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Abstract: We propose a method to determine hand gestures using sEMG (surface Electromyogram) measured from the 
forearm. The detection method uses the LSTM (Long Short Term Memory) model of RNN (Recurrent Neural 
Network). Although the conventional method requires the learning data of the user, this is a method that an 
unspecified number of users can use immediately by enhancing the data. We have confirmed that the accuracy 
does not change even if the mounting position of the sensor is shifted. We have shown the effectiveness of 
the data enhancement by numerical experiments. 

1 INTRODUCTION 

People use hand gestures as a means of 
communication. Even though we use speech and 
facial expressions as the main means of 
communication, we use hand gestures as part of 
natural body language. In addition, we have 
organized the hand gestures as sign language and 
have been using it for conversation. Therefore, it is 
natural to think that we may employ the hand gestures 
as an interface to electronic devices and robots. In 
order to have a machine recognize hand gestures, we 
generally use two means. One is a method of using 
computer vision technique. That is recognizing a 
hand shape and its operation using imaging devices 
such as cameras and depth sensors.  

The other method is to acquire the shapes of the 
fingers and three-dimensional acceleration through 
sensors. In order to do so, we need to attach sensors 
to the fingers. In the former, external sensors such as 
cameras and depth sensors are required, and 
restrictions such as shooting range and effective 
distance are often imposed on the position of the 
sensor. In the latter, the human movements are 
restricted. In addition, the users have to endure from 
wearing such devices. Both methods need to be 
adjusted according to the shooting environment and 
the individual when using them. 

Many researchers have proposed variations of 
both methods. They are called classical methods, and 
are summarized in the reference (Mitra and Acharya, 
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2007). Information obtained from sensors and 
cameras is used to classify gestures. We can utilize 
various classification methods such as HMM (Hidden 
Markov Model), FSM (Finite State Machine) and 
PCA (Principal Component Analysis). 

Recently, we have witnessed a remarkable 
development of machine learning methods. Since the 
machine learning methods have dramatically 
improved the performance of the classifiers, many 
identification problems have been solved. Especially, 
many researchers have made neural networks 
perform machine-learning through the measured 
sEMG (surface Electromyogram) of forearms to 
identify hand gestures 

In this paper, we propose a method that identifies 
hand gestures by classifying sEMG obtained from 
forearms using commercially available sensors and 
deep learning method. The sensors used are Myo 
Gesture Control Armbands (hereinafter Myo) 
manufactured by Talmic Labs (now North). They are 
easy to attach and detach. We made eight sEMG 
sensors connected like a bracelet so that they are 
easily detachable from the forearm (Figure 1). The 
signals acquired from the eight sEMG are transmitted 
to a control device, i.e. a PC via the Bluetooth 
connection. Each sensor equips one 3-axis 
accelerometer and one 3-axis gyroscope. The weight 
of this sensor is 93g and the thickness is 11 mm. 
Therefore we can expect the users to feal little 
discomfort when they wear. Myo is suitable for direct 
operation in VR and AR. 
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Figure 1: Myo Gesture Control Armband. 

By using such simple sensors, we do not need to 
install cameras, which are required in conventional 
methods, nor attaching devices to fingers such as data 
globes, which require wire connections and 
adjustments. Furthermore, since mounting sEMG 
devices imposes little discomfort to the users, we can 
provide more natural interfaces. 

For hand gesture analysis, several conventional 
machine learning methods have been proposed for 
learning sEMG. They are methods using decision 
trees and HMM for sign language recognition (Zhang 
et al., 2011), methods using decision trees and k-NN 
(k-Nearest Neighbor) for hand gesture analysis (Lian 
et al., 2017), methods using PCA for prosthetic 
control (Matrone et al., 2011), methods using HMM 
and SVM (Support Vector Machine) (Rossi et al., 
2015), and methods using an application of ANN 
(Artificial Neural Network) to hand gesture analysis 
(Liu et al., 2017). 

The methods of classifying the pattern of sEMG 
by machine learning are roughly divided into two 
categories: one is dealing with static gestures and the 
other is that of including dynamic gestures. For 
dealing with only static gestures, it is sufficient to 
analyze a few snapshots for some moments of sEMG. 
In order to analyze general dynamic gestures, 
however, it is necessary to obtain time series gesture 
data. 

In order to classify time series data of sEMG for 
dynamic hand gestures, we use RNN (recurrent 
neural network). RNN is suitable for time series data. 
One particular RNN is especially suitable for time 
series data. That is LSTM (long short term memory) 
model. It is an extended version of RNN. 

