Tackling the Six Fundamental Challenges of Big Data in Research

Projects by Utilizing a Scalable and Modular Architecture

Andreas Freymann®?, Florian Maier b Kristian Schaefer®® and Tom Bohnel®4

Anwendungszentrum KEIM, Fraunhofer Institute for Industrial Engineering IAO, Esslingen am Neckar, Germany

Keywords:

Abstract:

Big Data Fundamentals, Scalability, Modular Architecture, Research Projects, Data Lake, Real Time, Open
Source, Docker Swarm, Micro Services.

Over the last decades the necessity for processing and storing huge amounts of data has increased enormously,
especially in the fundamental research area. Beside the management of large volumes of data, research projects
are facing additional fundamental challenges in terms of data velocity, data variety and data veracity to create
meaningful data value. In order to cope with these challenges solutions exist. However, they often show short-
comings in adaptability, usability or have high licence fees. Thus, this paper proposes a scalable and modular
architecture based on open source technologies using micro-services which are deployed using Docker. The
proposed architecture has been adopted, deployed and tested within a current research project. In addition,
the deployment and handling is compared with another technology. The results show an overcoming of the
fundamental challenges of processing huge amounts of data and the handling of Big Data in research projects.

1 INTRODUCTION

Processing and storing of today’s increasing amount
of Big Data has become an important key factor in
all areas of life such as research, industry, public or
social networks (Y. Demchenko et al., 2013). One re-
sponsible factor is that data comes from everywhere
and from everybody (S. Kaisler et al., 2013). It origi-
nates for example from an enormous amount of dy-
namic sensors and devices around the world creat-
ing massive amounts of data (M. Kiran et al., 2015),
(L. Sun et al., 2017). Within companies, Big Data
also plays a crucial role such as for decision-making
(Stucke and Grunes, 2016). Thus, new technologies
and architectures are necessary to deal with Big Data
to reach valuable results (Katal et al., 2013), (Volk
et al., 2019). However, bringing Big Data together
with research projects which investigate new tech-
nologies and approaches causes additional challenges
which need to be handled.

The general handling of Big Data requires to con-
sider certain characteristics such as data volume or
data velocity (Katal et al., 2013). However, Big Data

4t https://orcid.org/0000-0002-3735-4545
5@ https://orcid.org/0000-0002-5695-6509
https://orcid.org/0000-0002-7855-6741
4@ https://orcid.org/0000-0001-6426-2606

o

Freymann, A., Maier, F., Schaefer, K. and Béhnel, T.

faces challenges as well (S. Kaisler et al., 2013),
(Katal et al., 2013), (Volk et al., 2019). They can
be derived from the Big Data characteristics (Ahmed
Oussous et al., 2018) which we identify as fundamen-
tal challenges (FCs) of Big Data at the same time.
They make processing and storing of data more dif-
ficult. Also just the processing of data or the variety
of nature might cause difficulties (Volk et al., 2019).
In addition, these FCs of Big Data get intensified in
conjunction with research projects as they represent
additional challenges due to their settings such as for
instance financial limitations. We call them FCs of
research projects.

There already are solutions in practice and litera-
ture which try to handle FCs of Big Data (S. Kaisler
etal., 2013), (M. Kiran et al., 2015). However, several
challenges still persist: Firstly, traditional solutions
for Big Data often show shortcomings in efficiency,
scalability, flexibility and performance (Ahmed Ous-
sous et al., 2018). Secondly, such solutions do not
consider the additional challenges that come along
with the FCs of research projects. Thirdly, many so-
Iutions have cost models instead of having an open-
source character (M. Kiran et al., 2015).

This paper provides an architecture which has
been adopted and developed further to overcome the
difficulties of handling FCs of Big Data in conjunc-
tion with FCs of research projects by showing a suc-

249

Tackling the Six Fundamental Challenges of Big Data in Research Projects by Utilizing a Scalable and Modular Architecture.

DOI: 10.5220/0009388602490256

In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (loTBDS 2020), pages 249-256

ISBN: 978-989-758-426-8

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

TIoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

cessful deployment in a current project (i-rEzEPT").

