
The Blockchain Potential in Computer Virology

Joanna Moubarak1, Eric Filiol2,3 and Maroun Chamoun1

1Faculty of Engineering, USJ, Lebanon
2Department of Cybersecurity, ENSIBS, Vannes, France

3High School of Economics, Moscow, Federation of Russia

Keywords: Armoured Malware, Blokchain, k-ary Codes, DLT, IPFS, Computer Virology.

Abstract: This paper delves into the state of the art of computer virology formalisation then tackles the development
of a new malware algorithm. It details how the work leveraged Blockchain to create an undetectable mal-
ware depicting two versions of the new malware, starting from a first naive version to achieve an advanced
armoured undetectable k-ary malware that leverages decentralized storage namely IPFS. The detection of the
new malware algorithm has been proven NP-complete.

1 INTRODUCTION

For decades, researchers have been intrigued by
cyber-threats techniques and contributed in defending
against those attacks (Moubarak et al., 2017a). Ac-
cording to the theory of computability, some prob-
lems are not calculable and the problem of viral de-
tection is one of the undecidable problems.

The prominent formalizations in computer virol-
ogy instigates from Turing machines (Shannon, 1956)
which constitute a theoretical model of any computer
program, viral or not. Fred Cohen (Cohen, 1985)
has shown that the general problem of viral detec-
tion is an undecidable problem. Other works (Filiol,
2006a)(Filiol, 2007d) have shown that the detection
of certain classes of malware was NP complete. In
this paper, combinatorial techniques of k-ary malware
(Filiol, 2007b) were studied to create a k-ary decen-
tralized malware. The goal is to divide the malicious
code into several parts (active or not), each of them
having no malicious character. It is the interactions
between these parts (in series or in parallel) that de-
termine the final maliciousness. A new k-ary model
was proposed leveraging the blockchain technology
which is mainly a peer to peer network of distributed
nodes revolving around cryptographic schemes and
a consensus algorithm. The results demonstrate the
feasibility of a new type of malware based on IPFS
showing that the cyberattack landscape is remodeling
novel set of rules. The detection of the malware de-
scribed is an undecidable problem. The remaining of
this paper is organized as follows: Section 2 intro-

duces the preliminary works in computer virology in
general and Section 3 presents the k-ary concept. Sec-
tion 4 overviews Distributed Ledger Technologies and
Section 5 highlights the decentralized k-ary malware.
Section 6 concludes this paper and presents our future
works.

2 PRELIMINARY WORKS

In 1936, Kleene’s work (Kleene, 1936) dealt with
the formalization of mathematical theorems. How-
ever, his work on self-reproduction logic which is an
integral characteristic of viruses, made him one of
the founder of the computer virology theory. More
precisely, the recursion theorems (Kleene, 1938) for-
malize quine programs that construct a transforming
function from a fixed point or environment. Given a
function f, there are different programs needed to its
computation. If it is the identity function, the codes
are identical and consequently, we have the concept
of virus and the self-reproduction theorem.

In 1948, John von Neumann’s theory on biologi-
cal evolution specifically the self-reproduction of cel-
lular automata was born. Neumann has developed his
automaton around two central elements based on Tur-
ing machines: a universal computer and a universal
constructor.

In 1980, Kraus defended his thesis on computer
virology (Kraus, 1980). His work tackled the rela-
tion between computer algorithms and biological self-
reproduction behaviors. His model theorized the sim-

796
Moubarak, J., Filiol, E. and Chamoun, M.
The Blockchain Potential in Computer Virology.
DOI: 10.5220/0009371607960803
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 796-803
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ilarities between the operations’ vectors involved in
computer and biological viruses.

Fred Cohen defended his PhD. thesis in 1986
defining and formalizing viruses. He is the first to
have given a formal definition to the concept of com-
puter virus. Cohen models a computer virus with a set
of viral codes propagating on the ribbon of a Turing
machine. Cohen formalized Turing Machines focus-
ing deeply on the time feature involved in computer
mechanisms (Cohen, 1987b). He studied also the un-
decidability problem related to viral detection. Fred
Cohen was technically the first scientist authorized to
conduct experiments to validate his formalization re-
sults.

Cohen was interested in systems free of any virus.
His work shows the existence of a machine that does
not admit any viral set: the machine that does nothing.
This observation and his experiments lead to state the
adage that only an isolated system is protected from
computer infections.

