
Comparing Machine Learning Techniques for Malware Detection

Joanna Moubarak and Tony Feghali
Potech Labs, Beirut, Lebanon

Keywords: Malware Analysis, Data Science, Machine Learning, Detection, Malicious Behavior.

Abstract: Cyberattacks and the use of malware are more and more omnipresent nowadays. Targets are as varied as states
or publicly traded companies. Malware analysis has become a very important activity in the management
of computer security incidents. Organizations are often faced with suspicious files captured through their
antiviral and security monitoring systems, or during forensics analysis. Most solutions funnel out suspicious
files through multiple tactics correlating static and dynamic techniques in order to detect malware. However,
these mechanisms have many practical limitations giving rise to a new research track. The aim of this paper
is to tackle the use of machine learning algorithms to analyze malware and expose how data science is used to
detect malware. Training systems to find attacks allows to develop better protection tools, capable of detecting
unprecedented campaigns. This study reveals that many models can be employed to evaluate their detectability.
Our demonstration results illustrates the possibility to analyze malware leveraging several machine learning
(ML) algorithms comparing them.

1 INTRODUCTION

Malicious software has always been a threat to users.
Nowadays, malware are intensely used to generate
invalid links that drive the user to infected sites or
launch Denial of Service Attacks (DDoS) to steal per-
sonal and confidential data using a variety of tech-
niques and tactics such as 0-days exploits to allow
faster replication.

Malware analysis (Afianian et al., 2018) is the
discipline of studying a malware (Virus, Worm, Tro-
jan Horse, Rootkit, Backdoor, APT ..), to determine
the potential impact of an infection (Filiol, 2006).
Malware analysis is divided into two parts: static
analysis and dynamic analysis (Sikorski and Honig,
2012)(Ligh et al., 2010). In-depth analyzes are based
on a mix of both.
Static analysis is to inspect the malicious binary
file using various disassemblers and study its con-
tents. Using static analysis techniques including im-
age analysis and string analysis, the analyst observes
the code, detects various routines it uses and con-
cludes its features. In the other hand, dynamic anal-
ysis (Willems et al., 2007) consists of running the
malware in a controlled environment. The idea is to
observe the behavior of the malware and draw con-
clusions. While executed, a malicious software can
modify the file system and some configuration files. It
might change the windows registry and perform mul-

tiple network activities as well. Therefore, observing
these behaviors allows to categorize multiple malware
actions. Although it is easier and faster to perform
a static analysis, it should be noted that some hid-
den features of the malware can be missed. Besides,
malware authors are using anti-disassembly and ob-
fuscation techniques and multiple strategies to miti-
gate static analysis. Furthermore, advanced malware
nowadays implement several mechanisms to automat-
ically change their behaviors once executed in a sand-
box for dynamic analysis.

Malware have disrupted several industries and
nations in recent years (Moubarak et al., 2017).
New techniques are leveraged to enable more so-
phisticated behaviors and furtiveness (Saad et al.,
2019)(Moubarak et al., 2018)(Moubarak et al., 2019).
New breed of malicious software can leverage artifi-
cial intelligence (AI) to conceal payload and unleash
the action when machine learning algorithms iden-
tify the target using patterns related to face and voice
recognition combined with the geolocation (Stoeck-
lin, 2018).

Furthermore, attackers can exploit machine learn-
ing tools to improve the recognition of their potential
targets (Chebbi, 2018). Typically, these algorithms al-
low the collection of information, weaknesses’ identi-
fication and key elements faster than traditional man-
ual methods (Quinn, 2014). Besides, AI can be used
for false data ingestion as well, generating fictitious

844
Moubarak, J. and Feghali, T.
Comparing Machine Learning Techniques for Malware Detection.
DOI: 10.5220/0009373708440851
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 844-851
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



data architectures (James et al., 2018). In the other
hand, malware analysis can utilize these models as
well.
The pledge of machine learning (ML) in detecting
malware consists in apprehending the features of
these malicious software to be able to differentiate
between good and bad binaries. Different steps are
needed for that purpose: malicious and benign bina-
ries are collected and malware specific features are
extracted (Saxe and Sanders, 2018) in order to de-
velop appropriate inference.

Multiple studies related to this field have been un-
dergone to analyze malware based on APIs (Fan et al.,
2015), system calls (Nikolopoulos and Polenakis,
2017), network inspections (Boukhtouta et al., 2016)
and to detect android malware (Wu et al., 2016). In
this paper, several ML algorithms are tested and uti-
lized to analyze input PE (Portable Executable) files
to establish their malicious or harmless nature. The
datasets were tested on several models including Ran-
dom Forest, Logistic Regression, Naive Bayes, Sup-
port Vector Machines, K-nearest neighbors and Neu-
ral Networks. Finally, multiple tests are undergone on
real data to test the accuracy of the models.