The content of this work is based on a previous
publication which presents a flexible architecture for
smart cities by taking up several architectural design
patterns (K. Lehmann and A. Freymann, 2018). Our
work provides a special architectural design featur-
ing e.g., a scalable and modular design based on open
source technologies or a distributed server cluster. For
the evaluation of our suggested architecture, it is de-
ployed, used and tested within the aforementioned re-
search project. In addition, we compare the deploy-
ment of the architecture with two different technolo-
gies: Docker swarm and Kuberentes (Kubernetes Au-
thors, 2020). The results show that the proposed ar-
chitecture overcomes the FCs of Big Data and FCs of
research projects.

The paper is structured as follows: After an insight
into background information in Section 2, Section 3
describes the FCs of Big Data and FCs of research
projects and how they influence one another. Section
4 presents our architecture derived from seven identi-
fied requirements. The architecture is then evaluated
in Section 5. Finally, after the related work in Section
6, the last Section 7 discusses the conclusion of our
work and gives a future outline.

2 BACKGROUND INFORMATION

Dealing with Big Data requires a well-defined archi-
tecture and technologies to be able to process the huge
amounts of data (Katal et al., 2013). Strong basic fea-
tures of those architectures usually are flexibility and
scalability to cope with changes such as changing re-
quirements or new data sources (K. Lehmann and A.
Freymann, 2018). Different design patterns for ar-
chitectures are state-of-the-art which have been used
over the last years such as the lambda architecture (a),
micro-services (b) and distributed systems (c).

A Lambda Architecture offers a solution for an ef-
ficient processing of large amounts of data (a). It
enables simultaneously real-time analysis and more
complex, accurate analysis using batch methods. The
architecture consists of three layers: speed layer,
batch layer and serving layer. The speed layer pro-
cesses an incoming data stream in real-time. The
batch layer executes heavy computations in a lower
frequency. The output of speed and batch layer can be
joined before presentation. The serving layer stores

I'The project i-rEZEPT is promoted by the German Fed-
eral Ministry of Transport and Digital Infrastructure. It in-
vestigates the participation of battery electric vehicles in the
primary reserve market (Funding code:03EMF(0103B).

250

results of computations, handles queries and provides
the interface for the user. (M. Kiran et al., 2015)

A Micro-service architecture divides a complex sys-
tem into many small applications, called micro-
services (b). They offer an interesting contribution
to the architecture, as they only processes small inde-
pendent units and therefore provide a lot of flexibility
(Peinl et al., 2016), (L. Sun et al., 2017). In compari-
son, the traditional monolithic approach unifies a soft-
ware solution in a single unified application. Micro-
services benefit of being highly horizontally scalable,
flexible and easy to maintain. (L. Sun et al., 2017)
"A Distributed System is a collection of independent
computers that appears to its users as a single coher-
ent system’ (Tanenbaum and van Steen, 2007, p. 2)
(c). They provide high scalability as computers re-
spectively servers can be added, changed or removed.
The challenge of distributed systems is to manage and
allocate tasks (e.g. micro-services) between the avail-
able computation resources (Verma et al., 2015).

In addition, to manage micro-services in dis-
tributed systems is a significant factor for a well func-
tioning operation of an entire system. For the orches-
tration of micro-services, they get packed into con-
tainers. Those containers enable faster booting of the
services and easy deployment (H. Li et al., 2019).
This additionally simplifies the service orchestration
as a whole such as by using automation functions.

3 FCsIN DETAIL

3.1 FCs of Big Data

Many definitions mention five basic characteristics
which are related to Big Data (Y. Demchenko et al.,
2013), (Katal et al., 2013), (S. Kaisler et al., 2013).
These are often described as the "5 Vs" of Big Data:
volume, velocity, variety, veracity and value (cf. Ta-
ble 1). This work also considers the specific attribute
complexity mentioned in (S. Kaisler et al., 2013), as
research data often has a complex structure which
makes this characteristic especially important. Table
1 represents the Big Data characteristics in detail.

Data Volume. It deals with the huge amount of
data which need to be handled (Volk et al., 2019).
At the same time, processing the volume is a chal-
lenge that Big Data has to face due to the fact that new
data is continuously generated everywhere (S. Kaisler
et al., 2013). Especially, smartphones or RFID de-
vices produce a massive amount of data around the
world (M. Kiran et al., 2015).