Fred Cohen demonstrated that the general prob-
lem of viral detection is an undecidable problem.
There is no Turing machine M able to decide in finite
time if a given sequence v is a virus.

The principle of the demonstration consists in re-
ducing the problem of decidability of the viral set to
the halt problem. His advisor Leonard Adleman gave
complexity (Papadimitriou, 1994) results on particu-
lar instances of the general problem of viral detection.

D. Spinelli (Spinellis, 2003) addressed the detec-
tion problem of finite polymorphic viruses with deter-
mined mutating length demonstrating that this prob-
lem is NP-complete (Filiol, 2006a). For the demon-
stration, the problem was reduced to a polymorphic
virus with fixed scope.

Generalizing Adleman’s results, Zuo and Zhou
worked on metamorphic viruses and stealth fea-
tures. In (Zuo and Zhou, 2004), resident viruses,
non-resident viruses, polymorphic viruses and stealth
viruses were formalized, complementing those of
Adleman and adding the notion of furtiveness. Their
results show that the complexity problem of detecting
a stealth virus surpasses the recognition of a conven-
tional one. Moreover, in (Bonfante et al., 2006), a
similar result was demonstrated. Furthermore, Zuo
and Zhou presented many results related to the time
complexity (Zuo et al., 2005).

E. Filiol reevaluated stealth mechanism using sim-
ulability testing (Filiol, 2007d). Filiol studied the
use of malicious cryptography and code armouring
to complicate code analysis (Filiol, 2012). In (Filiol,
2006b), detection schemes were qualified.

He also formalized and tested k-ary malware that
consist in splitting malicious code in different files to

evade detection mechanisms. The idea is to distribute
the malicious payload into k files with no viral char-
acteristic; it is the combination of all of these files
that generates the final payload. The complexity of
these codes have been proven to be NP-complete (Fil-
iol, 2007b).

Preliminarily works are summarized in Table 1.

3 k-ary MALWARE

Initially, the viral code was included in a single file
that encompasses all its functionalities. Then with the
introduction of the k-ary virus, the code is fragmented
in a modular approach but still within a predominantly
unique environment. The payload will run using a
modular malware that downloads and executes mali-
cious codes. For that purpose, many infections stages
are needed to achieve the common goal and a coor-
dinated activity distributes each chunk functionality
allowing more robust, evasive framework.

k-ary codes presents several advantages:

• The modules are minor in size and therefore easier
to obfuscate.

• The modular features would in any case make it
difficult to detect.

• Combining several modules will not disclose the
final payload.

• Distinct modules can be utilized in specific envi-
ronments.

• Each module can be modified separately mutating
its signature.

• Do not involve actions deemed malicious.

• No direct object use.

• New functionalities can be easily added.

k-ary malware implementations are thoroughly
described in Table 2:

Serial/Parallel k-ary Malware. The different sub-
classes of k-ary codes were validated in serial (4 ≤
k ≤ 8) (Filiol, 2007d) and in parallel (k = 4) (Filiol,
2007d). For instance, each part has been able to re-
generate the missing codes under different nomencla-
tures.

A 2-ary Malware using OpenOffice. Multiple
proof-of concepts confirmed the complexity of com-
bined viruses for OpenOffice in win32 and Linux en-
vironment (de Drézigué et al., 2006).

The Blockchain Potential in Computer Virology

797

Table 1: Preliminary works.

Preliminary works
Author Contribution Formalization Complexity
Alan Turing (Shannon, 1956) Turing machines -
Stephen Kleene (Kleene, 1936) Mathematical formalization -

Quine -
John von Neumann (Von Neumann et al.,

1966)
Self-reproduction of cellular automata -

Veith Risak (Bilar and Filiol,
2009)

Self-reproducing automata using min-
imum information exchange

-

Jurgen Kraus (Kraus, 1980) Relation with biological self-
reproduction behaviors

-

Fred Cohen (Cohen, 1987b)
Formalization of a computer virus X
Viral detection
Contradictory virus

Leonard Adleman (Adleman, 1988)

Viral detection X
Viral protection
Computer infections
Polymorphism

Diomidis Spinellis (Spinellis, 2003) Finite polymorphic viruses X
Zhihong Zuo and
Mingtian Zhou

(Zuo and Zhou,
2004)(Zuo et al.,
2005)

