
Analysis of Tools for REST Contract Specification in Swagger/OpenAPI

Jéssica Soares Dos Santos a, Leonardo Guerreiro Azevedo, Elton F. S. Soares, Raphael M. Thiago
and Viviane T. Silva

IBM Research, Pasteur Ave, 146, Rio de Janeiro, Brazil

Keywords: REST Services, REST Contracts, REST APIs, Swagger, OpenAPI.

Abstract: REST is a resource-based architectural style that has emerged as a promising way for designing Web services.
A REST API exposes services’ functionalities through a contract that allows consumption by different clients.
The contract specifies service’s request and response schemes and related rules the service and the client should
comply with. The process of documenting and keeping an API consistent is a time consuming human effort.
The documentation should reflect the implementation which may evolve. This work compares different tools
for REST APIs specifications. We focused on tools that automatically generate Swagger (Open API in version
3.0), a specification for designing REST APIs. We evaluated the tools using a set of criteria whose results may
help software engineers to choose the most appropriate tool, and point out gaps for research initiatives.

1 INTRODUCTION

The design of an Application Programming Interface
(API) creates its contract (the API specification) (San-
tos et al., 2019), i.e., its functionalities, the commu-
nication protocol, input and output parameters, data
format and endpoints (De, 2017).

The Representational State Transfer
(REST) (Fielding and Taylor, 2000) is an archi-
tectural style designed to address the properties for a
modern Web architecture. REST style defines a set
of constraints/principles that services must follow in
order to achieve usability, simplicity, scalability, and
extensibility (Li and Chou, 2011).

The REST APIs have established a means for real-
izing distributed systems (Haupt et al., 2017); hence,
it entails the importance of documenting REST APIs
in a proper way (Li and Chou, 2011). Keeping an API
documentation/contract aligned with the implementa-
tion is a challenging task due to services frequent up-
date (De, 2017). It is still an open issue how to im-
prove API design (Haupt et al., 2017), and one way
towards this is the use of tools for API contract gen-
eration during API development (Santos et al., 2019).

There are two approaches for documenting APIs
(Varga, 2016): (i) bottom-up or contract-last; (ii) top–
down or contract-first. The former consists in gen-
erating the contract from the code, i.e., first the

a https://orcid.org/0000-0001-5082-4583

code is implemented and then the contract is cre-
ated/generated, e.g., marking up the code with annota-
tions and generating the API contract based on them.
The latter creates the API documentation/contract be-
fore writing the service code. Several specifications
have been proposed for specifying REST contracts,
such as: Swagger (or OpenAPI in its third version)1,
WADL2, WSDL2.03, and API Blueprint4.

Swagger is the most popular language for spec-
ifying REST contracts (Tsouroplis et al., 2015), it
provides development tools, and it can be used for
bottom-up or top-down contract specification.

This work aims at exploring tools that automat-
ically generate contract specification. Technically, it
provides a description and a comparison of tools; help
software designers to identify relevant characteristics
to be considered when looking for a tool to document
REST services. Academically, it presents a back-
ground for one (starting) working in the area; point
out gaps for future researches.

The remainder of this work is organized as fol-
lows. Section 2 and Section 3 present background and
related work. Section 4 describes the tools, and Sec-
tion 5 compares them. Finally, Section 6 concludes
and points out future work.

1http://swagger.io
2https://www.w3.org/Submission/wadl/
3https://www.w3.org/TR/2007/REC-wsdl20-20070626
4http://raml.org

Santos, J., Azevedo, L., Soares, E., Thiago, R. and Silva, V.
Analysis of Tools for REST Contract Specification in Swagger/OpenAPI.
DOI: 10.5220/0009381202010208
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 201-208
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

201



2 BACKGROUND

RESTful services must follow six main principles
(Varanasi and Belida, 2015), (Fielding and Taylor,
2000): (i) Clear separation of client and server con-
cerns; (ii) Stateless communication; (iii) Server re-
sponses must be declared if are cacheable; (iv) Ser-
vices should have a uniform interface; (v) Intermedi-
ate layers of software or hardware can be introduced
between client and server; (vi) Client may download
code from server and execute it.