The idea of analyzing sEMG by RNN is not new. 
It has been employed in the field of biomedical 
engineering and robotics since 1990’s. It has been 
used to estimate the angles of joints in a human body 
from sEMG, and to calculate motor control 
parameters that control robots, electric prosthetic feet, 
power assist suits (Koike et al., 1993; Koike et al., 
1994; Koike et al., 1995; Cheron et al., 1996; Cheron  

et al., 2003). 
Applying LSTM to sEMG time series data to 

classify gestures are found in (Wu et al., 2018; 
Samadani et al., 2018; Quivira et al., 2018). 
According to those experiments, LSTM improves the 
accuracy of the classification. 

The problem is that when using a simple sEMG 
sensor such as Myo to identify the hand gesture, a 
slight deviation of attaching the device greatly affects 
the acquired values of sEMG. It is difficult to measure 
the complex movement of the forearm muscles that 
are complex three-dimensional shapes with a sensor 
that can measure only the muscle potential of the 
body surface. Conventionally, this problem is 
avoided by providing a large amount of data for 
machine-leaning. However, this method requires a 
large amount of data for each user, and the learned 
classifier is effective only for that particular user. It is 
difficult to make classifiers ready for unspecified 
number of users. 

There are many proposals to classify sEMG by a 
classifier that is built by machine learning. However, 
most of them are tailored for a specific user. Because 
they are built from the user's own learning data. A 
user has to provide a large amount of his or her own 
data for the machine learning. There is no known 
attempt of trying to build a learned classifier for 
unspecified number of users. 

In this paper, we report our attempt to develop a 
hand gesture classifier that can be applied to an 
unspecified number of people by effectively 
augmenting several sEMG data. 

2 TARAGET GESTURES AND 
DETERMINATION METHODS  

2.1 Types of Target Gestures 

Figure 2 shows the target gestures. We classified six 
types of gestures (weakness, paper, lightly grasping, 
strongly grasping, pointing finger, and scissors). 

We measured each gesture, and took for each four 
seconds. Since we wanted to have practical setting, 
we did not exclude the duration time sEMG being 
stabilized. We started to measure sEMG for four 
seconds when the user started to perform each 
gesture. 

Sensor No
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Figure 2: Hand Gestures to measure. 

2.2 Configuring LSTM Networks  

We used SONY's Neural Network Console (NNC) as 
an integrated development environment for deep 
learning. We have fine-tuned the LSTM included in 
the NNC sample and used for learning. The LSTM 
that we used for learning has three gates (Input Gate, 

Output Gate, and Forget Gate) in the hidden layer. 
The hidden layer is called LSTM Block. Owing to 
this hidden layer, the LSTM exhibits high 
discriminant performance for time series data. Figure 
3 shows the structure of LSTM, and Figure 4 shows 
the network that was actually used for learning. 
 

 

Figure 3: LSTM Structure. 

2.3 Method for Obtaining Learning 
Data 

In this study, we constructed a system that records 
sEMG data obtained from Myo and stores in a CSV 
file for every 10ms (Figure 5). The digital values of  

 

 
Figure 4: Network Used for Learning. 

Input Layer                                          Output Layer
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the acquired sEMG are output in the range of -127 to 
127. In order to learn in the NNC, however, we had 
to convert the data into the normalized data ranged -1 
to 1 before outputting to the CSV file. Figure 6 shows 
an example of the output CSV file . 

 

Figure 5:  Measurement system. 

Figure 6: Example of a measured CSV file. 

2.4 Data Augmentation 

We added some random noise data range of -0.15 to 
0.15 to each measured sEMG datum. Further 
augmented data smoothed by taking the average value 
for every 20ms. We then generated ten new data with 
random noise from one measurement datum and 
added to the original data. We made learning be done 
with dataset eleven times as the original data. 

 

Figure 7:  Measured sEMG data. 

Figure 7 and 8 show an example of the data measured 
by sensor No. 0 and the corresponding newly 
generated data by adding noise respectively. 

 

Figure 8: sEMG data with augmented processing. 

3 EXPERIMENT 

3.1 Accuracy of Reattaching Myo 

The author measured his own learning data (2,880). 
When we measured Myo continuously for learning 
data and evaluation data without attaching and 
detaching, the accuracy was 96.38%. On the other 
hand, when we measured Myo for learning data, 
detached Myo, and then measured the evaluation data 
by attaching the same position as the previous time as 
much as possible, the accuracy of the evaluation data, 
which were determined by the previous learned 
parameters, was 35.00%. We can observe that the 
accuracy decreased significantly by the deviation at 
the time of mounting. 

