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Abstract: The importance of machine learning (ML) methods has been increasing in recent years. This is also the reason 
why ML processes in production are becoming more and more widespread. Our objective is to develop a ML 
aided approach supporting production quality. To get an overview, we describe the manufacturing domain 
and use a visualization to explain the typical structure of a production line. Within this section we illustrate 
and explain the as-is process to eliminate an error in the production line. Afterwards, we describe a careful 
analysis of requirements and challenges for a ML system in this context. A basic idea of the system is the 
definition of product testing meta data and the exploitation of this knowledge inside the ML system. Also, we 
define a to-be process with ML system assistance for checking production errors. For this purpose, we 
describe the associated actors and tasks as well.  

1 INTRODUCTION 

Machine learning (ML) systems have already 
successfully been used to predict outcomes in 
production (Hirsch et al., 2019; Wang et al., 2018; 
Wu et al., 2017). In 2035, ML is going to have the 
biggest impact for manufacturing (Mehta and Hamke, 
2019). Currently, only 12 percent of companies 
operating in the sector of manufacturing use ML for 
their production (Stübinger, 2019). Numerous use 
cases for various aims are possible. One promising 
area is the evaluation of test data from quality 
management in production. It is a widespread best 
practice for companies to test the results of 
production steps, record these data and evaluate them. 
When products are getting complex, many features of 
parts are tested quite early in the production process. 
Additional, information about the production status is 
tracked, which represent if a test could be 
successfully passed. However, due to the inherent 
complexity of the manufacturing process, it is a 
challenge to determine the relation between 
intermediate measurements and the resulting product 
quality. It is the task of quality management and 
engineering to find suitable thresholds for evaluating 

test data and to balance between too restrictive and 
too permissive test models. ML has a high potential 
to support these activities in order to detect errors as 
early as possible. PREFERML (Proactive Error 
Avoidance in Production through Machine Learning) 
(Ziekow et al., 2019) is a project that investigates 
challenges and holistic system solutions in this 
context. Such an integrated ML and quality system 
changes the roles of quality engineers and data 
scientists. The objective is to minimize the need of a 
data scientist or a machine learning expert who 
provides individual script solutions for products. A 
quality engineer should be able to overtake most of 
the tasks of a data scientist and work effortless with 
the ML system. The ML system should be reusable 
for all products and simple to handle for non-experts. 
In this paper, we present a reference model for a 
corresponding solution. The developed reference 
model is based on an industrial case study, which we 
use to validate our general requirements. Moreover, 
we focus on these requirements and their successful 
use towards an effective implementation of an ML 
system. These requirements were captured during 
multiple requirements workshops with domain 
experts from the manufacturer SICK AG (SICK AG, 
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Figure 1: As-is process. 

2019). The experts represented the roles of product 
owner and developer of the existing quality 
management system, data scientist and quality 
engineer. On the other side, the current knowledge 
about machine learning influences the requirements 
as well. In addition to the above-mentioned points, we 
illustrate the as-is process of a quality engineer who 
resolves detected errors in the production line. 
Building on the as-is process we introduce a to-be 
process, which illustrates the adjusted procedure in 
combination with several actors and ML support. 

The paper is organized as follows: Section 2 
describes the production environment. In section 3 we 
provide an overview of similar projects or 
applications in production. Section 4 summarize our 
recorded general requirements. Section 5 is dedicated 
for the extended tasks of the actors. In section 6 we 
describe our developed to-be process. In section 7 we 
validate our general requirements and name the 
benefits of the to-be process. Section 8 is a summary 
of our work and concludes this paper. 

2 DOMAIN DESCRIPTION 

In this section, we describe the manufacturing domain 
and shed light on challenges, especially for the 
production line.  

In Figure 1 we explain the standard procedure, 
how a quality engineer investigates a defect or cause 
of error. As can be seen in Figure 1, the error 
investigation can be done on a high level or can be 
further split in little steps to specify the detailed 
diagnosis. In this procedure, the quality engineer is 
the main actor and is supported by the test system. 
First, the quality engineer must get the data of the 
specific product from a data source and verify that the 
data is in fact about the correct product (T1). In the 
next step, the data must be rated for the quality and 
characteristics. To gain more knowledge about the 
product, the production team can be consulted for 
individual questions (T2). One point that should not 
be ignored is the production environment. The test 
results can be influenced for example by the 