Polymorphic and metamorphic,
Stealth features, Resident viruses,
Time complexity

X

Guillaume Bonfante
& al. (Bonfante et al., 2006) Polymorphism, Stealth virus X

Eric Filiol (Filiol, 2006a)(Filiol,
2006b)(Filiol
et al., 2006)(Fil-
iol, 2007c)(Filiol,
2007d)
(Filiol, 2012) (Filiol,
2015)

Malicious cryptography and malicious
mathematics, Stealth mechanisms, Vi-
ral detection, Code armouring, k-ary
codes

X

A k-ary Python Malware. Furthermore, a k-ary
virus was implemented in Python (Desnos, 2009) in
order to share a secret key utilized to decipher the vi-
ral payload. A 3D graphical simulation to represent
the interaction and distribution of system calls was
presented as well.

A k-ary Goodware. Also, in (Guyot et al., 2012),
a k-ary goodware was presented leveraging similar
concepts while removing any malicious actor. For
that purpose, a Shamir’s secret sharing scheme with
threshold algorithm has been utilized. The k-ary
goodware is composed of k parts that may or may not
be executables. The cumulative actions of the consti-
tuting chunks define the goodware action. This notion
was proposed to better protect the software and sensi-
tive data that each UAV of a swarm will be given. The
goodware introduced a method to secure the sensitive
information in UAV (Unmanned Aerial Vehicles) pro-

hibiting any leaked information.

A k-ary Experiment for Intrusion Detection Sys-
tem. Furtheremore, the k-ary malware was studied
in (Tokhtabayev et al., 2010) while implementing a
prototype intrusion detection system.

In the following, we explore the feasibility of an ar-
moured decentralized k-ary malware. This work gen-
eralized the modularity concept using the Blockchain
network and Distributed Ledgers Technologies: a
code fragmented on several environments and which
protects itself by harnessing the security of these en-
vironments against the analysts and the targets.
This decentralized modularity highlights the major
contribution. The new algorithm makes it possible
to adapt the activation of the modules according to
the context specific to the infected target. With the
provision of different codes in decentralized storages,

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

798

Table 2: k-ary implementations.

Related work Implementation Contribution

(Filiol, 2007d) Serial and Parallel k-ary malware im-
plementations

k-ary PoCs validation

k-ary complexity formalization
(de Drézigué et al.,
2006)

2-ary malware using OpenOffice Increased stealth properties

(Desnos, 2009) A k-ary python implementation Leveraging secret keys to decipher viral
payload

(Guyot et al., 2012) A k-ary goodware Leveraging a k-ary concept to protect
sensitive UAV information

(Tokhtabayev et al.,
2010)

Interprocess distribution approach An obfuscation experiment for IDS

the new malware can easily reuse, combine, and adapt
pieces of malicious codes that have proven them-
selves.

4 DISTRIBUTED LEDGER
TECHNOLOGIES

This section overviews Distributed Ledger Technolo-
gies (DLTs).

4.1 The Blockchain

A blockchain constitutes a peer to peer network that
contains the history of all the exchanges made be-
tween its users since its creation. The ledger is shared
between various nodes, without intermediaries, which
allows everyone to check the validity of the chain.

There are public blockchains, open to everyone,
and private blockchains, the access and use of which
is limited to a certain number of actors.

A public blockchain can therefore be compared to
a public ledger, anonymous and forged. Transactions
between network users are grouped in blocks. Each
block is validated by the nodes in the network, accord-
ing to the consensus DLT. Once the block is validated,
it is timestamped and added to the blockchain. The
transaction is then visible to the receiver and the entire
network. The process time depends on the blockchain
type (about ten minutes for bitcoin, 15 seconds for
Ethereum).

Regardless of the technology, DLTs offer numer-
ous security characteristics (Moubarak et al., 2018b):

• Immutability: Once added to a block, a transac-
tion become irremovable.

• Auditability: Each block is characterized by cryp-
tographic schemes and secure Timestamping of-
fering the capacity to audit each transaction.

• Integrity: The SIGHASH function validate the
signatures ensuring that any modification will in-
validate the transaction.

• Authorization: Elliptical Curve Digital Signature
Algorithm (ECDSA) is used to create the links be-
tween the blocks. Also, IOTA relies on Winternitz
hash-based cryptography signatures.