Data Velocity. It describes the frequency of in-
coming data from different sources (Katal et al.,

Tackling the Six Fundamental Challenges of Big Data in Research Projects by Utilizing a Scalable and Modular Architecture

Table 1: Characteristics of Big Data.

Data ... Short description

Available amount of data existing
within a certain context (S. Kaisler
et al., 2013), (Volk et al., 2019).
Speed or frequency at which data
originates from a certain data
source (Y. Demchenko et al., 2013).
Diversity the data can be repre-
sented by, e.g. images, text or
videos. This also addresses the
data streaming and data aggrega-
tion (Katal et al., 2013).
Interconnectedness and interdepen-
Complexity dence of data content (S. Kaisler
etal., 2013).

Plausibility and correctness of data

Volume

Velocity

Variety

Veracity v Demchenko et al., 2013).
Creation of valuable information
which can be further used such

Value

as for decision-making (Y. Dem-
chenko et al., 2013).

2013). A high velocity requires transmitting and pro-
cessing data quickly (Ahmed Oussous et al., 2018).
Data Variety. Data variety measures the diversity
(Volk et al., 2019). It comprises, e.g., possible data
formats such as documents, time series or videos be-
ing processed. The related challenge is that data is of-
ten incompatible, non-structured and inconsistent (S.
Kaisler et al., 2013). This is also based on the large
amount of different IoT devices which produce differ-
ent data formats (L. Sun et al., 2017).

Data Complexity. Relationships and interconnections
between data from various sources represent the data
complexity (S. Kaisler et al., 2013). This means that
data content depends on other data content. Chal-
lenges are linking and changing interconnected data
across a large Big Data system (Katal et al., 2013).
Data Veracity. 1t is mentioned by (Y. Demchenko
et al., 2013) and comprises consistency and trustwor-
thiness of data. Ensuring a non-manipulation of data
is important during data processing, beginning from
trusted sources to a secure storage. Implausible data
needs to be detected while it is being processed. Oth-
erwise, data that has no trustworthiness or consistency
might have negative impacts, e.g., interpretations.
Data Value. The data value is the reason why all Big
Data efforts are made. It is created through four pro-
cessing steps: collection, cleaning, aggregation and
presentation. The data value focuses on the useful-
ness of data which means to create valuable informa-
tion and knowledge which can be further used such
as for decision-making (Y. Demchenko et al., 2013).

This characteristic depends on a good consideration
of all other Big Data characteristics.

3.2 FCs of Research Projects

Research projects have special settings, which differ
from non-research projects without a research context
which lead to different methods and architectures (Y.
Demchenko et al., 2013). In our practice, we identi-
fied several interdependent characteristics (described
in Table 2) which make a research project unique.

Table 2: Characteristics of research projects.

Character. Short description
Large Research projects create com-
amounts of plex and large amounts of data.
data (Y. Demchenko et al., 2013)
Volatile re- . . .
quirements Quickly changing requirements.
Developing Focus on research results, less
prototypes concern for marketable products.
Available A given scope which limits finan-
budgets cial options.
Innovative Trying new concepts and tech-
character nologies.
Research Have an open character to share
. research results (Y. Demchenko
community

etal., 2013).

Large Data Amount. A typical property of research
projects is a large amount of data which needs to be
processed and stored as hypotheses and research goals
are pursued (Y. Demchenko et al., 2013). In conjunc-
tion with a Big Data context, the derived challenge
from research projects is the confrontation with an ad-
ditional large volume of structured and unstructured
data from different data sources.

Volatile Requirements. Research projects have clear
research goals, however, how to technically reach the
goals (e.g. software architecture design) is generally
determined during the project. This depends on other
factors such as later identified data sources or bad
data quality (e.g., unstructured or volatile data) which
might change during the project.

Developing Prototypes. Research projects have a
strong focus on research results and on answering re-
search questions. Thus, less focus is set on a broad
functionality of software solutions. Implementation
of the rudimentary functionality is generally realized
by developing prototypes. An arising challenge is
searching for technologies or methods on the fly, as
this would result in a pieced-together solution which
might influence scalability or adaptability.