temperature of the production facility. Another point 
could be the time of the day, which correlates 
indirectly to interesting features (e.g. the sunshine 
angle in the production environment) (T3). As an 
optional step, a quality engineer can use related 
product information. If the product belongs to a 
product family, there is a chance to find related 
problems or even better, the error solutions (O1). 
Therefore, the insight of the potential error solution 
should be also considered in T4. Next, the quality 
engineer has to identify the error cause. Mathematical 
tools with classical statistical functions are used in 
this step to find general relationships or correlations 
(T4). Optionally, the test specifications for the 
specific error group can be adjusted to improve the 
search for the cause of error (O2). The test system 
tests a product with the adjusted settings to verify 
their correctness (O3). In the last step, part design or 
production processes are improved. In this regard the 
quality engineer cooperates with industrial engineers 
and design engineers (these classical business 
processes beyond ML and QM are not included in 
Figure 1) (T5). 

 

Figure 2: Production Line. 

Figure 2 illustrates a typical production line in 
manufacturing. There are multiple test stations over 
multiple production lines to control the measurements 
of the product. These are connected to a Product 
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Quality Management (PQM) to ensure the quality of 
the products. The PQM is the central point to store the 
measurements of all products in the production. The 
product is built up step by step in the production line. 
Dependent on the product design, the production can 
comprise assembly of multiple parts and or 
modification of parts. Every test station checks, if the 
measurements of the product are good enough to 
continue. In some cases, it is possible that a product 
can pass a sub-test but fail in the final test. Normally, 
the defective product part will be taken out from the 
production line and get repaired in a separate station. 
In the worst case, the built product is identified as a 
failure and must be discarded. In any case, to reduce 
corrupted parts in the product, we must set focus on 
recognising errors more precisely. Understanding the 
manufacturing environment is crucial to any ML 
approach. There are various manufacturing process 
variables to consider, like the number of the 
production lines, or the nature and number of steps in 
one line. A product can have various types and 
versions as well as different number of components 
and building steps (Hu et al., 2008). We should take 
into consideration that not all production steps are 
automated and the human influence of workers in 
production facilities. The manual production steps 
can notably impact the final product. In our scenario, 
we have multiple production lines in which multiple 
product types of a product family are built in various 
versions. If the system recognizes a measuring error, 
the product gets checked separately and repaired, if 
needed. The repaired product is inserted into a 
previous production step and for the sake of 
correctness, the repaired product is tested again.  

For our case study we are working together with 
the company SICK AG, which is a manufacturer of 
intelligent sensors and sensor solutions for factories, 
logistics and process automation. State of the art 
assembly lines are used by SICK AG to produce 
various products  

3 RELATED WORK 

In this section we discuss other ML approaches and 
how our developed requirements complement and/or 
differentiate them. 

One of the earliest papers (Monostori et al., 1996) 
provides us with a broad overview of ML techniques. 
Learning approaches get rated based on 
manufacturing requirements and a list of application 
domains get provided. Furthermore, applications in 
manufacturing are grouped by these application 
domains and the ML approaches for these are 

described. We give a general description of the 
necessary requirements for an ML assisted approach 
on a real industrial use case. 

(Wang et al., 2018) describe methods and 
applications for smart manufacturing. They mention 
deep learning methods and shows, where deep 
learning can be used. It sheds a light on the area of 
diagnostic analytics for fault assessment or predictive 
analytics for defect prognosis; In both areas ML 
methods and use cases are mentioned. At the end, it 
starts a discussion and gives an outlook of model 
selection, generic model, model visualization and 
data. In this paper, no requirements are described to 
implement an ML system for production; here we can 
fill this gap with our paper. 

(Wu et al., 2017) show the results of an ML 
algorithm comparison in a smart manufacturing 
environment and gives a detailed experimental setup. 
In this paper, we find a lack of information about the 
necessary requirements to implement a ML system 
and it describes only an experiment. 

Advantages, challenges and applications of ML 
for the use in manufacturing can be found in (Wuest 
et al., 2018). It also gives an overview of the key 
challenges in the field of manufacturing. Here we get 
a detailed list of manufacturing requirements, based 
on the use of ML methods. To be more precise, the 
abilities of a ML algorithm are described and not the 
requirements to implement a ML system. In our 
paper, we mention the general requirements to 
implement a ML aided approach. Furthermore, we 
include the to-be process to improve the error 
detection in the production. 