2.1 REST API

An API provides a set of functionalities, their descrip-
tions and dictates the rules for using them. APIs are
responsible for opening a system/set of services for
a broader audience and can make integration easier
(Preibisch, 2018).

A process for service implementation (and con-
tract design) may be composed by the following
steps (Josuttis, 2007) (Figure 15):

1. Create a requirement sketch: e.g., in pseudocode,
sequence diagram or use case description aiming
at understanding the business needs;

2. Create a specification of the service: e.g., an UML
design model or a Swagger specification;

3. Search for potential services, i.e., existing ser-
vices that may fit the requirement, which may re-
sult in:

(a) A service that fits the new requirement, which
can be used directly, and the process ends;

(b) A service that partially fits the new require-
ment, which may be refactored - service clients
may be impacted;

(c) No service that matches the requirements; then,
a new service should be developed.

4. Search for existing type definitions to be used as
input/output parameters of the service. Types may
be created or changed.

Using a tool for contract specification may help
depending on the approach the tool supports (i.e.,
contract-first or contract-last). In the former, the ser-
vice contract may be created in Step 2 and used in the
search for potential service (Step 3) and the search for
types (Step 4). In the latter, a tool for contract genera-
tion creates it after the implementation is done; hence,
it does not help much the presented process.

A REST API should describe (Cao et al., 2017):
a base URL corresponding to a common prefix of

5The model was designed in a UML activity dia-
gram (Rumbaugh et al., 2004) model.

Figure 1: A Process for Service Implementation.

all other URLs that give access to the resources; a
path template describing how the base URL should
be completed to provide access to a given resource;
supported actions, i.e., HTTP methods; parameters
needed to each pair path template-method.

2.2 Swagger 2.0/OpenAPI

Swagger is a framework for documenting REST
APIs6. It has a large community of users and sup-
porters, and it can be written in JSON7 or in YAML8.

Swagger main elements are (OpenAPI initiative,
2018): (i) Swagger version; (ii) API title, version
and description; (iii) API server’s address; (iv) Paths
and available HTTP methods (POST, GET, PUT,
DELETE); (v) The operations’ request parameters
and responses; (vi) Possible return HTTP status code;
(vii) Type definitions (also called API models). In
December 2017, Swagger version was updated to
3.0 and renamed to OpenAPI Specification. Be-
yond structural changes, the main differences be-
tween Swagger 2.0 and 3.0 are: (i) Version property
changed to openapi; (ii) New keywords for schema
specification/validation, such as: oneOf, anyOf, not,
allOf ; (iii) Each endpoint may have several addresses;
(iv) Specification of links between resources follow-
ing HATEOAS; (v) Specification of examples.

6An example is presented at https://petstore.swagger.io/
v2/swagger.json.

7JavaScript Object Notation (https://www.json.org)
8YAML Ain’t Markup Language (http://yaml.org)

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

202



3 RELATED WORK

The majority of work compares existing specifica-
tion languages for documenting service contracts or
presents guidelines/recommendations to be followed
when developing service contracts. Our work differs
from them since we analyze tools for generation and
maintenance of REST contracts written in Swagger.

Wideberg (Wideberg, 2015) presented a compari-
son of different specification formats for REST con-
tracts, such as: Swagger, RAML, API Blueprint and
WADL. The work concluded that Swagger is the
specification language that most suits the desirable re-
quirements in enterprise environments and the spec-
ification language that has the most active commu-
nity, which is a good indicator of future support and
continuous development. Similarly, Surwase (Sur-
wase, 2016) analyzed the same specification lan-
guages from a developer’s perspective, and pointed
out that Swagger and RAML support many program-
ming languages adopted in the industry. Among the
dimensions used for comparing the specification lan-
guages, it was considered the output format that can
be generated (YAML, Markdown and JSON) by the
specifications and the companies that are the sponsors
of these languages.

Pritchard et al. (Pritchard et al., 2017) com-
pares the same languages that were considered by
(Wideberg, 2015) and (Surwase, 2016), but includ-
ing RESTCONF (Jethanandani, 2017) and WSDL 2.0
languages. They remark the objectives of each lan-
guage, compared their output format, and highlighted
their drawbacks and advantages. As Swagger advan-
tages, they pointed out, e.g.,: vast development docu-
mentation; good community support; the possibility
to be adopted by existing APIs; and, to be written in-
dependently of specific programming language. The
lack of API testing interaction is its main drawback.

