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Abstract: Ecosystem preservation and production maximisation are competing objectives in agriculture. Reducing the
need of undifferentiated or late interventions on the crops would reduce the number of disease treatments
needed, as well as the consumption of water and fertiliser. This objective is only attainable through crop mon-
itoring systems able to reach a single plant. Precision agriculture employ continuous and pervasive monitoring
of crops, that in turn allows fast and targeted interventions. The aim of this paper is to highlight the problems
that can be found in designing a wireless sensor network (WSN) able to measure environmental parameters
such as relative humidity, irradiance and volatile pollutant concentration and introduces a possible solution
that we named the Internet of Trees.

1 INTRODUCTION

To optimise production and reduce waste of re-
sources, a detailed knowledge of the health state of
the crop, soil, water and nutrient reservoir needs to be
built (Ehlers and Goss, 2016). Up to now, such infor-
mation has been extrapolated by airborne LiDAR or
by processing satellite images. Both techniques have
high costs and suffer from low resolution (Estornell
et al., 2014; Cunha et al., 2015); moreover, even if
these approaches allow to evaluate the state of health
of the crop, they have poorly results on early detec-
tion of plant disease (Zhang et al., 2019). On the other
hand, the Volatile Organic Compounds (VOCs) have
been demonstrated to be early markers of the state of
health of the plant (Martinelli et al., 2015).

To this purpose, several techniques such as gas
chromatography mass spectrometry (GC-MS) or elec-
tronic noses have been used to detect and estimate
volatile compounds in crops (Martinelli et al., 2015).
Nevertheless, these techniques have been used to es-
timate gas concentrations in single points within the
crop that cannot supply any information on the state
of the whole farm. To this purpose, we will inves-
tigate how to design a wireless sensor network en-
dowed with a customised set of sensors able to detect
volatile pollutants and the relevant VOCs, and a tool
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for data collection, processing and visualisation, able
to extrapolate detailed maps of the crop health.

The parameters measured by each node provide
information on the status of the crop with a detail
that depends only on the number of nodes composing
the network, and that can reach even a single plant.
In addition to local information, trends and dynam-
ics across fields can be obtained in post-processing
and this derived information can be useful to organ-
ise farming interventions. With the aim of highlight-
ing the different information that can be extrapolated
by the WSN, an appropriate system of data collec-
tion, processing and visualisation needs to be im-
plemented. In the implementation of a such perva-
sive network two main problems arise: (i) Long time
working time of the single node, i.e. low energy con-
sumption and energy harvesting. (ii) Network recon-
figuration in case of node failure, and easy access to
single node information.

In this paper, we will introduce a WSN to monitor
the environmental parameters of the crop and a web
based platform for data collection, processing and vi-
sualisation. In particular, we will clarify which are
the main characteristics that a WSN for precise agri-
culture should have and how can be obtained thanks
to an integrated design of the hardware and software.

Our user target is initially the agronomy commu-
nity, with the goal to expand it to the farmer commu-
nity when the system will be more widespread.

In the following sections, we will describe our
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idea of the hardware and network architecture, and
the features that they should have to fulfill our require-
ments to guarantee adequate monitoring performance.
At the end of every section we will present some im-
plementation examples.

Related Work

In the last years, precision agriculture has been identi-
fied as a promising research field to improve the mon-
itoring and managements of crops.

While few studies propose crop automation so-
lutions (e.g. automated ventilation in (Stipanicev
and Marasovic, 2003) or irrigation as in (Sahu and
Mazumdar, 2012)), the majority of them focus on
crop monitoring, using mainly humidity, light and
temperature sensors (Fisher and Kebede, 2010; Dan
et al., 2015; Patil and Kale, 2016; de Lima et al.,
2010; Yoo et al., 2007; Jiber et al., 2011).

We refer to the extensive review papers in preci-
sion agriculture for more information on the state of
this research field (Liaghat et al., 2010; Brisco et al.,
1998; Ge et al., 2011; Jawad et al., 2017).

Novelty

While the use of WSNs for monitoring, management
and prediction purposes is not new, to the best of our
knowledge no previous work addressed the goal of
integrating chemical sensors in the network nodes for
precise agriculture. Such an ambitious goal would al-
low to understand the disease diffusion process, their
correlation with other environmental parameters, and
to build more accurate disease prevention models.