(Stanisavljevic and Spitzer, 2016) give us a broad 
overview of some published papers on machine 
learning in manufacturing. Further, use cases like 
(Wu and Ni, 2011) for machine learning especially 
for automated assembly lines are mentioned. The 
most interesting part of this paper is that the author 
describes requirements, which have to be fulfilled in 
order to be applicable in manufacturing. The authors 
reference (Pham and Afify, 2005) and describe the 
following: 1) Handling different types of data 
(numerical, textual, images etc.). 2) Dealing with 
noise and outliers in data. 3) Real-time processing. 4) 
Dealing with huge datasets and/or high dimensional 
datasets. In our use case, it is not crucial to provide a 
real-time processing. We set our focus on more 
general requirements. 

A specific use case for machine learning can be 
addressed for the area of semiconductor 
manufacturing. (Susto et al., 2012) show four detailed 
main challenges, which are partly described and 
originally from (Susto and Beghi, 2013). The 
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mentioned challenges can be successfully solved, by 
using our recommended reference process model or 
by using the Product Testing Meta Model (PTMD) 
like shown in Figure 4. For example, (Susto et al., 
2012) address high dimensionality data. We can solve 
this problem with our to-be process from section 6. In 
the recommended to-be process we automatically 
reduce unnecessary high dimensionality data and 
provides only suitable data to train a ML model. 

The plan-do-check-act (PDCA) cycle is a 
continuous improvement process and contains four 
phases: Plan, Do, Check and Act (Johnson, 2002). 
The four phases can lead to new opportunities and 
potentials, which can be tested, implemented, 
controlled and discovered. This process is a potential 
way to improve the quality of a product and is well 
suited for quality managers. We accompany with our 
to-be process (illustrated in Figure 5) the product only 
within its life cycle (Levitt, 2014). Also, we do not 
provide a plan phase in our approach or separate our 
requirements in phases. Furthermore, we describe the 
general requirements that must be considered for an 
implementation. This could be a parallel to the do 
phase. Additionally, we extend our process with the 
help of ML and a specific actor. 

An overview of the life cycle of a data mining 
project is illustrated by the Cross Industry Standard 
Process for Data Mining (CRISP-DM). The CRISP-
DM visualized the phases of a project with their 
specific tasks. Further it shows the connection 
between these tasks (Chapman, 2000). The six phases 
of a CRISP-DM are: Business Understanding, Data 
Understanding, Data Preparation, Modelling, 
Evaluation, Deployment. The listed requirements 
from section 4 include all the phases of the CRISP-
DM and are phase-overlapping tasks towards an 
implementation. In particular, we use the phases of 
Business Understanding and Data Understanding. 
Further, we want to provide a generic 
implementation.  

Finally, it can be said that - while machine 
learning is used in different areas of production - there 
are hardly any recorded requirements for it. With this 
paper, we can close an identified gap and provide 
important prerequisites that are necessary for a 
successful implementation of a ML aided system. 
Also, we integrate the ML part and an additional actor 
to the as-is process (Figure 1). With these new 
components we created the to-be process (Figure 5). 
Furthermore, it can be said that we form an interface 
between the two processes CRISP-DM and PDCA-
Cycle and take a new direction with our approach. 

 
 

 

Figure 3: Use Case Environment. 

4 GENERAL REQUIREMENTS 
OF THE ML SYSTEM 

This section sheds light on general requirements for 
the ML system and explains the relationships to the 
environment, as can be seen in Figure 3. In this figure 
we show all systems and use cases in one summarized 
illustration. The oval circle represents all use cases 
within the rectangle, which represent the system. The 
lines indicate the persons or software involved in the 
use cases. The Test Systems forward their test results 
to the PQM and the PQM to the ML system. The meta 
data about product testing (PTMD) is a repository that 
directs the work of the ML System. PTMD contains 
information about products, production lines, testing, 
error types etc. Figure 4 is a simplified illustration of 
the PTMD and is described later in more detail. 
Moreover, human actors interact with the systems as 
data scientists and as quality engineers. The data 
scientist is responsible to control the ML system. The 
quality engineer uses the ML system for the analyzing 
part. Further, the quality engineer provides the 
background knowledge from production for the 
PTMD as long as it cannot be drawn automatically 
from other systems. Of course, the quality engineer 
keeps his access to the PQM. The ML system has to 
satisfy the following list of constraints and 
requirements: 
• To improve production the application predicts 

possible product errors as soon as possible. This is 
one of the basic objectives. It is based on the 
observation of quality management that further 
processing creates only unneeded costs (Colledani 
et al., 2014). Also, the results should be evaluated 
and documented for future comparisons.  