Available Budgets. The financing of research projects

251

TIoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

is usually characterized by a predefined budget.
Changing that budget, especially in public research
projects promoted by federal and state governments,
might be connected with higher effort.

Innovative Character. Being innovative is an im-
portant factor within research projects. This means
new technologies or frameworks need to be tested to
achieve new experiences. However, using new in-
novative technologies, software or frameworks might
cause a challenge due to their lesser maturity.
Research Community. Research projects have an
open character to an open research community. This
means that the published results can be validated and
reproduced by other scientists (Y. Demchenko et al.,
2013). This requires to produce valuable and mean-
ingful knowledge through a well-defined solution.

3.3 Intensification of Big Data FCs in
Research Projects

The FCs of Big Data and of research projects often
go hand in hand. Sometimes they influence and in
some cases even intensify one another such as the
data volume characteristic which is intensified within
research projects. Generally, such intensification re-
quires an architecture allowing an easy and quick in-
clusion of additional data sources. This complication
also affects the complexity of data handling through-
out the whole project, as it can dynamically in- or
decrease with every additional included data source.
The ensuring of data veracity is affected in the same
sense. Every new data source causes the implementa-
tion of new functions, e.g to detect outliers or to clean
data. The handling of data velocity faces the afore-
mentioned problems as well. If new data sources are
acquired, which offer data of a higher or lower ve-
locity than the sources that are already included in the
project, more difficulties arise, such as to ensure a fast
data consumption with different velocities.

4 A FLEXIBLE ARCHITECTURE
FOR MANAGING BIG DATA
WITHIN RESEARCH
PROJECTS

This Section presents our architecture which supports
managing Big Data (cf. Figure 1) by considering the
FCs of Big Data (cf. Section 3.1) and the FCs of
research projects (cf. Section 3.2). Generally, the
structure of our architecture illustrates the data pro-
cessing steps from data collection (bottom left), over
data cleaning, data aggregation (bottom right) to data

252

presentation (top left). The right side represents how
the data is stored, using a data lake and a frontend
database for outside requests. Passing on the data be-
tween the different data processing steps, the data is
stored within data queues. Furthermore, for the sep-
aration between the frontend (cf. data presentation)
and the backend (cf. data collection, cleaning and
aggregation) a proper interface which separates the
transfer between the backend and frontend is used.

In the following, we present identified architecture
requirements and how they are realized within our
architecture. In general, the identified requirements
are derived from the described FCs of Big Data, the
FCs of research projects and from the literature. They
comprise modularity, adaptability, scalability, well-
defined data handling, distributed system, computing
capacity, and infrastructure management.

4.1 Modularity

We identified the modularity as a required feature
which means to divide and structure a system into
software and hardware modules realized by micro-
services. Containers are a common approach as they
offer, e.g, virtualization or lightweight operations in
comparison to conventional virtual techniques (H. Li
et al., 2019). This enables scalability and adaptability
of a system and helps coming along with data vari-
ety. Therefore, our architecture has a modular design
which is achieved by using micro-services. We use
the Docker container technology to run each software
component as a micro-service. This comprises, e.g.,
Docker containers for databases, for the frontend or
for scripts to collect, clean and aggregate data.

4.2 Adaptability

We identified that being adaptable supports handling
of volatile requirements. In general, adaptability de-
scribes the ability to modify and extend a system (K.
Lehmann and A. Freymann, 2018). This means to be
able to change, add or remove hardware, software or
technologies such as databases, frameworks or pro-
gramming languages. This also benefits the develop-
ment of prototypes due to their innovative character
which is known for changes, e.g., technologies or pro-
gramming languages of the prototype.

In order to support adaptability, we use a standard-
ized syntax for the data format (i.e. JSON) which is
used for the data flow between each of the micro-
services. Additionally, a standardized query lan-
guage (at the frontend) is realized by using GraphQL
(GraphQL Foundation, 2019) as well as an automated

Tackling the Six Fundamental Challenges of Big Data in Research Projects by Utilizing a Scalable and Modular Architecture

———Pspeed layer —®serving layer — - - » batch layer .1 docker container
y . Interface between
Frontend |Authentication [T!] | frontend and backend Frontend database
i Server i | R S]
g | ——
A ——————— - = |
Angular / 1" """""""°- oo T >3 © [atabase] ArangoDB/
Django J - i
Data presentation X ¥
_ Data h
{I | aggregation
data sourcel — - Data | -
P o
Cleaning =N
data source2 —- data format = - .
T P2 | Elastic |
data sourcex — - o _fhmhas‘i_ Search |
.................... | | — i
raw data | S i
Data collection Data cleaning -‘— -‘— Data aggregation
Backend Backend Backend

Figure 1: Overview of our architecture.

testing and delivery of Docker images which is real-
ized with Drone (Drone, 2019).