This paper is structured as follows: Section 2
overviews machine learning. Section 3 shows the apt-
ness of several algorithms to analyse malware. Sec-
tion 4 exposes the results of each detection algorithm.
Finally, Section 5 concludes the paper and states our
future work.

2 MACHINE LEARNING

Historically, the beginnings of AI date back to Alan
Turing in the 1950s (Moor, 2003). In the common
imaginary, artificial intelligence is a program that can
perform human tasks, learning by itself. However,
AI as defined in the industry is rather more or less
evolved algorithms that imitate human actions. Sub-
elements of AI include ML, NLP (Natural Language
Processing), Planning, Vison and Robotics. The ML
is a sub-part of artificial intelligence that focuses on
creating machines that behave and operate intelli-
gently or simulate that intelligence. ML is very ef-
fective in situations where insights must be discov-
ered from large and diverse datasets. ML algorithms
are grouped into five major classes, which correspond
to different types of learning (Russell and Norvig,
2016):

1. Supervised learning: the algorithm is given a cer-
tain number of examples (inputs) to learn from,
and these examples are labeled, that is, we asso-
ciate them with a desired result (outputs). The al-

gorithm then has for task to find the law which
makes it possible to find the output according to
the inputs. The aim is to estimate the best function
f(x) able to connect the input (x) to the output (y).
Through supervised learning, two major types of
problems can be solved: classification problems
and regression problems.

2. Unsupervised learning: no label is provided to
the algorithm that discovers without human as-
sistance the characteristic structure of the input.
The algorithm will build its own representation
and a human may have difficulty understanding it.
Common patterns are identified in order to form
homogeneous groups from the observations. Un-
supervised learning also splits into two subcate-
gories: clustering and associations. The idea be-
hind clustering is to find similarities within the
data in order to form clusters. Slightly different
from clustering, association algorithms take care
of finding rules in the data. These rules can take
the form of ”If conditions X and Y are met then
event Z may occur”.

3. Semi-supervised learning: it encompasses super-
vised learning and unsupervised learning leverag-
ing labeled data and unlabeled data in order to im-
prove the quality of learning (Zhu et al., 2003).

4. Reinforcement learning: it is an intermediary be-
tween the first two algorithms. This technique
does not rely on the evaluation of labeled data,
but operates according to an experience reward
method. The process is evaluated and reinjected
into the learning algorithm to improve decision
rules and find a better way out of the prob-
lem. Oriented for decision-making, this learning
is based on experience (failures and successes)
(Littman, 1994).

5. Transfer learning: it is a learning that can come to
optimize and improve a learning model already in
place. The understanding is therefore quite con-
ceptual. The idea is to be able to apply a set that
is acquired on a task to a second relative set.

Several ML algorithms are incorporated depend-
ing on their relevance. The focus in this study in-
cludes the undermentioned algorithms:

• Random Forest: This algorithm belongs to the
family of model aggregations, it is actually a
special case of bagging (bootstrap aggregating).
Moreover, random forests add randomness to the
variable level. For each tree, a bootstrap sample
is selected and at each stage, the construction of
a node of the tree is done on a subset of variables
randomly drawn.

Comparing Machine Learning Techniques for Malware Detection

845



• Logistic Regression: It is a supervised classifica-
tion algorithm where (Y) takes only two possible
values (negative or positive). This algorithm mea-
sures the association between the occurrence of an
event and the factors likely to influence it.

• Naive Bayes: The Bayesian naive classification
method is a supervised machine learning algo-
rithm that classifies a set of observations accord-
ing to rules determined by the algorithm itself.
This classification tool must first be trained on a
set of learning data that shows the class expected
according to the entries. This theorem is based on
conditional probabilities. The descriptors (Xi) are
two to two independent, conditionally values of
the variable to predict (Y).

• Support Vector Machine (SVM): It is also a binary
classification algorithm. A SVM algorithm looks
for a hyperplane that separates the two categories
from the problem. The optimal hyperplane must
maximize the distance between the border of sep-
aration and the points of each class that are most
close (Hastie et al., 2005).

• K-nearest neighbors (KNN): This algorithm is a
supervised learning method that can be used for
both regression and classification. To make a pre-
diction, the KNN algorithm will be based on the
entire dataset. For an observation, which is not
part of the dataset, the algorithm will look for the
K instances of the dataset closest to the observa-
tion. Then, for these K neighbors, the algorithm
will be based on their output variables (y) to cal-
culate the value of the variable (Y) of the obser-
vation that needs to be predicted.