• A ML model should be understandable for the 
quality engineer. Without any explanations about 
the decision, it is problematic to trust these advises. 
At least, a ML model should give some hints how it 
made its decisions. Specifically, the application has 
to assist the identification of features and feature 
conditions that are related to the investigated errors. 
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It should visualize relationships between feature 
value distribution and errors. This requirement is 
strongly requested in interviews with quality 
engineers. New approaches concerning 
interpretable machine learning point out solutions 
and the general demand in data science (Molnar, 
2019). 

• The ML system must work with a variety of product 
lines and products. Every test system provides an 
unknown amount of data and data types. Moreover, 
to create an individual solution for every production 
step or test station would be greatly time consuming 
and inefficient. Additionally, the management and 
maintenance of a large amount of individual 
solutions is not advisable. Therefore, the concept of 
automatic machine learning (AutoML) (Quanming 
et al.,2018) is needed. But performance needs to be 
improved by guiding knowledge represented in the 
PTMD. 

• Production quality is in general very good. An ML 
system in this context must deal with low error rate 
and unbalanced biased class values as a 
consequence (Krawczyk, 2016). 

• A further problem is the machine learning 
knowledge gap for a quality engineer. Typically, a 
quality engineer has barely any knowledge to 
configure or even to tune an ML System. This 
makes the quality engineer dependent on the help of 
a data scientist. This is another reason why AutoML 
is important. 

• Concept drift has to be considered (Lu et al., 2018). 
It can happen that product features and production 
processes change over time. In this case the ML 
system should be able to monitor and to point out 
that the data changed. The quality engineer should 
be informed, and the ML model must be re-trained.  

• Cost sensitivity is a problem for a justifiably use of 
ML. Product parts are often expensive, because of 
this some correct predicted errors already are 
worthwhile to use a ML model. Taking out false 
positive parts is expensive, too. Therefore, a quality 
engineer has to define a profitable threshold, which 
represent the minimum rate to achieve. This is also 
supported by literature, e.g. (Thai-Nghe et al., 
2010). 

• Test data needs to be selected and prepared before 
the ML training and evaluation. In order to create a 
model that works over several production steps, the 
number of steps must first be determined. 
Afterwards, the measurements from the chosen 
production steps must be joined together and a ML 
model must be trained. The required join logic needs 
a representation in the PTMD. 

 

Figure 4: Product Testing Meta Data. 

The ML system requires the PTMD, which we 
illustrate in Figure 4 in a simplified presentation. The 
structure of the PTMD is divided into four parts. Each 
of these four parts represent a separate information 
section. The idea behind this model is to document 
important information about a product, to access them 
later. Also, it can be seen as a documentation structure 
for this information. Moreover, we need the PTMD to 
manage the ML system. With the PTMD we define 
e.g. the Data to select and prepare for the ML training. 
Consequently, this model helps to replace individual 
script solutions for products. The ML system can 
access the PTMD and get the required information to 
create datasets etc. In the Product section, we mention 
the specific product and relationships to other 
members of the product family (product variants). 
Information about the product type and product 
features must be stored in this section. Product 
features could be measurements from a specific test 
station or individual entries like function description 
of the product. Also, gained knowledge from human 
experts get stored in this section. The Product section 
is linked to the Test Specification and Production 
Line section. In the Production Line section, we 
describe the sequence of the test stations in the 
production. This sequence is important to analyse and 
identify the product errors. Moreover, with the test 
station we have a reference to the required features. 
In the Test System section are all test station 
mentioned for a product, which in turn are directly 
linked to the Test Specification and Production Line 
section. In the Test Specification section, the features 
and specific feature boundaries are stored, which 
represent the max and min value. This section is 
linked to the Product and Test System section. A 
quality engineer should be assigned to maintain the 
PTMD. Based on the background knowledge, a 
quality engineer can control the stored information 
and check them for correctness. The PTMD is well 
suited for an AutoML system as a knowledge base. 
The AutoML system would access the PTMD to get 
necessary information about the procedure to run. 
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Figure 5: To-be process. 

5 ACTORS 

In this section we will name the actors and explain 
their extended tasks in comparison to the as-is process 
(Figure 1). These actors will be later used for the to-
be process (Figure 5). 