4.3 Scalability

Scalability is an important and required feature within
Big Data (Ahmed Oussous et al., 2018), (Volk et al.,
2019). Offering scalability supports the expansion
of a solution horizontally and vertically by its hard-
ware and software components. This enables to store
a large and constantly growing data amount for in-
stance by adding new database nodes and helps com-
ing along with volatile requirements. To realize scal-
ability it is common to have a distributed system with
distributed databases and servers to split data pro-
cessing (S. Kaisler et al., 2013), (Sindhu and Hegde,
2017). We realize the scalability by using a server
cluster managed by the Docker Swarm orchestration.
To scale the data store, we use Elasticsearch (Elastic-
search, 2019) which allows to arbitrarily spread data
and manager nodes over the server cluster.

4.4 Data Handling

A well-defined data processing should comprise the
four data processing steps of Big Data (e.g., collec-
tion, cleaning, aggregation and presentation). This
enables to come along with the FCs of Big Data and
with the additional large amount of data related to re-
search projects. Finally, a proper data handling cre-
ates a better research result which might get more
attention within the research community. Addition-
ally, the aspect of data flows needs to be addressed.
Data flow means how the data is transported through
the four data processing steps. For the transportation
three important matters are recommended: Firstly,
packing data into small units simplifies the data pro-

cessing. Secondly, buffering data packages between
data processing steps is a common approach, e.g., by
using a message broker to save intermediate results.
Thirdly, splitting the data flow into several data layers
using the lambda architecture is a required way for
Big Data processing (M. Kiran et al., 2015).

The architecture is designed to realize the four
data processing steps (cf. Figure 1). Addressing the
data collection, for each data source, we realized an
individual micro-service running in a Docker con-
tainer which collects and queues the data using the
message broker RabbitMQ (RabbitMQ, 2019). The
data gets pulled from the queue by further micro-
services for data cleaning (e.g. checking the time for-
mat). The data is then embedded within an uniform
data structure. Finally, other micro-services store the
data within a data lake. Real-time data is directly sent
to a frontend database. The stored data within the data
lake is then aggregated using different micro-services.

Within our architecture, two databases are chosen:
Elasticsearch (Elasticsearch, 2019) as data lake and
ArangoDB (ArangoDB, 2019) as frontend database.
This separates non-aggregated data (cleaned and raw
data) from aggregated data (for the frontend). This
also relieves the data lake because requests for aggre-
gated data are only sent to the frontend database. For
the data presentation two frameworks are being used:
Django (django, 2020) and Angular (Angular, 2019).

4.5 Distributed System

Such systems have become a significant and required
role within Big Data (Sindhu and Hegde, 2017),
(Katal et al., 2013). The software is running on dif-
ferent interconnected servers. Distributed systems
enable load balancing, distribution of computational
power, data storage and efficient parallel process-

253

TIoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

ing. Our architecture realizes this by using a Docker
Swarm server cluster.

4.6 Infrastructure Management

Realizing the aforementioned requirements needs an
overall management of the system to get transparency
(Peinl et al., 2016). Beside the controlling and mon-
itoring of the system, the orchestration of running
Docker containers (e.g. micro-services) is a signifi-
cant task for such a management (H. Li et al., 2019).

The entire system and the Docker containers are
orchestrated by Docker Swarm and we use Portainer
(Portainer, 2019) to manage (i.e. configure) the
swarm. Portainer manages distributed servers from
different locations, Docker container images, related
Docker networks and volumes.

4.7 Computing Capacity

A significant requirement and key factor for process-
ing Big Data is to offer appropriate computing capac-
ity (Y. Demchenko et al., 2013). This is often related
to parallel processing, especially, to enable real-time
data processing (S. Kaisler et al., 2013). This helps to
process large amounts of data as well as coming along
with a high data veracity. Having appropriate servers
with a high computational power, a distributed system
can optimize utilization of the computational power
by load balancing.