• Neural Networks: A neural network is inspired by
how the human brain works to learn. It is based
on a large number of processors operating in par-
allel and organized in thirds. The first third re-
ceives raw information inputs, much like the hu-
man’s optic nerves when dealing with visual cues.
Subsequently, each third party receives the infor-
mation output from the previous third party. The
same process is found in humans when neurons
receive signals from neurons close to the optic
nerve. The last third, on the other hand, pro-
duces the results of the system. In general, neural
networks are categorized by the number of thick-
nesses that separate the data input from the output
of the result, based on the number of hidden nodes
in the model, or the number of inputs and outputs
of each node.

The next section abridges how these algorithms
are applied to analyze and detect malicious software.

3 MALWARE ANALYSIS

This section depicts how ML algorithms are evoked to
detect malware. The evaluation of the algorithms con-
sidered multiple malware features including PE head-
ers, instructions, calls, strings, compression and the
Import Address Table. The implementation was based
on Python and sklearn (Saxe and Sanders, 2018).

3.1 Random Forest Classifier

A decision tree solves problems by automatically gen-
erating interrogation while training samples. For each
node of the tree, a question is employed to decide
whether the sample is a malware or a benignware.
The random forest algorithm (Breiman, 2001) com-
bine multiple decision tree where each tree is trained
using different questions. Each tree was trained using
a random chosen partial set of samples and the fea-
tures of each sets are randomly selected.

hashed features =
hasher.transform([string features])

The detection of a sample is performed on every
tree and the algorithm decides on the maliciousness
of the binary founded on the response of the majority
of the trees.

3.2 Logistic Regression Classifier

The logistic regression (Harrington, 2012) classifier
frames a line or a hyperplane that splits malware from
benignware in the training dataset.
For a new binary, the algorithm will determine its
maliciousness based on the limit between the two
classes. The gradient descent algorithm (Ruder, 2016)
is used to set the boundary of malware and benign-
ware. The weighted sum of features is translated by
the logistic regression classifier to a probability. Fea-
tures with positive weights are considered malware.

3.3 Naive Bayes Classifier

The naive bayes classifier calculates the probability
of a file belonging to a specific category depending
on several metrics obtained from the training dataset.
A file with a high probability to be clean is begin-
ware, else if the probability is low, then it is a malware
(Chebbi, 2018).

3.4 Support Vector Machines Classifier

The support vector machine classifier will also draw
a hyperplane that splits malware from benignware in

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

846



Figure 1: Random forest classifier performance graph.

Figure 2: Logistic regression classifier performance graph.

Figure 3: Naive base classifier performance graph.

the training dataset. The decision of being clean or
suspicious depends on its location compared to the
hyperplane (Chebbi, 2018).

3.5 K-nearest Neighbors Classifier

Having k representing the number of near neighbors,
the idea behind the k-nearest neighbors algorithm is
to consider that if mostly the characteristics of k-

binaries are closest to the characteristics of a binary
that is malicious then the binary is malicious. Else, if
the majority of characteristics of k-binaries are clos-
est to the characteristic of a benign binary, then this
later is benign. For that purpose, the characteristics
and features of the new binary are compared to the
feature of the k samples. When the percentage of
samples in the feature space exceeds a certain num-
ber, then the character (malicious or benign) is de-

Comparing Machine Learning Techniques for Malware Detection

847



Figure 4: Support vector machines classifier performance graph.

Figure 5: K-nearest neighbors classifier performance graph.

fined. To measure the feature distance (Wang et al.,
2007) between a new binary and the samples in the
training set the euclidean distance function is used to
calculate the shortest distance between two points in
the feature space (Saxe and Sanders, 2018). The K-
Nearest neighbor algorithm is mostly adapted for mal-
ware family classification and connect similarities be-
tween binaries.

3.6 Neural Networks

The neural network was divided into layers composed
from an input layer, a middle layer and the output
layer that generates the final result. The middle
layer is formed from 512 neurons that uses ReLU
(Rectified Linear Unit) (Saxe and Sanders, 2018) as
activation function. The last layer uses a sigmoid
function (Gan et al., 2015) and comprise one neuron.

Table 1: Classifiers’ Performance.