QUALITY ENGINEER: The quality engineer 
monitors a wide variety of products in the production 
manufacturing process. Therefore, a quality engineer 
controls a product as part of its product life cycle, 
analyses product measurements and document the 
production process. To fulfil those tasks, a quality 
engineer must create the PTMD, which is filled with 
background knowledge about a specific product. He 
is also responsible for test specifications. With the 
prepared data in the PTMD, the quality engineer is 
ready to create a basic ML model. The ML model 
should help the quality engineer to identify error 
sources, within the context of e.g. product type, 
selected malfunctions, desired duration or test station. 
A quality engineer can select an error type or a group 
of error types and analyse them separately or together. 
As a result, the quality engineer should be able to 
identify the most important features (i.e. highest 
impact on the test result). This ranked feature list can 
later be used for more precise investigations. It is 
advisable, to analyse the highest ranked features. 
Moreover, suitable plots can be generated to 
investigate the malfunction causes. 2D scatter plots 
can be used to illustrate a value distribution of a 
feature along production time. This plot shows 
correct and fault product tests in the data and in which 
value range the errors occurred. A histogram is 
further visualization type to illustrate the error 
distribution. In a histogram, the feature values get 
grouped by a defined group size in the complete value 
range. With this illustration we can show statistically 
how many errors in a value range occurs. The 
absolute and relative number of errors should be used 
for the illustration. Additionally, a 3D plot can be 
used to show the correlations between two features. 
A quality engineer can identify correlations among 

the measurements and drop the irrelevant product 
features. The gained knowledge should be used to 
define new check rules to enhance the quality of the 
resulted product as well as to reduce the rate of 
malfunctions. A further task of the quality engineer is 
to point out anomalies in measurements. This task can 
be automatically performed by the ML system and 
this leads to further investigation, such as over the 
reasons for the wrong behaviour and checks the 
correlation of those measurements and the trend of 
the malfunctions. A quality engineer can also define 
new product specific metrics to display error 
deviations and provide a better understanding of 
them. Error classes could be chosen by the quality 
engineer to restrict the error space. Over time, the pre-
trained ML model might perform worse than at the 
beginning of the creation of the ML model. This 
could be due to a concept drift. Because of this, the 
quality engineer must be informed about the 
performance of a ML model. The ML system should 
be able to report which parts or ML models are 
influenced by a concept drift and in which production 
stage the malfunction has started to appear. The 
quality engineer must then check, if a new ML model 
is needed for the production. Ideally, the test system 
should be able to proactively warn the quality 
engineer of occurring and/or rising malfunctions in 
the measurements. 

DATA SCIENTIST: The tasks of a data scientist 
are primarily controlling tasks. Therefore, the data 
scientist is responsible to supervise the trained ML 
models. To do so, the created ML models should be 
frequently controlled and checked, if the goodness of 
the ML model is still acceptable. To support these 
tasks, there are e.g. two different possibilities. A good 
performance visualization to check is the ROC curve 
(Metz, 1978). Based on the ROC curve and a 
predefined threshold, it can be immediately 
recognized whether the use of the ML model is 
worthwhile. Another good comparable metric for this 
task is the Matthews correlation coefficient (MCC) 
(Boughorbel et al., 2017). The MCC measures the 
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goodness of a ML model prediction. A data scientist 
can recognise any changes in the data by checking 
frequently the MCC measure. 

TEST SYSTEM: To the described task of Figure 
1, the test system gets an extended task. A trained ML 
model will be used to support the test system. 
Moreover, the prediction from the ML model should 
add to the decision, if a product has passed the test 
station. 