• Fault Tolerance: Many agreement mechanisms
are involved to achieve the consensus in DLTs.

• Transparency: The transactions are appended into
blocks and replicated publicly to the peers.

• Availability: Even if peers exit the network, the
blockchain network is continually available.

• Consistency: Once the miners agree on the con-
sensus and block arrangement, the distributed
ledger is consistent and changes are infeasible.

• Privacy: While the distributed ledger is public,
keys relatives to each parties are anonymous.

The decentralized nature of the blockchain, cou-
pled with its security and transparency, promises
much broader applications than the monetary field.

4.2 Decentralized Storage

Decentralized data storage is closely linked to
blockchains because many concepts overlap.
Blockchain itself is a decentralized data storage
network, but the operation of the blockchain makes it
better suited for storing and managing transactional
data.

Blockchains can be used for secure document
transfer in several areas. However, storing data in
blockchains does not manage large amounts of raw
data. This is where decentralized networks can help
blockchains.

Many popular decentralized blockchain-driven
applications (dApps) uses the concept of decentral-
ized data storage namely the InterPlanetary File Sys-

The Blockchain Potential in Computer Virology

799

tem (IPFS). IPFS Merkle DAG is an extremely flexi-
ble way to store data. The only requirements are that
the object references must be (a) addressed content,
and (b) encoded in a specific format. IPFS grants ap-
plications complete control over the data field; Appli-
cations can use any custom data format they choose,
which IPFS may not understand.

IPFS clients require local storage, an external sys-
tem on which to store and retrieve local raw data for
objects managed by IPFS. The type of storage de-
pends on the use case of the node. In most cases, this
is simply a portion of the disk space (either managed
by the native file system, or by a key-value store such
as leveldb, or directly by the IPFS client).

Ultimately, all of the blocks available in IPFS are
in the local storage of certain nodes. When users re-
quest items, they are found, downloaded, and stored
locally, at least temporarily (Mus, 2017). In the next
section, we define a new viral algorithmic leveraging
the IPFS network and a k-ary concept.

5 DECENTRALIZED k-ary
MALWARE

In a previous work (Moubarak et al., 2018a), the de-
velopment was based on the Bitcoin network to iden-
tify the four chunks of the codes, highlighting the fea-
tures of the Blockchain technnology in the viral do-
main. However, the main limitation in the aforemen-
tioned framework consists in the fact that the valida-
tion part requires ten minutes for the Bitcoin network.

This section concentrates on the use of IPFS
to create a decentralized k-ary malware (Moubarak
et al., 2019) and the capability to remain impercep-
tible when loaded on the target machine.

5.1 First Naive Malware

The K parts are uploaded independently to IPFS. This
first experiment has been implemented under Win-
dows and consists in a simple quaternary malware
whose code is injected in a running process.

Here is the general pseudo-code for this malware.
Here we consider an initial malware M which is

split into k different parts in such a way that no part
alone enables to guess that it is a component of a mal-
ware code.

Proposition 1. The detection complexity of the mal-
ware described in Algorithm 1 is calculable.

Algorithm 1: Malware - Naive version.
Input: Path of a IPFS directory D that contains the k
different malware files.
Output: Execution of the malware.

Get the content of the directory D

buffer B← NULL
For i from 1 to k
Retrieve file Fi
Concatenate file Fi to B
S← buffer size (in bytes)
Inject the buffer content into a process via its pro-
cess ID

Proof. Even if the malware information is split into k
parts, at the end of the For loop, buffer B contains the
whole code of malware M . From this time instant,
the code is detectable.

It is worth mentioning that aside the detection
based on the malware code, code injection into a
process is likely to be detected by most modern AV
software that use dynamic analysis. If the analysis
is based only on signatures and static analysis tech-
niques, the code will not be detected. A basic prin-
ciple in computer virology is that the environment
should be modified as little as possible or not at all.

Additionally, another security drawback consists
in that any user who have the hash of the submitted
code, can retrieve it from IPFS. Asymetric encryption
can be used to secure the IPFS exchange.

To cope these limitations, an armoured advanced
malware is created.

