௧ೕሺݐሻሻ (2)
Where 

ሻݐೕሺݐ݁݊ ൌݓೕ௨

௨

ݐ௨ሺݕ െ 1ሻ (3)

ሻݐ௨௧ೕሺݐ݁݊ ൌݓ௨௧ೕ௨

௨

ݐ௨ሺݕ െ 1ሻ (4)

The indices u stand for different types of units (input 
units, gate units, memory cells, hidden units, even 
recurrent self-connections like ݓೕೕ). 
At time t, the output of the memory cell is: 

ሻݐೕሺݕ ൌ ሻሻ (5)ݐೕሺݏሻ݄ሺݐ௨௧ೕሺݕ

with the internal state: ݏೕሺݐሻ ൌ 0 for t = 0 and    

ሻݐೕሺݏ ൌ ݐೕሺݏ െ 1ሻ  ሻ݃ݐೕሺݕ ൬݊݁ݐೕሺݐሻ൰ (6)

for t > 0, 

ሻݐೕሺݐ݁݊ ൌݓೕ௨
௨

ݐ௨ሺݕ െ 1ሻ (7)

The topology of a LSTM network consists in one 
input layer, one hidden layer and one output layer. 
The hidden layer contains memory cells and may also 
contain conventional hidden units providing inputs to 
memory cells. 

2.4 Embedded Implementation of the 
Neural Network Models 

ARM’s Cortex M7 architecture (Figure 6) extends the 
MCU capabilities (e.g. general purpose computations, 
efficient control flow, integration with low power 
memory types, fast reaction to external interrupts) with 
DSP (Digital Signal Processing) extensions to the 
Thumb instruction set and the optional floating point 
unit, providing features like: single cycle 16/32-bit 
MAC (multiply-accumulate), single cycle dual 16-bit 
MAC, 8/16-bit SIMD (Single Instruction Multiple 
Data) arithmetic, hardware division. 

Rapid prototyping of a neural network 
implementation is possible using ST’s solutions for 
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artificial neural networks. ST offers the possibility of 
mapping and running pre-trained ANNs on STM32 
ARM Cortex M7 microcontrollers, through an 
extension pack of the STM32CubeMX tool. Multiple 
ANNs can run on a STM32 microcontroller. 

 

Figure 6: ARM Cortex-M7 architecture (ARM website: 
https://developer.arm.com/ip-products/processors/cortex-
m/cortex-m7). 

The NN model, trained in an interoperable deep 
learning training tool (such as Keras, ConvNetJS, 
Lasagne, Caffe), is converted into optimized code for 
STM32 Arm Cortex M4/M7 processors with FPU 
(Floating point Unit) and DSP extensions. 

The generated STM32 NN library (both 
specialized and generic parts) can be directly 
integrated in an C/C++ IDE project. The specialized 
files, defining the network topology and weights/bias 
parameters, are generated for each imported NN 
model. The generic part, the NN computing kernel 
library or network_runtime library, uses 
(STMicroelectronics, 2019):  
 ARM CMSIS library, for CORTEX-M 

optimized operations support (FPU and DSP 
instructions),  

 standard libc, for memory manipulation 
functions (memset, memcpy),  

 a mathematical functions library, for expf, 
powf, tanhf, sqrtf functions,  

 malloc / free functions, for supporting the 
recurrent-type layers.  

3 EXPERIMENTS AND RESULTS 

The data sets collected by the Physis platform in a 
smart home setup usually contain 1 minute records of 
air temperature and relative humidity measured by 
sensors placed indoor (Ti, Hi), and records of air 
temperature measured by a sensor placed outside 
(Text). Each record consist in: (time_stamp, Ti, Text, 
Hi). Example of such recordings are presented in 
Figure 7 (for 11 successive days).  

The experimental data was prepared for usage 
with LSTM in Keras. LSTM expects a 3D tensor 
format (batch_size, time_steps, input_dim) for the 
input data. 

The neural network models are trained in Keras 
(TensorFlow backend) and exported to files (HDF5 
format for model weights, JSON format for network 
structure). 

After defining the network structure, the model is 
fitted versus a 1D tensor with the values that need to 
be estimated. The dataset was split into training data 
(records from the first 7 days) and test data.   

Experiments were made considering the 
following scenarios: 
 estimate the inside air temperature for the next 

time step based on the measurements of the 
other variables at prior time moments, 

 predict the inside air temperature 1 day ahead 
values based on the measurements of all the 
variables collected in the past 7 days. 

For the first scenario, the LSTM model was 
defined with a single hidden layer with 12 neurons, 
and an output layer with 1 neuron. The model was 
fitted over the normalized training data. 750 epochs 

 

Figure 7: Experimental data set. 
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with a batch size equal to the length of the training 
dataset were used. Validating the model on the test 
dataset, resulted in an RMSE value of 2.373 (Figure 8).  

 

Figure 8: Estimated indoor temperature vs. measured 
indoor temperature for the validation set (1st scenario). 

For the second scenario, the mean value was 
computed on 30 successive records in order to reduce 
the number of records in the dataset. A Bidirectional 
LSTM model with 12 neurons was trained over 500 
epochs. Validating the model resulted in an RMSE of 
1.062 (Figure 9). 

 

Figure 9: Estimated indoor temperature vs. measured 
indoor temperature for the validation set (2nd scenario). 

ST's extension package of the STM32CubeMX, 
STM32Cube.AI was used for converting the models 
exported from Keras into optimized code for running 
on the smart emulator module. 

Experiments performed with indoor air parameter 
measurements collected from home and office rooms 
demonstrated a very good estimation capability even 
for simple LSTM structures. A more difficult 
situation was considered, for the case of greenhouse 
room: the environmental variables (temperatures, 
humidities) are exhibiting a wider dynamic range and 
saturation for the humidity transducer is present. 

4 CONCLUSIONS 

The experiments performed on the time series 
obtained for a smart sensor network dedicated to 
smart home platforms are indicating successful 

operation of the virtual sensors for a time horizon of 
few days. The training sets consisted of time series 
collected in one week. This proves that the proposed 
approach can be reliably used in providing the 
adaptive behaviour of a distributed control network 
for temperature/humidity control.  

Further efforts will be dedicated to provide a fully 
automated construction of the models for the virtual 
sensors by introduction of the dedicated neural 
network model generator as a server application 
running in the cloud. 
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