Robillard (Robillard, 2009) investigated chal-
lenges that software developers can face when learn-
ing new APIs. He pointed out a set of guidelines that
API documentations must follow in order to be easy
to learn and use. These guidelines include: be com-
plete; present good examples; provide support to
complex usage scenarios; and, be conveniently or-
ganized. In the same sense, Espinha et al. (Espinha
et al., 2014), from interviews with developers, pro-
duced a set of recommendations API designers should
follow in order to reduce the impact API clients face
when the API evolves, such as: provide examples de-
scribing the usage of the new version functionalities;
and, adopt and execute blackout tests, which consists
in deactivating older versions of the API for short pe-
riods of time before deactivating it permanently.

4 TOOLS FOR SWAGGER
GENERATION

Many tools have been proposed as alternatives to fa-
cilitate the Swagger generation and maintenance. In
this section, we present a brief description of them.
Our goal is not to present and extensive list of all ex-
isting tools, but rather tools that represent different
perspectives of development, such as tools that gen-
erate code (and Swagger) from models, tools that al-
low generation of Swagger from code through annota-
tions, tools that work apart from code and model etc.
The tools were selected based on the following char-
acteristics: Availability for download; Adoption by
the industry; Provide documentation or usage exam-
ples that allows to understand their features.

4.1 Tools Provided by Swagger Project

The Swagger project provides three official open-
source tools:

1. Swagger Editor: an API Editor for designing
Swagger contracts. It can be downloaded and
used locally or can be accessed online9;

2. Swagger UI: It automatically generates an
HTML page from a Swagger specification, pro-
viding an interactive interface to visualize and test
Swagger specifications that can be accessed by the
Web Browser;

3. Swagger Codegen: it generates client and server
code from Swagger, e.g., in Java, Python and PHP.

4.2 Visual Paradigm

Visual Paradigm10 (VP) is a software engineering tool
for modeling/designing software. This tool focuses
on the Model Driven Development (MDD) (Pastor
et al., 2008) approach, which consists in generating
the software from the software model that specifies
how it should work instead of starting from writing
code. By using VP, it is possible to design a REST
API by designing class diagrams that describe REST
resources. The VP UML component called REST re-
source can be associated with a URI (resource iden-
tifier), request and response bodies (with HTTP sta-
tus), path parameters, and a method that specifies the
resource action.

The process of designing/documenting a RESTful
API is totally graphical. Given a UML class diagram
that describes REST service definitions, the VP API

9http://editor.swagger.io/
10https://www.visual-paradigm.com/

Analysis of Tools for REST Contract Specification in Swagger/OpenAPI

203



designer is able to automatically generate API defini-
tions in accordance with Swagger 2.0. Default UML
relationships can be defined between UML classes,
such as, inheritance, association, multiplicity. Addi-
tionally, it is possible to generate from the diagrams:
(i) the server code, which is the HTML code that
shows how the API should be consumed; and, (ii)
the client and servlet code, which corresponds to the
code for a client to consume an API service and the
code that a service provider should have to be able
to process a client request, respectively. Code can be
generated in programming languages like Java, An-
droid, Obj-C, JavaScript, C#, PHP, Perl, Python. Vi-
sual REST API designer is available in the Enterprise
and Professional editions of Visual Paradigm.

4.3 IBM Rational Software Architect
Designer

IBM Rational Software Architect11 (RSA) Designer
is a MDD software engineering tool for the develop-
ment and design of applications and Web services.

RSA supports the generation of Swagger from
UML diagrams and provides also some kinds of trans-
formations that convert Swagger specifications into
REST models (i.e., reverse engineering). In this way,
it is possible to load and visualize existing Swagger
files in the form of UML diagrams.

RSA allows conversion of REST models into code
representing the skeleton of the service code, e.g., in
Java, NodeJS, C#. It supports only Swagger 2.0.