6 TO-BE PROCESS 

In this section, we describe the tasks, which are 
illustrated in Figure 5 and assign them to the actors 
mentioned. The illustrated to-be process runs 
throughout the complete life cycle of a product 
(Levitt, 2014). As long the product is not at the end of 
its life cycle, the to-be process will be repeatedly 
executed. The quality engineer starts the to-be 
process (Figure 5) with the creation of a PTMD for a 
specific product (T1). Based on the background 
knowledge for a specific product, a quality engineer 
can bring all the important information together. The 
ML system will later access the PTMD and pull the 
necessary data. After the creation of the PTMD, the 
quality engineer will train a basic ML model for 
specific errors of a product (T2). In the next step, the 
data scientist supervises the previous trained ML 
model. Therefore, control tasks will be carried out. To 
do so, the data scientist controls visualizations and 
metrics (T3). Later, the quality engineer can start 
searching for errors with the previously created ML 
model (T4). It should be checked whether the results 
found are plausible. Additionally, the quality 
engineer will review the hints given by the ML 
system (T5). For this, the created visualizations can 
be used, and production worker can be interviewed, 
to get more information. The next step for the quality 
engineer would be to investigate the errors found 
using ML support (T6). The objective is to investigate 
the relationships between the error message and the 
selected features. Afterwards, the quality engineer 
must identify the error based on the previous 
evaluation (T7). After this step, there are two 
alternative ways to proceed. The first alternative 
would be to use the collected information from the 
previous steps and correct the found error in the 
product (A11). To do so, he should contact the 
production team and discuss the changes to 
implement. To improve a product further, the quality 
engineer should go back to step T2 and train a basic 
ML model. This step should be done to improve the 
quality of a product. The second alternative would be 

to start the preparations for the use of the ML model 
in the production process (A21). To do this, the 
quality engineer must adapt the configuration to the 
system. The test system will use the prepared ML 
model in the production and document constantly the 
results in the database (A22). A recurring task is to 
check if any concept drifts in the data was found 
(A23). This can be achieved by using a monitoring 
system and should be done by a quality engineer. If a 
concept drift is detected, the quality engineer will 
initiate an adjusted training for a basic ML model for 
specific errors (T2). 

7 CONTRASTING AS-IS WITH 
TO-BE PROCESS 

As part of a validation of ML system requirements 
and to-be process we compare it with the as-is process 
as typical quality management process and with 
CRISP-DM as standard data science process. With 
the new process we can generally improve several 
important points. One of the major improvements is 
that a quality engineer will be strongly supported by 
the ML System in his work. In addition, a quality 
engineer is no longer dependent on the help of a data 
scientist. The PTMD distinguishes the to-be process 
from the standard CRISP-DM, since it is assisting 
AutoML. The data scientist is still needed, but she has 
only to supervise the system by controlling operating 
figures like ROC curves and confusion matrices 
(Hearty, 2016). Moreover, heuristic individual 
mathematical tools will be obsolete. Also, even 
without data science knowledge a quality engineer 
can reuse the ML System and benefit from the 
visualization output. These visualizations can be used 
to investigate production errors. The to-be process 
extends the tasks of the quality engineer and the test 
system in contrast to the as-is process (Figure 1). The 
quality engineer uses the ML system to investigate 
features and generate plots. Also, the ML system can 
be used to dive deeply into the data and get an 
overview about the structure. The creation and 
maintenance of the PTMD is added to the tasks of a 
quality engineer. For the to-be process the test 
systems will be extended by using a ML model to test 
the product or parts of it. After implementing the to-
be process we improve the following points: 
• Supporting tasks of a quality engineer with help of 

ML. This point has significantly improved in 
comparison to the as-is process. With the tasks T4, 
T5, T6, T9 we help the quality engineer with a 
variety of support activities. 
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• Use of the PTMD, which stores background 
knowledge about products. T1 references this task. 
The AutoML system uses the meta data.  

• Regular checks of occurring concept drifts in data. 
This is referenced by T9 which checks the occurring 
data in regular intervals. 

• Supporting decisions with multiple feature 
visualizations from a ML system. In task T4 the 
quality engineer can use selected histograms and 2D 
- 3D scatter plots to support his investigations. 

• Supporting error identifications with explainable 
ML decisions. With the T6 and T7 tasks, we are 
supporting the quality engineer in his investigations. 

8 CONCLUSION 

We have presented the necessary requirements to 
successfully use a ML aided system into an industrial 
based production environment. We developed the 
PTMD in which the information about a product has 
to be stored. These can be used for many purposes and 
summarize background knowledge about a specific 
product in one model. We also presented the as-is 
process to clarify the procedure of malfunction 
detection in the production environment for a quality 
engineer. Moreover, a general description about the 
actors and their tasks has been given. Additionally, 
we illustrated the to-be process and described the 
extended tasks with the associated actor for the 
implementation of a ML aided system. At the end, we 
validate our to-be process by contrasting it to the as-
is process. We have already started implementing our 
auto ML system according to the developed 
requirements, this will be followed up with several 
tests in the production environment and in the near 
future, we intend to publish our first results. 
Additionally, we are going to test our system on 
various product types and adjust it for a universal use 
for any product. 
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