We measured the learning and evaluation data by 
re-wearing Myo at seven angles deliberately shifted 
by 15 degrees for the deviation. We made the 
machine learn with a total of 22,680 data. The 
evaluation data were data measured after re-wearing 
Myo. As a result, we found 93.3% accuracy even 
when there was a deviation of re-wearing Myo. From 
this, it can be said that it is possible to prevent the 
decrease of the accuracy due to deviation at the time 
of mounting, by mounting it in several places. 

Table 1 shows the evaluation results when the 
learning data was measured by wearing Myo at seven 
angles. The accuracy shown in Table 1 is the 
percentage of correctly determined in all inferences. 
The precision is the rate of correctly determined and 
estimated to be true. The recall is the percentage of 
estimated to be true if the data is true. The F-measures 
is the harmonic mean of the precision and the recall. 

Table 1: Evaluation results of learning. 

Accuracy 93.3% 
Precision 94.2% 

Recall 93.3% 
F-Measures 93.3% 

Time [ms] 

Time [ms] 
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3.2 Gesture Classification on Different 
Subject's sEMG 

We have investigated whether an unspecified number 
of users can use the current learned parameters. We 
have employed three new subjects, and repeated the 
measurement 60 times. We have used the previously 
learned parameters described above, and determined 
with the data of three people. As a result, the average 
of the correct answer rate of the three people 
significantly decreased to 43.89%. Table 2 shows the 
discriminant results. 

Table 2: Determination results for each subject. 

Gesture 
Type 

Recall of 
Subject A 

Recall of 
Subject B 

Recall of 
Subject C 

Paper 40.0% 0.0% 70.0%
lightly 

Grasping 
20.0% 20.0% 0.0% 

Strongly 
Grasping 

80.0% 50.0% 80.0% 

Pointing 
Finger 

80.0% 60.0% 100% 

Scissors 60.0% 0.0% 0.0%
weakness 70% 60.0% 0.0%
Average 58.3% 31.7% 41.7% 

 
When examining the gestures individually, the 
"strongly grasped" and "pointing finger" gestures 
provided a high accuracy regardless of the 
individuals, but "lightly grasping" and "scissors" 
gestures hardly provided any accuracy. Figures 9 and 
10 show examples of sEMG measurement data for the 
"lightly grasped" and "scissor" gestures. We can 
observe that the signals created by "lightly grasping" 
and "scissors" actions display variety of wave forms. 
They clearly differ from each other in the way of 
applying muscle power. It seems that each different 
individual applies his or her muscle power for "lightly 
grasping" and "scissors" in a quite unique way. 

 3.3 Results of Data Augmentation with 
Random Noise 

In order to find out whether the accuracy can be 
improved by the data augmentation, we have acquired 
additional data. The subjects were asked to wear Myo 
at three angles and we measured 3,240 data. In the 
experiments, we added some random noise data to 
these collected data, and augment the number of data 
eleven times as many as the original ones, and made 
perform learning with 35,640 data. We measured 
another set of 3,240 evaluation data in the same 
manner as the learning data. As a result of learning 

only the measured data, the accuracy was 75.03%. 
The accuracy of learning that augmented the data was 
78.48%. In other words, the accuracy improved by 
3.45%. 

We observed a little improvement of the accuracy. 
Even though for some gesture, we observed a case 
where learning with only measurement data showed 
higher accuracy than learning with augmented data, 
in general, learning with augmented data displays 
better accuracy. Table 3 shows the discriminant 
accuracy of each gesture of the classifier learned only 
by the measurement data and the classifier learned 
using the augmented data. 

 

 

 

Figure 9: Lightly Grasp (Upper: Learning Data, Lower: 
Subject A). 
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Figure 10: Scissors (Upper: Learning Data, Lower: Subject 
A). 

Table 3: Changes in detection rates due to data 
augmentation. 

Gesture 
Type 

Recall of 
Measured Data 

Recall of 
Augmented Data 

 Paper 61.7% 50.0%
lightly 

Grasping 
82.6% 77.0% 

Strongly 
Grasping 

94.1% 96.7% 

Pointing Finger 85.9% 64.8%
Scissors 31.5% 82.4%

weakness 94.4% 100.0%
 
Table 4 and Table 5 show the evaluation results by 
each classifier. 

Table 4: Evaluation Results for Measurement Data only. 