4.4 Typson

The Typson12 library converts Typescript definitions
to JSON-schemas which can be integrated with Swag-
ger definitions and referenced as input or output pa-
rameter types. It supports types, e.g., required prop-
erties, inheritance , and enumerations.

When Typson converts the Typescript definitions
to JSON-schemas, it discards the explicit inheritance
information, i.e., when a Typescript interface A ex-
tends an interface B, the attributes of B are copied to
A and the relationship between A and B is not main-
tained. The advantages of using Typson are: it pro-
vides the reuse of interfaces by different methods and
by other interfaces (when one interface extends an-
other one); the set of interfaces does not need to be
organized inside the same file; and, the API docu-
mentation is coupled with a Typescript code but the

11https://www.ibm.com/us-en/marketplace/rational-soft
ware-architect-designer

12https://github.com/lbovet/typson

service code is not coupled with any specific program-
ming language. It also may help the integration with
UI (User Interface) programming when both UI and
services use the same type. Typson supports Swagger
2.0 and is available as a Node.js module.

4.5 Flask-RESTPlus

Flask RESTPlus13 is an extension of Flask, a frame-
work for developing Python applications. The REST
documentation is generated based on a set of prede-
fined decorators that are used to relate a method to
an endpoint, input and output parameters. By default,
Flask-RESTPlus generates automatically Swagger UI
documentation. Method responses are specified with
the decorator @api.response. Flask-RESTPlus has
a builtin mechanism to validate request data. By
importing reqparse, one can associate a parame-
ter with a primitive type (for instance, type int).
The reqparse provides a RequestParser that is able
to show error messages by itself. Flask-RESTPlus
also allows the definition of API models with the
api.model, which represents type definitions, i.e., ob-
jects with a set of attributes that can be passed as
the payload of the method (input or output param-
eters). The types, descriptions, and other informa-
tion (e.g., attribute required or not) about attributes
of an object can be specified when importing fields
from flask restplus. Inheritance can be speci-
fied between API models of the Flask-RESTPlus and
API models can be nested inside existing models.
Additionally, models can be extended by using the
api.inherit() method.

4.6 Flasgger

Flasgger14,15 is a Flask extension that is able to ex-
tract Swagger from Flask code. Flasgger provides an
interactive API documentation. Swagger is generated
based on decorators and docstrings that should be put
inside the service code. The decorators are used to
define the routes @app.route, which inform the path
of the service endpoints and the HTTP methods that
represents the operations. The docstrings are used to
define input/output parameters, type definitions and
responses. Flasgger allows specifications be defined
in an external Swagger file and related to the code us-
ing an specific decorator called (swag from) or a doc-
string file shortcut. Flasgger is totally compatible with
the generation of Swagger 2.0 and previous versions.

13https://github.com/noirbizarre/flask-restplus
14https://github.com/rochacbruno/flasgger
15http://flasgger.pythonanywhere.com

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

204



Documentations states OpenAPI is also supported but
we did not find examples showing this.

4.7 Flask-Restful-Swagger

The Flask-Restful-Swagger16 supports Swagger by
wrapping the API instance and including decorators
in a Python code. It provides a swagger generator
and a graphical interface of the services that are ex-
posed. The decorator @swagger.operation is respon-
sible for defining an operation with a set of parame-
ters and response (e.g., datatype, multiplicity, name,
description). Methods that are not decorated with
@swagger.operation are not added to Swagger doc-
umentation as operations. Classes can be decorated
with @swagger.model in order to represent a Swag-
ger type definition. Instead of using the decorator
@swagger.model, it is also possible to use the dec-
orator @marshal with passing the class to define a
Swagger type definition. Additionally, metadata can
be passed to the Swagger by creating a swagger.docs
file containing the description of the endpoints, api
version, base path and so on.

4.8 Spring MVC REST API

Spring17 is a Java framework that can be used
to build Web applications following the Model-
View-Controller (MVC) architectural pattern (Sha-
ran, 2015). Spring MVC provides many advantages,
such as dependency injection model18 and modules to
facilitate data access.