2 HARDWARE ARCHITECTURE

The hardware part of the network, i.e the nodes, have
to fulfill several main tasks: (i) Acquire the sensor
data. (ii) Communicate the sensor data. (iii) Harvest
energy. (iv) Minimize the energy consumption. In
Figure 1, a schematic representation of a possible ar-
chitecture of a WSN node satisfying the aforemen-
tioned constraints is shown. The node is based on
a micro-controller (µC) and at least a wireless inter-
face. The µC is assisted by a Battery Management
(BM) and a Maximum Power Point Tracking (MPPT)
circuit, for the power management, finally electronic
interfaces are required for the physical and chemical
sensors.

With more details, the micro-controller perform
the data reading from the sensors, manage the energy
harvesting and the power consumption and elaborate

Chemical 

gas sensor

Physical 

Sensor

mC RF interface

BM

MPPT

Figure 1: Schematic representation of the sensor node ar-
chitecture. In particular three main parts are highlighted:
the battery management (BM) and the Maximum Power
Point Tracking (MPPT) circuits; the Microcontroller (µC),
the Radio Frequency (RF) interface; the physical sensors
(Light intensity and Temperature) and the chemical sensors
(Relative Humidity, VOC sensors).

the data to send to the RF interface. The RF inter-
face should supports different protocol, in order to
allow the communication in long range (LoRa), but
sometimes a single node short range communication
could be useful to download single node information,
perform node debug, or simply for updating the node
GPS position during the installation procedures.

The MPPT and BM circuits have the role of opti-
mizing the power transfer from a photovoltaic panel
towards the battery, preserving the battery function-
ality and energy in order to guarantee a continuous
functioning of the nodes in the long period without
maintenance. The solar energy appears as an obvi-
ous source of energy since these nodes will be placed
onto the tree in a crop, nevertheless the foliage could
sometime darken the panel.

3 SENSORS

Light, water and CO2 are the three main components
that sustain the plant life (Ehlers and Goss, 2016), any
lack of these three components have an effect on the
state of health of the plant, at the same time, light and
temperature have effect on the fruit maturation (Uzun,
2007), VOCs are markers of state of health of the
plant (Martinelli et al., 2015), and the levels of plant
bioregulator (Rademacher, 2015) have effect on the
flowering, fruit formation, ripening, fruit drop, defo-
liation, etc.

In order to extract the information about the state
of health of the plants and if they are suffering a lack
of water or nutrients, several sensors have to be inte-
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grate into the sensor nodes. Fundamentally, three kind
of sensors should be integrated: (i) Physical sensors to
measure temperature and radiance, (ii) Chemical sen-
sors to estimate VOCs, gases and vapors, (iii) Elec-
tro-chemical sensors to evaluate the levels of bio-reg-
ulators.

Physical sensors enable to know the surrounding
condition of the crop environment. Light intensity
and temperature are the main physical quantity that
should be measured since they are correlated with
several plant conditions and fruit maturation. Com-
mercial available physical sensors reach level of per-
formance that satisfies the need of the application.

Different consideration have to be done for chemi-
cal gas sensors and electro-chemical sensors. Chemi-
cal gas sensors have to perform two different tasks:
(i) quantify gas, vapors and VOCs, (ii) discrimi-
nate the different VOCs; these tasks require differ-
ent sensor approaches. In volatile quantification,
selective sensors are more appropriate, whereas, in
volatile discrimination an approach based on elec-
tronic nose (Gardner and Bartlett, 1994) is more ef-
ficient. In both cases, the research in low power, ad-
justable selectivity, and stability are still going for-
ward. Among the different kind of chemical sensors,
polymeric based (Bai and Shi, 2007) and metal ox-
ides (Polese et al., 2017; Polese et al., 2015; Zhu and
Zeng, 2017; Sun et al., 2012) show interesting char-
acteristics.

On the other hand, electro-chemical sensors need
to be functionalised to detect the appropriate bio-
regulator, this generally needs the interaction with
chemist or biologist to optimize their structures. Ex-
amples of this kind of sensors can be find else-
where (Khater et al., 2017; Maiolo et al., 2016).