Accuracy 75.0% 
Precision 77.3% 

Recall 75.0% 
F-Measures 74.0% 

Table 5: Evaluation Results with augmented Data. 

Accuracy 78.5% 
Precision 80.4% 

Recall 78.5% 
F-Measures 78.0% 

4 DISCUSSION 

By attaching Myo and changing the angle several 
times, we could improve the accuracy even if the 
subjects re-wear Myo. The reason for this 
phenomenon might be the leaning does not only 
depends on the value of each sEMG sensor, but also 
it depends on the numerical balance of the eight 
sEMG sensors. By learning the data with unfixed 
angle, we could avoid the over-fit that depends on a 
specific sensor. 

We have found that different individuals provide 
different output values of sEMG even with the same 
gesture. In order to avoid overfitting individual-
dependent features, it is necessary to measure data 
from a large number of people. The need to collect 
data from many people is clear from the result that the 
accuracy decreased to 43.89% when we applied one 
specific person's data to others. 

On the other hand, the method of changing the 
angle while measuring requires a large number of 
repetitions of measurement, thus requires an 
extremely long measurement time. In order to 
measure data efficiently, data expansion is essential. 

With parameters learned by a specific individual’s 
data, the accuracy becomes very low as determining 
the gesture of another person. One of the reason is that 
the way of the muscle power applied to the fingers of 
each person is different even in the same gesture 
movement. For example, in the case of the "scissors" 
gesture, some people don't put any muscle force on 
their thumbs, and some other people put their thumb 
and ring finger on top of each other. Even performing 
the same gesture, there are different patterns in which 
applying the muscle force. It is difficult to determine 
the gesture in such cases. 

The second reason is that the effect of individual 
differences in the muscle strength of the entire hand. 
Even with the same gesture, the condition of applying 
muscle force to the whole hand is different. Although 

Time

Sensor No  
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sEMG may be able to solve this by normalizing the 
width between the maximum value and minimum 
value of the measured value, it may be difficult to 
distinguish between the state of straining muscle and 
the state of relax. Therefore, to grasp the force level 
of each subject in advance, it is necessary to match 
the process of some criteria. For example, we can 
divide the power levels into three stages of weak, 
medium, and strong, and then instruct the subjects to 
gesture at the level of "medium". 

In machine learning, by collecting and learning 
data from a large number of subjects, it should be 
possible to generate a classifier that is not affected by 
individual differences, such as strength of force and 
differences in finger usage. However, it is too 
expensive to collect a large amount of data that needs 
to be physically measured. Therefore, data 
augmentation is also important in this perspective. 

In this data augmentation, we have added some 
noise data directly to the sEMG sensor measurement 
data. However, we are planning to add random noise 
only to the fine features that is maintaining the 
characteristics of frequency spectrum envelope just as 
the analysis method of the audio signal. With this new 
data extension method, it may be possible to generate 
artificial data with similar characteristics to the 
measurement data. Although not included in this 
paper, the preliminary experiments suggest that a new 
data extension method is effective. 

5 CONCLUSION 

Hand gestures are not only providing a means of 
communication between people, but also attracting 
attention as a method for operating electronic devices 
and robots. Conventional recognition method using 
computer vision requires camera and method using 
sensors requires wearing glove-type devices.  

In recent years, the performance of the classifier 
by machine learning method such as deep learning 
has been improved. Therefore, there are many studies 
that try to improve the discriminant accuracy by 
learning sEMG of hand gestures. In this study, we 
measured sEMG using the armband type device Myo, 
which is easy to attach and detach, and learning by 
the network of LSTM model of RNN, and 
experimented with the method of determining the 
hand gestures for an unspecified number of subjects. 

We have performed the following experiments. 
1. Discriminant accuracy by wearing Myo with 

deviation. 

2. Discriminant accuracy in classifiers learned 
by data measured by deliberately shifting 
angles. 

3. Expansion of learning data by random noise. 
 

The summary of the experimental results are as 
follows.  

1. By learning with the data measured by 
wearing Myo from multiple angles, the 
inaccuracy due to the wearing deviation is 
reduced, and robustness is improved.  

2. As the data extension, the improvement of 
the discriminant accuracy can be expected 
by adding noise. 

As a future direction, we will try to reduce the 
influence of individual muscle force by measuring at 
the strength level of weak, medium, and strong. In 
regard to the data augmentation, we are planning to 
develop an interface that can be used by anyone with 
minimal adjustment by trying a method to generate 
similar to artificial data that maintains the 
characteristics of spectral envelope. 
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