The REST API support was introduced in Spring
3.0. The Spring MVC REST API19 is able to generate
a Swagger specification based on a set of predefined
annotations that should be included in the Java code.
First of all, a Swagger configuration should be defined
for the Java project in a XML file. REST endpoints
are defined by annotating classes with the @Api anno-
tation. The annotators are: (i) @Api: indicates a class
as a Swagger class; (ii) @ApiOperation: indicates the
responsibility of the method; (iii) @ApiParam: cor-
responds to the parameter that the method is expect-
ing and can be associated with its name, value, de-
scription and a flag; (iv) @ApiResponse: represents
the response; and, (v) @ApiModel: used to define a
Swagger type definition. In order to accelerate the
code documentation, there are tools that generate doc-
umentation from code. The Springfox20 has this pur-

16https://github.com/andyzt/flask-restful-swagger
17https://spring.io/
18http://martinfowler.com/articles/injection.html
19https://spring.io/projects/spring-restdocs
20http://springfox.github.io/springfox

pose. It is a suite of Java libraries that generates speci-
fications for JSON APIs written using the Spring fam-
ily of projects. Springfox examines an application at
runtime and infers semantics based on Spring config-
urations, class structures and compile time Java An-
notations. It generates specifications such as Swag-
ger, RAML and jsonapi. It has the goal to discourage
using (swagger-core) annotations that are not used
at runtime. It provides options to configure general
characteristics, and one has to use swagger-core an-
notations when a specific documentation is needed.
Hence, it does not replace the annotation use although
it speeds up the documentation process. Therefore,
we evaluated, in this work, the Spring MVC which is
more general.

4.9 Swagger PHP

The Swagger PHP tool21 scans a PHP project and
merge all annotations in order to generate a Swag-
ger file. A Swagger POST operation is defined
by including the @SWG\Post annotation. Simi-
larly, there are equivalent annotations for other HTTP
methods (GET, PUT, DELETE). Inside an annota-
tion of an operation, it is possible to inform the path,
the id of the operation and the operation descrip-
tion. Additionally, Swagger PHP provides an anno-
tation called @SWG\Info to define the description
and version of the API. @SWG\Parameter should
be nested inside an annotation of operation and in-
dicates the parameter type, description and if it is re-
quired or not. The annotation @SWG\Response rep-
resents the operation response and defines the sta-
tus, the description and the type. Responses also
should be nested inside an annotation of operation.
Type definitions can be specified using the annota-
tion @SWG\Definition. Definitions can be referenced
with the annotation @SWG\Schema. In this way,
these definitions can be referenced and reused in dif-
ferent parts of the code. The keyword allOf can be put
inside a @SWG\Definition in order to create a combi-
nation of definitions. The documentation of Swagger
PHP states that it is able to generate Swagger in the
most recent version, i.e., Swagger (Open API) 3.0 and
already can deal with anyOf and oneOf keywords.
However, there is a lack of examples involving an-
notations that generate Swagger 3.0. The majority of
annotations to generate Swagger 3.0 are similar to the
annotations for generating Swagger 2.0, but the prefix
@SWG is replaced by the prefix @OA.

21https://github.com/zircote/swagger-php

Analysis of Tools for REST Contract Specification in Swagger/OpenAPI

205



5 COMPARATIVE ANALYSIS

This section presents a comparative analysis of the
tools. The evaluation criteria are presented in Ta-
ble 1. They were defined according to what a tool
should support to create contracts with the formal-
ism required by service development initiatives as
proposed by OpenAPI project (OpenAPI initiative,
2018). Besides, we added criteria MDD support and
the approach (contract-first or a contract-last).

Table 1: Comparison criteria.

Description
1 Ability to generate Swagger automatically
2 Ability to generate client or server code
3 Ability to generate UI documentation
4 Model Driven Development approach
5 Support to inheritance, reuse and validation
6 Low coupling with service code
7 Ability to check Swagger version syntax
8 Support to OpenAPI (Swagger version 3)
9 Contract-first or contract-last approach