S EVALUATION

In this work, we adapted and further developed our
architecture in a current research project called i-
rEzEPT. The project is characterised by processing
data from various sources with high velocity. Data
types comprise environmental data (e.g. temperature,
humidity or cloudiness), telematic data from electric
vehicles (i.e. GPS, speed or battery state) and smart
metering data (e.g. power inverters from photovoltaic
systems or frequency meters).

Table 3 lists the needed data storage in detail for
the different data types. To ensure maximum avail-
ability, the data gets replicated within the data lake,
which doubles the needed capacity. The raw data (cf.
Figure 1) is saved in a compressed state, as it does
not need to be accessed on a regular basis. Thus, it
is expected to require 190GB (assuming a 90% com-
pression ratio) of storage capacity. Aggregations of
the different timeseries are expected to need another
200MB of storage. This accumulates to a total ex-
pected storage need of around 4.15TB.

254

Table 3: Storage requirement by data type for 2 years.

Data type Gigabyte
+ smart metering data 1800

+ Environmental data 67

+ Telematic data 15

+ Raw data 190

= Subtotal 2072

+ With replication 4144

+ Aggregation (only ArangoDB) 0.2

= Total 4,144.2

Our evaluation of the presented architecture fo-
cuses, firstly, on the fulfillment of the most important
Big Data characteristics and, secondly, of the archi-
tecture deployment using Docker Swarm. This de-
ployment is then compared with the additional tech-
nology Kubernetes (Kubernetes Authors, 2020) by
evaluating the handling of both technologies. This
project currently runs on a server cluster with Docker
Swarm. It consists of seven Ubuntu 18.04 virtual ma-
chines, utilizing a total of 42 CPUs as well as 82GB of
RAM. The Docker Swarm shares this hardware with
another research project, so it does not have exclu-
sive access to the cluster’s ressources. It remains to
be seen, whether the architecture performs as well on
bigger clusters.

5.1 Big Data Characteristics Evaluation

Variety: Elasticsearch allows to easily add new data
sources without concerning the data format. By the
end of the project, it is expected to have 25 different
data sources, providing data in 18 different formats.
Velocity: The 25 different data sources each provide
measurements ranging from two times per second up
to once every thirty minutes which gets handled by the
message broker. It splits the incoming data streams
into easy-to-process data packages and temporarily
stores them in queues, until another micro-service
pulls them from queues and processes them.
Veracity: This can be checked outside and within the
architecture. For some data sources, veracity can be
ensured before the data even gets pulled from the API.
For other data sources the veracity can be checked
during the data cleaning phases. Simple plausibility
checks can be performed before storing it in the data
lake (e.g. invalid speed values).

Complexity: The evaluation shows that Elasticsearch
is suitable for working with data having different data
structures. Connections between different data types
can easily be represented by adding additional meta-
values to the different timeseries and the Elasticsearch
query system allows for complex aggregations across
multiple indexes.

Tackling the Six Fundamental Challenges of Big Data in Research Projects by Utilizing a Scalable and Modular Architecture

5.2 Deployment Evaluation

In reference to the Portainer deployment, we evalu-
ated that adding new servers to the Docker Swarm
and micro-services for data processing was proven as
simple. At the beginning of the project, the cluster
comprised five virtual machines. During the project
two additional database servers were added to scale
the data lake and to set up the frontend database. The
cluster also started out with only a couple of micro-
services. The number of micro-services has been in-
crementally expanded by including new data sources,
running new data aggregations and adding the fron-
tend. It is expected that the number of micro-services
will grow up to around 100 services by the end of
the project. Adding these micro-services showed the
adaptability of the architecture but also shows its lim-
itations. Our current limitation for an in depth eval-
uation is the small size of the cluster. Furthermore
the clusters scalability and load balancing capabilities
are limited by the underlying storage layer since the
database nodes are currently pinned to specific virtual
machines with additional storage. Focusing Kuber-
netes and a distributed storage system in our testing
deployments allows a single database node to move
freely within the cluster and between different virtual
machines. Therefore offering a promising solution
for the further growing architecture, its scalability and
load balancing features.