4 NETWORK ARCHITECTURE

WSNs for precise agriculture need to cover large cul-
tivated area, work for long time without maintenance,
and to be re-configurable under node failure or node
integration. We found that the Thread network pro-
tocol (https://www.threadgroup.org), and in particu-
lar OpenThread, the Google open-source implemen-
tation of it (https://openthread.io/) satisfy these re-
quirements ant it has be chosen in order to have a
re-configurable network that can easily prevent node
failures and work under stringent energy constraints.

A traditional Wireless multi-hop structure will be
employed, with a small number of border routers con-
nected to the Internet, and a dense network of nodes
equipped as described in the previous section. This
solution is adequate for crops that need to accommo-

Figure 2: Example of WSN structure in olive orchard. In
the figure, the different roles carried out from the nodes are
highlighted.

date hundreds of nodes and a limited (less than 32)
number of routers. For bigger crops, a solution based
on Contiki and RPL ( IPv6 Routing Protocol for Low-
Power and Lossy Networks) might be more appropri-
ate (Ellmer, 2017).

We will develop adaptive algorithms to dynami-
cally adapt the sensor report frequency depending on
the energy requirements and the measurement vari-
ability in that space and time frame.

Location Mapping

After the installation phase, a GPS equipped de-
vice can map the position of the sensors, using a
combination of anchoring during the pairing pro-
cess and RSSIs-based multilateration for error correc-
tion (Hightower and Borriello, 2001).

5 DATA VISUALIZATION
DASHBOARD

To build a dashboard, we will investigate the use of
Google Data Studio (Snipes, 2018), as well as open-
source solutions like chartist.js (Kunz, 2014) or can-
dela, using the Resonant data and analytics platform.
We aim at following the state-of-the-art of dashboard
design best practices (Elias and Bezerianos, 2011).

The main interface of the dashboard will show a
map of the crop, with an estimation of the health of
the crop. By clicking on a region in the map, an his-
toric trace of the health of that area will be shown.

The health parameter of an area is not the raw
sensor data, but rather a time and spatial interpolated
summary of the neighbouring nodes status, consider-
ing each sensor thresholds in an adequate time win-
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dow. This is obtained using health rules, that are a set
of conditions an area is supposed to satisfy. Health
rules can be time-dependent (e.g. different during the
night), and be as simple as independent thresholds for
each sensor, but also encompass complex joint rules
(e.g. humidity thresholds can depend on luminance
values). Health parameters (low and high threshold,
time and spatial tolerance) for each sensor can be
manually set in a configuration section of the dash-
board, or downloaded from an online database.

The user will be also be able to visualise the raw
measurements from the sensors in this section of the
dashboard. Advances health rules warning can be set
up using modeling and predictive tools, as explained
in the next section.

An example of a dashboard for an olive orchard is
shown in Figure 3.

Figure 3: Example of data visualization dashboard for an
olive orchard, (design elements from freepik.com).

6 MODELING AND PREDICTIVE
TOOLS

We aim to build a database of health parameters and
health warning rules, that depend on the geographic
position of the crop and the type of cultivar. This will
be obtained with an extensive analysis of the litera-
ture in the agriculture field. Moreover, farmers will
be able to contribute to this database by inputting their
configurations and their rules: the challenge here is to
convert the farmer experience to algorithmic rules, to
be able of learning from the agronomy community.

A challenging goal of this project is to be able
to assist the planning of crop irrigation, fertilization
and treatment: we aim to build health models able to
early pinpoint the need of an intervention in an area,
reducing the size of the area treated and potentially
reducing the effect of the issue because of the model
predictive abilities (e.g. for olive orchard (Testi et al.,
2006; Moriana et al., 2003)).

7 CONCLUSIONS

In this paper, we introduced the main challenges that
arise when designing a Wireless Sensor Networks for
monitoring the health of a crop. In particular, we have
identified the most important physicals and chemicals
features that should be monitored to assess the health
of a crop and potentially predict future issues. We dis-
cussed which characteristics a network node should
have and the network protocols that should support.

Moreover, the use of an appropriate dashboard for
the data visualization can help the user to understand
the evolution of the state of health of the crop, and
provide them with a tool to investigate how to opti-
mize irrigation, fertilisation and the phytosanitary in-
terventions in order to maximize the production and
minimize the environmental side-effects. In the fu-
ture, these approaches could also be directly used by
farmers to improve agriculture worldwide.
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