Table 2 presents the evaluation. Criteria 7, 8 and 9 are
not mentioned in Table 2 due to space limitations for
the table presentation. However, a discussion about
all criteria is presented as follows.
Criterion 1: Swagger codegen and Swagger UI are
not able to generate Swagger specification file. Al-
though the Swagger editor tool also does not present
means to automatize Swagger generation, it can fa-
cilitate the manual creation of the Swagger specifi-
cation file because it presents Swagger examples and
can receive as input a Swagger specification and in-
form if its syntax is correct according to the Swagger
version, highlighting errors. Typson tool is able to
generate API models (definitions) using Typescript,
but the information about the endpoints (e.g., input
and output parameters) has to be provided manually
inside the Swagger file (in JSON or YAML). In Table
2, the sixth column (Based on) indicates the way that
the tools whose column Generate Swagger is (X) use
to address Criterion 1.
Criterion 2: VP and Swagger codegen present the
ability to generate server and client code, the IBM
RSA can only generate server code. In Table 2, the
column Based on indicates the way the tool which
column Generate Client Code or Generate Server
Code marked with (X) use to address Criterion 2.
Criterion 3: An UI allows users to visualize the
resources/operations that are available, the expected
input parameters and responses, and try out the in-
vocation of different operations on the resources.
VP, Flask-RESTPlus, Flask-Restful-Swagger, Flasg-
ger and Swagger UI can generate an HTML page

based code exposing the interface of the services. Ap-
proaches that do not provide the generation of a spe-
cific UI Documentation can be combined with the
Swagger UI official tool as is the case of, e.g., Typ-
son, Swagger PHP and Spring MVC REST API. In
Table 2, the column Based on indicates the way that
the tool which column Generate UI Documentation is
marked with (X) use to address Criterion 3.
Criterion 4: VP and IBM RSA are based on the
MDD approach, providing mechanisms to generate
Swagger from diagrams, and a graphical way to edit
and visualize the Swagger specifications and Swag-
ger type definitions (API models). In this approach,
it is not required that service contract designers have
programming abilities. Additionally, IBM RSA is the
only one that can directly load existing Swagger spec-
ifications into UML diagrams – reverse engineering.
Criterion 5: Swagger definitions are objects that can
be referenced as input and output parameters of oper-
ations. In Table 2, the column API Model Inheritance
shows that, by using Flasgger and Swagger Editor, it
is possible to associate a definition using a keyword
(e.g., allOf ). In VP and IBM RSA the inheritance
is represented using inheritance UML relationships.
The column API model Reuse corresponds to the abil-
ity to reference an API model inside another one or in
different operations. The column Validate Input Data
exhibits whether the approach provide own mecha-
nisms for validating input data against Swagger spec-
ification. E.g., Flask-RESTPlus provides reqparse li-
brary for that.
Criterion 6: Flask-RESTPlus, Flask-Restful-
Swagger, Spring MVC Rest API and Swagger
PHP, generates specifications based on annota-
tions/decorators provided inside the service code.
Flasgger generates the specification based on
docstrings inside the code. Although annota-
tions/docstrings can be defined before the complete
implementation of the service, they need to be put
inside the service code. Therefore, VP, IBM RSA
and Typson are the only tools that automatize the
Swagger generation and Swagger Editor allows the
edition of the contract decoupled form the code.
They are completely independent of the technology
that will be used to implement the services, i.e.,
they can be adopted by software groups that desire
to implement services in different programming
languages.
Criterion 7: Swagger editor is the only tool that is
able to verify whether a Swagger specification is in
accordance with the syntax of a given Swagger ver-
sion. This feature can be very helpful to the ones that
want to edit parts of the REST APIs manually.
Criterion 8: Only the official tools (Swagger code-

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

206



Table 2: Tools Analysis Summary.
Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 Criterion 6

Tool Generate
Swagger

Generate
Client
Code

Generate
Server Code

Generate
UI

Documentation
Based on Generate Swagger

from Model
Generate Model
from Swagger

API Model
Inheritance

API Model
Reuse

Validate Input
Data

Low Coupling
with Service

Code
VP X X X X UML Diagram X UML Relationship X X
IBM RSA X X UML Diagram X X UML Relationship X X
Flask-RESTPlus X X Decorators Method X X
Flask-RESTful-Swagger X X Decorators Decorator X