5.2 Armoured Advanced Malware

Let us now consider a more sophisticated malware.
It is a particular instance of sequential k-ary code
of subclass B (Filiol, 2007a, Section 4). We will
not describe the IPFS/IPNS protocol part which is
used by the malware since it is very classical and not
malware-specific. The different parts are submitted
encrypted to IPFS. We still consider a malware M
whose code is split into k parts and a scheduler
program S , in the case of a targeted attack (e.g.
Advanced Persistance Threat) against a very limited
number of targets. Our PoC is inspired by techniques
used in Bradley code (Filiol, 2005) that acquire the
keys from a certain website or Pastebin and Dark
Paranoid malware (Threats, 2019) where only one
instruction is unencrypted in memory. If the key is
contained in the body of the code, it can be easily
discovered by an analyst. For ethical and responsible
disclosure, we will not give all details and code of our

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

800

PoC but just the most significant algorithmic aspects.

Here are the main features of this PoC:

• A number of IPFS/IPNS nodes are used which
are under the full control of the attacker (possibly
coupled with Tor to add anonymity).

• The malware is divided to k parts. Each part Pi
(for i = 1, . . .k) is encrypted. The encryption for-
mat is raw (there is no header, identification field).
Each part is moreover split into IPFS blocks de-
noted P j

i , j ∈ [1, . . . ,n].

• Code armouring by encryption has been used in
such the way that the malware limits as much as
possible its execution with plain text instructions
to the least possible. It means that a significant
number of operations can be performed with basic
operations on the encrypted instructions directly.
Each instruction, is deciphered on the fly.

• Each part is contained in a different location in
IPFS/IPNS. The location of file Fi+1 (/ipfs/〈hash〉
/f {i+1}) is contained in the (encrypted) file Fi.

• In order to operate, we use an additional pro-
gram S called scheduler. Its role is to orga-
nize the malware execution according to Algo-
rithm 2. Program S contains the location of file F1
(/ipfs/〈hash〉/f 1) under an encrypted form. The
decryption key is an environmental key (Riordan
and Schneier, 1998; Filiol, 2005). The activation
environment is considered as likely under the at-
tacker’s control.

• Time obfuscation (τ-obfuscation) (Beaucamps
and Filiol, 2007) is used randomly during the code
execution. Required instructions (in fact IPFS
blocks) are decrypted once at a time.

• The malware is able to detect whether it is exe-
cuted from within a virtual environment or not.
If not, the code executes its intended (malicious)
tasks otherwise (a virtual environment is present)
the code behaves as normal code.

• Other tricks have been implemented in the case
of targeted attacks and to activate in very specific
environments (for instance (Desnos et al., 2010)).

Let us described the overall simplified pseudo-
code.

Algorithm 3 details the initialization of the code
and the processing of the first block (P1

1). The subse-
quent processing is similar for other P j

i , j ∈ [2, . . . ,n].
Proposition 2. The detection of the malware de-
scribed in Algorithm 2 is an undecidable problem.

Algorithm 2: Malware - Armoured version.
Input: Operating System Environment E , information
I in E or not
Output: Execution of the malware

while I 6∈ E do
Scan randomly and irregularly for I in E

For i from 1 to 4
Decrypt /ipfs/〈hash〉/file i with I
Retrieve file Fi
Process File Fi

Algorithm 3: Malware - Initialization and processing of the
first block.
Input: Operating System Environment E , information
I in E or not
Output: Execution of block P1

1
S on initial installation retrieves different informa-
tion N0,N1, . . . on infected host (IP address, pro-
cessor ID...) and send them to the attacker as
SHA3(N0||N1||...)
Instructions related to initialization are deleted
from memory and S code.

while I 6∈ E do
Scan randomly and irregularly for I in E

S decrypts IPNS for block P1
1 with I

S executes Virtual environment detection
S retrieves block P1

1
S executes P1

1
Instruction for P1

1 are deleted
...

Proof. There is two cases to consider. The first one
relates to the analysis of files Fi and the second one
to the analysis of scheduler program S .

Case 1. Each encrypted part alone does contain
neither information on the encryption system nor
reference to any other parts. The analyst can just try
all possible random sequences to decrypt the code
and hence will obtain all possible code instances
without being able to determine which are the right
ones. We are in the case of Shannon’s prefect secrecy
(For a perfect encryption scheme, the number of keys
is at least the size of the message space - number of
messages that have a non-zero probability) (Shannon,
1949). Case 1 consequently refers to unconditional
security.