6 RELATED WORK

In the literature, publications exist which present ar-
chitectures and frameworks for Big Data. According
to challenges related to Big Data, several publications
speak about the Big Data characteristics comprising
data volume, data velocity, data variety, data value
and data veracity (S. Kaisler et al., 2013), (Katal et al.,
2013) and (Y. Demchenko et al., 2013). (Katal et al.,
2013) as well as (S. Kaisler et al., 2013) added data
complexity as an additional Big Data characteristic.
In our work, we took these Big Data characteristics as
a fundamental scope that needs to be considered.

The content of this work is based on a previ-
ous publication which presents an architecture for
smart cities in the context of research projects and
takes up several architectural design features such
as a distributed Event Based System, micro-services
and a lambda-architecture for the data handling (K.
Lehmann and A. Freymann, 2018). Scalability and
flexibility are described as basic features. Our archi-
tecture extends this previous work in different parts,
e.g., by using a server cluster to distribute the micro-

services which significantly enhances the scalability
or by a proper orchestration to manage the distributed
system. Furthermore, our architecture is designed for
small, medium and large research projects.

The publication (Y. Demchenko et al., 2013)
presents an architecture called the Scientific Data In-
frastructure (SDI) which tackles challenges of Big
Data in the context of science and also focuses on a
general approach for a data lifecycle management in
research and industry. The SDI also comprises the
data lifecycle from data collection, processing and
presentation. An additional micro-service architec-
ture for IoT applications is proposed by (L. Sun et al.,
2017) which also has strong consideration for scala-
bility and adaptability by concerning it from a service
layer to a physical layer (L. Sun et al., 2017). Fur-
thermore, they address significant challenges which
arise with the dynamically growing amount of phys-
ical IoT devices. In essence, they propose a system
design comprising several core micro-services, a ser-
vice orchestration and a lightweight communication
deployed with Docker and Kubernetes. Additionally
(Volk et al., 2019) address difficulties of creating a
big data architecture in regards to requirements engi-
neering, the technology selection and the project re-
alization. They provide several references to existing
architectures and propose a solution to find a Big Data
architecture by utilizing a decision support system.

In comparison to (L. Sun et al., 2017), our archi-
tecture has a strong focus on challenges within re-
search projects, presenting a clear comparison and in-
tensification between challenges of Big Data and re-
search projects. In addition, our architecture also con-
siders scalability and modularity as an important fea-
ture for such an architecture in order to come along
with the mentioned challenges which is missing in (Y.
Demchenko et al., 2013). We also offer a concrete
proposal how to implement or to deploy the architec-
ture which is evaluated and shown with a current re-
search project. This also stands in contrast to (Volk
et al., 2019) who only propose a solution for finding
an architecture, not a concrete architecture itself.

7 CONCLUSIONS AND FUTURE
WORK

This work presented an architecture which deals with
the fundamental challenges of processing Big Data,
while also taking the unique characteristics and chal-
lenges of modern day research projects into account.
Therefore, it supports the handling of Big Data in re-
search projects comprising a huge amount of various
high frequency structured, unstructured and complex

255

TIoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

data. At the same time it is easily and quickly de-
ployable. This work identified requirements needed
to be considered during designing such an architec-
ture comprising e.g. a well-defined data handling, an
infrastructure management or scalability. Our archi-
tecture is scalable both horizontally and vertically.

A possibility of improving the architecture in the
future would be to switch the container orchestration
from using Docker Swarm to using Kubernetes. It of-
fers a more robust solution and better fine tuning. It
would allow the utilization of a lightweight operating
distribution as opposed to the Ubuntu distribution that
is currently used, which would free up a non-trivial
part of the clusters resources and would reduce man-
agement efforts. Another desirable improvement of
the architecture would be a more extensive focus on
load balancing, synchronization between the cluster’s
machines and the ensuring of service and data con-
sistency within the cluster. Problems with synchro-
nization and consistency are handled on a code level
and should optimally get shifted towards the cluster
management as well, wherever applicable.

In conclusion, our architecture allows to easily
handle all the aforementioned challenges which have
been laid out under Section 4. In addition to that, it is
completely made up by open-source solutions, allow-
ing for more freedom in terms of budget allocation.