Classifier FPR TPR
Random forest classifier 10−2 92%
Logistic regression classifier 10−2 40%
Naive baise classifier 2.10−2 65%
Support vector machines classifier 10−2 40%
k-nearest neighbors classifier 10−2 59%
Neural network classifier 10−2 82%

middle = layers.Dense(units=512, activa-
tion=’relu’)(input) output = layers.Dense(units=1,
activation=’sigmoid’)(middle)

Each neuron in the middle layer (dense layer) has
access to all input values. The ReLU activation func-
tion, if positive, will output a positive value, else it is
a zero. The extract features function was applied to
the input (that includes clean and malicious files) and

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

848



Figure 6: Neural networks classifier performance graph.

then the hash of each token is taken and distributed
among this layer. Furthermore, the training was done
in batches using a feature generator each time.
model.fit generator (
generator=training generator,
steps per epoch=num obs per epoch / batch size,
epochs=10, verbose=1)

4 TECHNICAL ANALYSIS

This section analyses malware leveraging Random
Forest, Logistic Regression, Naive Bayes, Support
Vector Machines, K-nearest neighbors and Neural
Networks algorithms. These models were trained on
datasets from (Saxe and Sanders, 2018). The evalua-
tion between these algorithms includes the Receiver
Operating Characteristic Curve, the detection time
and the limitation of each algorithm.

4.1 Receiver Operating Characteristic
Curve

The Receiver Operating Characteristic Curve (ROC
Curve) permits to predict the correctness of machine
learning algorithms (Bradley, 1997). It consists of a
plot visualizing the algorithm true positive rate (TPR)
versus its false positive rate (FPR).

T PR =
True Positives

True Positives + False Negatives

FPR =
False Positives

False Positives + True Negatives

Predictive rates are divided in four classes:

• True Positive (TP): The binary is correctly pre-
dicted as being malicious.

• True Negative (TN): The binary is correctly pre-
dicted as being benign.

• False Positive (FP): The binary is incorrectly pre-
dicted as being malicious.

• False Negative (FN): The binary is incorrectly
predicted as being benign.

A good classifier will try therefore to maximize
the true positive rate and to minimize the false pos-
itive rate. Comparing the several ROC Curves (Ta-
ble 1), the performance of the random forest classi-
fier is the best among the other algorithms. Besides,
comparing the plots of the detectors, the random for-
est classifier performs well, noting that the execution
can be enhanced when scaling the training dataset to a
bigger amount of test data adding millions of samples.
Others parameters can be added as well.

4.2 Detection Time

To highlight the performance of ML detectors, the
same binaries were tested using the different classi-
fiers. Figure 7 summarizes the detection time of each
classifier. For a same new binary to test, the neural
network and logistic regression classifier achieved the
fastest detection rate (4.6 secondes) and the random
forest classifier the slowest average (16.5 secondes).

Comparing Machine Learning Techniques for Malware Detection

849



Figure 7: Average Detection Time.

5 CONCLUSION

The information age has recently discovered the value
of big data and information that can hide in dis-
parate, large data sources. The current interest in data
has also spread across multiple applications to detect
and prevent attacks. New technologies permit nowa-
days an advanced analytics approach leveraging big
data. In cybersecurity, machine learning algorithms
can be used to detect external intrusions, for exam-
ple by identifying patterns in the behavior of attack-
ers performing reconnaissance, but also to detect in-
ternal risks. The analysis simply aims to provide vi-
sualization so that human interaction can be applied
to infer ideas. By combining data from system log
files, historical data on IP addresses, honeypots, sys-
tem and user behaviors, etc. a more comprehensive
overview of a normal situation is conceived. The
wit is to analyze multiple sources and patterns to sig-
nal unwanted behavior. Furthermore, machine learn-
ing is used for attack detection and attribution. Be-
sides, several use cases of machine learning are em-
ployed for penetration testing. The work done in this
paper proves that different approaches can be lever-
aged to detect malware using machine learning. Sev-
eral algorithms have been implemented, trained and
tested. For each algorithm, the methodology of de-
tecting malware have been abridged in details. More-
over, the ROC Curve of each classifier has been il-
lustrated showing that some algorithms perform bet-
ter than others. This study and classifiers’ evaluation
show that random forest operates satisfactorily com-
paring to other algorithms even that the average de-
tection time is not the lowest.

Our future plans consist in studying and enhanc-
ing the detection of malware using hybrid training

model and ensemble learning. These algorithms can
be built also leveraging other parameters and training
data. In addition, in a next step we envisage to asso-
ciate multiple analysis techniques to detect malware.
For a complete detection mechanism, we plan to com-
bine static, dynamic and machine learning techniques
to analyse malware.

REFERENCES

Afianian, A., Niksefat, S., Sadeghiyan, B., and Baptiste,
D. (2018). Malware dynamic analysis evasion tech-
niques: A survey. arXiv preprint arXiv:1811.01190.