Case 2. Aside the different algorithmic and im-
plementation tricks, we will focus on the fact that
scheduler S falls in the case of Cohen’s contradic-

The Blockchain Potential in Computer Virology

801

tory virus (Cohen, 1985, page 84), (Cohen, 1987a).
Only a dynamic analysis (into a virtual environment)
can enable the analyst to guess (step by step) program
S ’s actions. But in this case (detection of virtual en-
vironment) program S performs only benign actions
due to the communication with the server under the
attacker’s control. Hence the result.

The same antiviral experiments were performed
on this armoured version. None of the tests are posi-
tives.

6 CONCLUSION

The use of k-ary codes in which a program is no
longer a solo binary object but a k-set of files work-
ing to yield a final payload constituted the base of this
work with the outsourcing of each part to IPFS. In
this context, a serial mode operation vector is used,
so the execution is done part by part and for each part
instruction by instruction (block by block for IPFS).
In fact each instruction is deciphered on the fly and
then re-encrypted (or emptied of memory depending
on the version). For some instructions, they are gener-
ated directly from other encrypted instructions before
being decrypted and executed according to the pre-
vious principle. Therefore, the analyst or the antivi-
ral solution has a compact interpretation on the entire
code only because the interaction is performed with a
partial subcategory of this k-set. All codes are pulled
to repository of P2P source code version control sys-
tem where each version can be maintained updated
and upgraded. Data operations will be recoded to the
P2P distributed file system and are tracked. In case of
codes’ improvement or change, an update can be sub-
mitted for fix and later pushed to the target machines.

In conclusion, the potential of the blockchain
technology and decentralized storage is increasing.
The combination of the blockchain and IPFS is con-
sidered to be the future of the distributed internet. Be-
sides, the Interplanetary File System have many po-
tential to host different types of Dapps and is able to
connect many blockchains and content directly. Ad-
ditionally, some of the blockchain security challenges
have been exposed revealing the urgent necessity to
be sheltered from many assumption reasons of mali-
cious applicability, and which, if remained undevel-
oped will be exploited. Blockchain has been subject
to unique speculation and as we have perceived, it
has been advantageous in many domains. However,
this backbone that is enabling and protecting several
transactions, may drives motives for potential misuses
(Moubarak et al., 2017b). Thus, the next step can be

to dig further and explore the feasibly of embedding
the new malware into Dapps applications.

REFERENCES

Adleman, L. (1988). An abstract theory of computer
viruses, in” advances in cryptology—crypto’88”, vol.
403. Lecture Notes in Computer Science.

Beaucamps, P. and Filiol, E. (2007). On the possibility of
practically obfuscating programs - towards a unified
perspective of code protection. Journal in Computer
Virology, 3.

Bilar, D. and Filiol, E. (2009). On self-reproducing com-
puter programs. Journal in computer virology, 5(1):9–
87.

Bonfante, G., Kaczmarek, M., and Marion, J.-Y. (2006). On
abstract computer virology from a recursion theoretic
perspective. Journal in computer virology, 1(3-4):45–
54.

Cohen, F. (1985). Computer Viruses. PhD thesis, University
of Southern California.

Cohen, F. (1987a). Computer viruses. Comput. Secur.,
6(1):22–35.

Cohen, F. (1987b). Computer viruses: theory and experi-
ments. Computers & security, 6(1):22–35.

de Drézigué, D., Fizaine, J.-P., and Hansma, N. (2006). In-
depth analysis of the viral threats with openoffice. org
documents. Journal in Computer Virology, 2(3):187–
210.

Desnos, A. (2009). Implementation of k-ary viruses in
python. Hack. lu.

Desnos, A., Erra, R., and Filiol, E. (2010). Processor-
dependent malware... and codes. CoRR,
abs/1011.1638.

Filiol (2015). Malware of the future.
Filiol, E. (2005). Strong cryptography armoured computer

viruses forbidding code analysis: the bradley virus. In
EICAR 2005, pages 216–227.

Filiol, E. (2006a). Computer viruses: from theory to appli-
cations. Springer Science & Business Media.

Filiol, E. (2006b). Malware pattern scanning schemes se-
cure against black-box analysis. Journal in Computer
Virology, 2(1):35–50.

Filiol, E. (2007a). Formalisation and implementation as-
pects of K -ary (malicious) codes. Journal in Com-
puter Virology, 3(2):75–86.