Flasgger X X
Decorators
Docstring

Swagger
keyword X X

Swagger editor Swagger
keyword X

Swagger codegen X X
Swagger

specification

Swagger UI X
Swagger

specification X

Spring MVC REST API X Annotations Annotation X X

Typson X
Typescript
definitions

Typescript
keyword X X

Swagger PHP X X Annotations Annotation X

gen, Swagger UI and Swagger Editor), Flasgger and
the Swagger PHP support the current version of
Swagger 3.0 (OpenAPI). However, it is not clear in
the documentation of Flasgger and Swagger PHP if
they support all new features of the Swagger 3.0.
Criterion 9: All tools based on annotating the code
follow contract-last approach. Swagger Editor is a
tool for creating the contract; therefore, it may be used
on a contract-first approach. MDD tools (like VP and
IBM RSA) generates code from model; hence, they
are contract-first tools since the contract is defined by
the model. These tools support better the process for
service contract design (Figure 1).

6 CONCLUSIONS

The REST architectural style has become a popu-
lar approach for development in Service-Oriented Ar-
chitecture (SOA) and in Microservice Architecture
(MSA), in which applications are organized into sev-
eral independent services (Newman, 2015). REST
style is centered in the idea of transferring data (re-
sources) through the use of HTTP methods in a state-
less way, and defines a set of desirable principles/
good practices to be followed when building modern
Web Services. Systems based on REST style can ex-
pose their services to be consumed via REST APIs.

Several specification languages have been pro-
posed to document REST services. In this research,
we focused on Swagger since it is: the most popular
framework for documenting REST APIs (Tsouroplis
et al., 2015); the language that most suits the desir-
able requirements in enterprise environments (Wide-
berg, 2015); and, highly adopted in the industry
(Scherer, 2016). Many tools have been proposed to
facilitate the creation and maintenance of Swagger
specifications.

In this work, we surveyed the literature in order
to find tools that generate Swagger specification, and
analyzed them considering their adherence to a set

of criteria the Swagger project presents as the advan-
tages of using such specification and the best fit to a
process for contract development.

The results of our comparative analysis are use-
ful to understand the features provided by each tool
and can help one to combine different tools. As
an example, Flasgger and Swagger UI can be com-
bined to obtain the UI documentation together with
the Swagger specification file. Additionally, existing
Swagger specification files generated by tools such as,
Flasgger or Typson, can be loaded into the IBM RSA
tool in order to achieve the graphical management of
REST contracts, what can facilitate the understanding
or refactoring of existing service specifications.

MDD tools best support the process for contract
development; however, they may not fit all the crite-
ria for service development. E.g., the Visual Paradigm
meets almost all criteria except input data validation,
while IBM RSA does not meet this criterion besides
does not generate client code and neither UI docu-
mentation.

The tools provided by the Swagger Project lack
for one that generates the contract from a model, i.e.,
a more abstract representation. The initiative could
handle this feature in a new tool or researchers could
study the combination of existing tools and the Swag-
ger project tools to support it.

The tools based on annotations or decorators do
not generate client code nor Swagger specification,
which they could support in new versions. They could
also support the creation of the annotations out of the
code in order to reduce this coupling (Criterion 6).

The automatic validation of input data against the
types and definitions presented in the Swagger spec-
ification is a feature that should be better explored in
future tools. The automatic validation of input data
is a crucial factor due to security issues (Sudhakar,
2011). Also, we have identified a lack of tools that
provide support to Swagger 3.0 (OpenAPI). Further-
more, considering the few tools that support it, there
is still a lack of examples illustrating their usage in-

Analysis of Tools for REST Contract Specification in Swagger/OpenAPI

207



volving specific Swagger 3.0 features.
As other future work, we propose empirical eval-

uation of the contract-first tools to the process for
contract specification (Figure 1) and investigate how
contract-last tools could also support some of that
process activities. In other words, how the tools may
speed up and improve the quality of contract specifi-
cation.

This work was a survey based on documentation
analysis; so, as future work, we intend to check our
findings by performing case studies using the tools in
practice.

Another direction of future work would be eval-
uate the documentation as a whole, and not only the
contract specification, and its use in the development
lifecycle. It would include also other tools like Post-
man22.

ACKNOWLEDGEMENT

This project was executed under the Brazilian Na-
tional Petroleum Agency (ANP) R&D incentive reg-
ulatory framework.