Boukhtouta, A., Mokhov, S. A., Lakhdari, N.-E., Debbabi,
M., and Paquet, J. (2016). Network malware classi-
fication comparison using dpi and flow packet head-
ers. Journal of Computer Virology and Hacking Tech-
niques, 12(2):69–100.

Bradley, A. P. (1997). The use of the area under the
roc curve in the evaluation of machine learning algo-
rithms. Pattern recognition, 30(7):1145–1159.

Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.

Chebbi, C. (2018). Mastering Machine Learning for Pene-
tration Testing. Packt Publishing.

Fan, C.-I., Hsiao, H.-W., Chou, C.-H., and Tseng, Y.-F.
(2015). Malware detection systems based on api log
data mining. In 2015 IEEE 39th annual computer soft-
ware and applications conference, volume 3, pages
255–260. IEEE.

Filiol, E. (2006). Computer viruses: from theory to appli-
cations. Springer Science & Business Media.

Gan, Z., Henao, R., Carlson, D., and Carin, L. (2015).
Learning deep sigmoid belief networks with data aug-
mentation. In Artificial Intelligence and Statistics,
pages 268–276.

Harrington, P. (2012). Machine learning in action. Manning
Publications Co.

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

850



Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J.
(2005). The elements of statistical learning: data min-
ing, inference and prediction. The Mathematical In-
telligencer, 27(2):83–85.

James, J., Hou, Y., and Li, V. O. (2018). Online false data
injection attack detection with wavelet transform and
deep neural networks. IEEE Transactions on Indus-
trial Informatics, 14(7):3271–3280.

Ligh, M., Adair, S., Hartstein, B., and Richard, M. (2010).
Malware analyst’s cookbook and DVD: tools and
techniques for fighting malicious code. Wiley Pub-
lishing.

Littman, M. L. (1994). Markov games as a framework
for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pages 157–163. Elsevier.

Moor, J. (2003). The Turing test: the elusive standard of
artificial intelligence, volume 30. Springer Science &
Business Media.

Moubarak, J., Chamoun, M., and Filiol, E. (2017). Compar-
ative study of recent mea malware phylogeny. In 2017
2nd International Conference on Computer and Com-
munication Systems (ICCCS), pages 16–20. IEEE.

Moubarak, J., Chamoun, M., and Filiol, E. (2018). Devel-
oping a k-ary malware using blockchain. In NOMS
2018-2018 IEEE/IFIP Network Operations and Man-
agement Symposium, pages 1–4. IEEE.

Moubarak, J., Chamoun, M., and Filiol, E. (2019). Hiding
malware on distributed storage. In 2019 IEEE Jor-
dan International Joint Conference on Electrical En-
gineering and Information Technology (JEEIT), pages
720–725. IEEE.

Nikolopoulos, S. D. and Polenakis, I. (2017). A graph-
based model for malware detection and classification
using system-call groups. Journal of Computer Virol-
ogy and Hacking Techniques, 13(1):29–46.

Quinn, M. J. (2014). Ethics for the information age. Pearson
Boston, MA.

Ruder, S. (2016). An overview of gradient de-
scent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a
modern approach. Malaysia; Pearson Education Lim-
ited,.

Saad, S., Briguglio, W., and Elmiligi, H. (2019). The cu-
rious case of machine learning in malware detection.
arXiv preprint arXiv:1905.07573.

Saxe, J. and Sanders, H. (2018). Malware Data Science. No
Startch Press.

Sikorski, M. and Honig, A. (2012). Practical malware anal-
ysis: the hands-on guide to dissecting malicious soft-
ware. no starch press.

Stoecklin, M. P. (2018). Deeplocker: How ai can power a
stealthy new breed of malware. Security Intelligence,
8.

Wang, J., Neskovic, P., and Cooper, L. N. (2007). Im-
proving nearest neighbor rule with a simple adap-
tive distance measure. Pattern Recognition Letters,
28(2):207–213.

Willems, C., Holz, T., and Freiling, F. (2007). Toward au-
tomated dynamic malware analysis using cwsandbox.
IEEE Security & Privacy, 5(2):32–39.

Wu, S., Wang, P., Li, X., and Zhang, Y. (2016). Effective
detection of android malware based on the usage of
data flow apis and machine learning. Information and
Software Technology, 75:17–25.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-
supervised learning using gaussian fields and har-
monic functions. In Proceedings of the 20th Inter-
national conference on Machine learning (ICML-03),
pages 912–919.

Comparing Machine Learning Techniques for Malware Detection

851