Filiol, E. (2007b). Formalisation and implementation as-
pects of k-ary (malicious) codes. Journal in Computer
Virology, 3(2):75–86.

Filiol, E. (2007c). Metamorphism, formal grammars and
undecidable code mutation. International Journal of
Computer Science, 2(1):70–75.

Filiol, É. (2007d). Techniques virales avancées. Springer.
Filiol, E. (2012). Malicious cryptology and mathemat-

ics. In Cryptography and Security in Computing. In-
techOpen.

ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering

802

Filiol, E., Helenius, M., and Zanero, S. (2006). Open prob-
lems in computer virology. Journal in Computer Vi-
rology, 1(3-4):55–66.

Guyot, V., Gademer, A., Avanthey, L., Beaudoin, L., and
Erra, R. (2012). Swarm uav attack: how to protect sen-
sitive data. In Proceedings of European Conference on
Information Warfare and Security ECIW 2012.

Kleene, S. C. (1936). General recursive functions of natural
numbers. Mathematische Annalen, 112(1):727–742.

Kleene, S. C. (1938). On notation for ordinal numbers. The
Journal of Symbolic Logic, 3(4):150–155.

Kraus, J. (1980). Selbstreproduktion bei programmen.
University Dortmund (Feb 1980) http://vx. netlux.
org/lib/mjk00. html as of 21 oct 2007.

Moubarak, J., Chamoun, M., and Filiol, E. (2017a). Com-
parative study of recent mea malware phylogeny.
In Computer and Communication Systems (ICCCS),
2017 2nd International Conference on, pages 16–20.
IEEE.

Moubarak, J., Chamoun, M., and Filiol, E. (2018a). De-
veloping a k-ary malware using blockchain. In NOMS
2018-2018 IEEE/IFIP Network Operations and Man-
agement Symposium, pages 1–4. IEEE.

Moubarak, J., Chamoun, M., and Filiol, E. (2019). Hiding
malware on distributed storage. In 2019 IEEE Jor-
dan International Joint Conference on Electrical En-
gineering and Information Technology (JEEIT), pages
720–725. IEEE.

Moubarak, J., Filiol, E., and Chamoun, M. (2017b). Com-
parative analysis of blockchain technologies and tor
network: Two faces of the same reality? In Cyber Se-
curity in Networking Conference (CSNet), 2017 1st,
pages 1–9. IEEE.

Moubarak, J., Filiol, E., and Chamoun, M. (2018b). On
blockchain security and relevant attacks. In Commu-
nications Conference (MENACOMM), IEEE Middle
East and North Africa, pages 1–6. IEEE.

Mus, M. (2017). Ipfs, conception and future.
http://www.leprogrammeurmarocain.com/
ipfs-conception-future/.

Papadimitriou, C. H. (1994). Complexity theory. Reading:
Addison Wesley.

Riordan, J. and Schneier, B. (1998). Environmental key
generation towards clueless agents. In Mobile Agents
and Security, pages 15–24.

Shannon, C. (1949). Communication theory of secrecy sys-
tems. Bell Systems Techn. Journal, 28:656–719.

Shannon, C. E. (1956). A universal turing machine with
two internal states. Automata studies, 34:157–165.

Spinellis, D. (2003). Reliable identification of bounded-
length viruses is np-complete. IEEE Transactions on
Information Theory, 49(1):280–284.

Threats, K. (Retrieved June 5th, 2019).
Virus.dos.darkparanoid. https://threats.kaspersky.
com/en/threat/Virus.DOS.DarkParanoid/.

Tokhtabayev, A. G., Skormin, V. A., and Dolgikh, A. M.
(2010). Expressive, efficient and obfuscation re-
silient behavior based ids. In European Symposium
on Research in Computer Security, pages 698–715.
Springer.

Von Neumann, J., Burks, A. W., et al. (1966). Theory
of self-reproducing automata. IEEE Transactions on
Neural Networks, 5(1):3–14.

Zuo, Z. and Zhou, M. (2004). Some further theoretical re-
sults about computer viruses. The computer journal,
47(6):627–633.

Zuo, Z.-h., Zhu, Q.-x., and Zhou, M.-t. (2005). On the time
complexity of computer viruses. IEEE Transactions
on information theory, 51(8):2962–2966.

The Blockchain Potential in Computer Virology

803