REFERENCES

Cao, H., Falleri, J.-R., and Blanc, X. (2017). Auto-
mated Generation of REST API Specification from
Plain HTML Documentation. In International Con-
ference on Service-Oriented Computing, pages 453–
461. Springer.

De, B. (2017). API Management: An Architect’s Guide to
Developing and Managing APIs for Your Organiza-
tion - API Documentation, pages 59–80. Apress.

Espinha, T., Zaidman, A., and Gross, H.-G. (2014). Web
API growing pains: Stories from client developers
and their code. In IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineer-
ing (CSMR-WCRE), pages 84–93.

Fielding, R. T. and Taylor, R. N. (2000). Architectural
styles and the design of network-based software ar-
chitectures, volume 7. University of California, Irvine
Doctoral dissertation.

Haupt, F., Leymann, F., Scherer, A., and Vukojevic-Haupt,
K. (2017). A framework for the structural analysis of
REST APIs. In Software Architecture (ICSA), 2017
IEEE International Conference on, pages 55–58.

Jethanandani, M. (2017). Yang, netconf, restconf: What is
this all about and how is it used for multi-layer net-
works. In Optical Fiber Communication Conference,
pages W1D–1. Optical Society of America.

Josuttis, N. M. (2007). SOA in practice: the art of dis-
tributed system design. “’Reilly Media, Inc”.

22https://www.postman.com/

Li, L. and Chou, W. (2011). Design and describe REST API
without violating REST: A Petri net based approach.
In 2011 IEEE International Conference on Web Ser-
vices (ICWS), pages 508–515. IEEE.

Newman, S. (2015). Building microservices: designing
fine-grained systems. “O’Reilly Media, Inc.”.

OpenAPI initiative (2018). OpenAPI Specification.
https://github.com/oai/openapi-specification/blob/
master/versions/3.0.1.md.

Pastor, O., España, S., Panach, J. I., and Aquino, N.
(2008). Model-driven development. Informatik-
Spektrum, 31(5):394–407.

Preibisch, S. (2018). API Design. In API Development,
pages 41–60. Springer.

Pritchard, S. W., Malekian, R., Hancke, G. P., and Abu-
Mahfouz, A. M. (2017). Improving northbound inter-
face communication in SDWSN. In I Annual Confer-
ence of the IEEE Industrial Electronics Society, pages
8361–8366. IEEE.

Robillard, M. P. (2009). What makes APIs hard to learn?
Answers from developers. IEEE software, 26(6):27–
34.

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Uni-
fied Modeling Language Reference Manual, The (2Nd
Edition). Pearson Higher Education.

Santos, R., Pereira, I., and Azevedo, I. (2019). Dynamic
Generation of Documentation, Code, and Tests for a
Digital Marketing Platform’s API. In Code Gener-
ation, Analysis Tools, and Testing for Quality, pages
1–35. IGI Global.

Scherer, A. (2016). Description languages for REST APIs-
state of the art, comparison, and transformation. Mas-
ter’s thesis, University of Stuttgart, Germany.

Sharan, K. (2015). Model-view-controller pattern. In Learn
JavaFX 8, pages 419–434. Springer.

Sudhakar, A. (2011). Techniques for securing rest. CA
Technology Exchange, 1:32–40.

Surwase, V. (2016). REST API Modeling Languages-A De-
veloper’s Perspective. International Journal of Sci-
ence Technology & Engineering, 2(10):634–637.

Tsouroplis, R., Petychakis, M., Alvertis, I., Biliri, E., and
Askounis, D. (2015). Community-based API Builder
to manage APIs and their connections with Cloud-
based Services. In CAiSE Forum, pages 17–23.

Varanasi, B. and Belida, S. (2015). Introduction to REST,
pages 1–13. Apress, Berkeley, CA.

Varga, E. (2016). Documenting REST APIs. In Creating
Maintainable APIs, pages 143–157. Springer.

Wideberg, R. (2015). Restful services in an enterprise en-
vironment - a comparative case study of specification
formats and HATEOAS. Master’s thesis, Royal Insti-
tute of Technology, Stockholm, Sweden.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

208