REFERENCES

Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lah-
cen, and Samir Belfkih (2018). Big data technologies:
A survey. Journal of King Saud University - Computer
and Information Sciences, 30(4):431-448.

Angular (2019). One framework. mobile & desktop. URL:
https://angular.io, accessed 2019-12-17.

ArangoDB (2019). One engine. one query language. multi-
ple data models. URL: arangodb.com, accessed 2019-
12-17.

django (2020). django: The web framework for perfec-
tionists with deadlines. URL: djangoproject.com/, ac-
cessed 2020-02-18.

Drone (2019). Automate software testing and delivery.
URL: https://drone.io/, accessed 2019-12-17.

Elasticsearch (2019). Get started with elasticsearch. URL:
elastic.co, accessed 2019-12-17.

GraphQL Foundation (2019). A query language for your
api. URL: https://graphql.org, accessed 2019-12-16.

H. Li, N. Chen, B. Liang, and C. Liu (2019). Rpbg: Intel-
ligent orchestration strategy of heterogeneous docker
cluster based on graph theory. In 2019 IEEE 23rd Int.
Conf. on Computer Supported Cooperative Work in
Design (CSCWD), pages 488—493.

K. Lehmann and A. Freymann (2018). Demo abstract:
Smart urban services platform a flexible solution

256

for smart cities. In 2018 IEEE/ACM Third Int.
Conf. on Internet-of-Things Design and Implementa-
tion (loTDI), pages 306-307.

Katal, A., Wazid, M., and Goudar, R. H. (2013). Big
data: issues, challenges, tools and good practices.
In 2013 Sixth int. conf. on contemporary computing
(1C3), pages 404-409.

Kubernetes Authors (2020). Production-grade container or-
chestration: Automated container deployment, scal-
ing, and management. URL: kubernetes.io, accessed
2020-02-21.

L. Sun, Y. Li, and R. A. Memon (2017). An open iot frame-
work based on microservices architecture. China
Communications, 14(2):154—-162.

M. Kiran, P. Murphy, 1. Monga, J. Dugan, and S. S. Baveja
(2015). Lambda architecture for cost-effective batch
and speed big data processing. In 2015 IEEE Int. Conf.
on Big Data (Big Data), pages 2785-2792.

Peinl, R., Holzschuher, F., and Pfitzer, F. (2016). Docker
cluster management for the cloud - survey results and
own solution. Journal of Grid Computing, 14(2):265—
282.

Portainer (2019). Making docker management easy. URL:
portainer.io, accessed 2019-12-17.

RabbitMQ (2019). Understanding rabbitmq. URL: rab-
bitmq.com, accessed 2019-12-17.

S. Kaisler, F. Armour, J. A. Espinosa, and W. Money
(2013). Big data: Issues and challenges moving for-
ward. In 2013 46th Hawaii Int. Conf. on System Sci.,
pages 995-1004.

Sindhu, C. S. and Hegde, N. P. (2017). Handling com-
plex heterogeneous healthcare big data. Int. Journal
of Computational Intelligence Research, 13(5):1201—
1227.

Stucke, M. E. and Grunes, A. P. (2016). Big data and com-
petition policy. Oxford University Press, Oxford, 1st
edition edition.

Tanenbaum, A. S. and van Steen, M. (2007). Distributed
Systems: Principles and Paradigms. Pearson Prentice
Hall, Upper Saddle River, NJ, 2 edition.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D.,
Tune, E., and Wilkes, J. (2015). Large-scale clus-
ter management at google with borg. In Proceedings
of the Tenth European Conf. on Computer Systems,
page 18.

Volk, M., Staegemann, D., Pohl, M., and Turowski, K.
(2019). Challenging big data engineering: Positioning
of current and future development. In Proceedings of
the 4th Int. Conf. on Internet of Things, Big Data and
Security, pages 351-358. SCITEPRESS - Science and
Technology Publications.

Y. Demchenko, P. Grosso, C. de Laat, and P. Membrey
(2013). Addressing big data issues in scientific data
infrastructure. In 2013 Int. Conf. on Collaboration
Technologies and Systems (CTS), pages 48-55.

