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Abstract: For the provision of efficient and high-quality public transport services in rural areas with a low population 
density, the introduction of Demand Responsive Transport (DRT) services is reasonable. The optimal design 
of such services depends on various socio-demographical and environmental factors, which is why the use of 
simulation is feasible to support planning and decision-making processes. A key challenge for sound 
simulation results is the generation of realistic demand, i.e., requests for DRT journeys. In this paper, a method 
for modelling and simulating commuting activities is presented, which is based on statistical real-world data. 
It is applied to Sjöbo and Tomelilla, two rural municipalities in southern Sweden. 

1 INTRODUCTION 

In minor municipalities and rural areas with low 
population density, it is challenging to provide high-
quality Public Transport (PT) services that are also 
economically viable (Velaga et al., 2012). The small 
number of passengers often result in unsatisfactorily 
large distance to the nearest bus or train stations and 
low service frequency, resulting in low service 
utilization, making people turn towards private cars. 

The need for private individual transport can be 
reduced by implementing Demand Responsive 
Transport (DRT), which has potential to improve the 
convenience of and access to PT (Mulley et al., 2012). 
By supplementing or replacing existing PT, DRT 
enables passengers to dynamically request pick-ups at 
specific locations, e.g., their homes, and be brought 
either directly to their destination or to a suitable PT 
stop, where they can continue their journeys.  

In practice, DRT services have been introduced 
and tested in different cities and countries (Pettersson, 
2019). However, many services were discontinued 
due to, e.g., poor scalability, integration issues, or 
insufficient service utilization. Still, PT providers and 
municipalities see DRT as a means to reduce PT costs 
due to its demand-based deployment. Passengers, in 
turn, may enjoy taxi-like accessibility of a bus. To 
assess the effects of introduction of DRT service, a 
simulation can be used. To make an assessment of a 

specific DRT design on a specific area, we need to 
model realistic traveller requests that correspond to 
the specifics of real-world requests such as the 
requested arrival time as well as pick-up and drop-off 
locations. This paper presents a method for 
generating artificial, synthetic, travel demand for the 
population of a municipality. It is applied to model 
DRT requests of commuters that use PT to reach their 
workplace. The method’s feasibility to generate 
artificial commuting activities is demonstrated using 
the example of Sjöbo and Tomelilla, two 
neighbouring rural municipalities with approximately 
32 700 inhabitants, which are located in southern 
Sweden.  

In this paper we present a method for generating 
artificial, synthetic, travel demand with realistic 
service requests. The method is a mixture of the 
classic four-stage approach and agent based 
modelling, where 1) the amount of trips is predicted 
on a zone basis, 2) trips are distributed between zones 
with a gravity model, and 3) trip flows between zones 
are disaggregated to individual trips and parameters 
as time and exact location are assigned to them. The 
traffic assignment and mode choice steps are 
integrated in an agent-based simulation of a DRT 
fleet. The method is applied to model DRT requests 
of commuters that use PT to reach their workplace. 
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2 DEMAND RESPONSIVE 
TRANSPORT 

An implementation of public DRT service may 
provide better travel opportunities and may be 
financially more viable comparing to regular PT, 
especially in low population density areas. The 
availability of technological advances such as 
smartphones, mobile Internet, and vehicle positioning 
systems, have further promoted the interest in such 
transportation concepts (Pettersson, 2019). In this 
section, we highlight current approaches for the 
implementation of DRT and outline the potentials of 
simulation for assessing different designs. 

2.1 Approaches for DRT 

DRT, sometimes also referred to as Flexible Transit 
Service or Dial-a-Ride transit, is a dynamic 
transportation service that is flexible in route or time, 
geared to the needs of the travellers (Mageean & 
Nelson, 2003). Examples of ongoing services are 
ViaVan1, PickMeUp2, or ArrivaClick3.  

There exists a variety of design options when 
planning DRT services. This includes, e.g., the 
number of allowed pick-up and drop-off points, 
routing options, booking time-windows, and vehicle 
settings (Daniels & Mulley, 2012). While door-to-
door pick-up and drop-off are most convenient for 
customers, they might result in increased planning 
efforts, operational costs, route lengths, and travel 
times. Likewise, DRT services can be either offered 
only on the first- or last-mile to complement existing 
PT lines or for entire trips. Finally, the size of the 
time-window where customers are able to request 
journeys must be defined. While early requests 
simplify the planning of vehicles, it limits the 
travellers’ flexibility and might affect the acceptance 
of the service. It is challenging to identify an 
individual and suitable design for a given target group 
and environment (Sharmeen & Meurs 2018). 

2.2 Simulation of Demand for DRT 

Computer simulation is considered well-suited to 
analyse and compare different DRT design options 
prior to their implementation (Deflorio et al., 2002). 
It allows, for instance, for the identification of 
optimal zones, time-windows, or fleet size 
(Quadrifoglio et al., 2008). Prior to the real-world 
rollout of Kutsuplus pilot study in Helsinki, Finland, 
                                                                                                 
1 https://www.viavan.com/ 
2 https://pickmeup.oxfordbus.co.uk/ 

between 2012 and 2015 (HSL, 2016), Jokinen et al. 
(2011) simulated the DRT to assess its cost 
effectiveness. The applied trip demand model was 
based on a Poisson point process, which does not 
consider local travel conditions, e.g., residences of 
passengers or existing road- or PT networks (Hyytiä 
et al., 2010). 

Yu et al. (2016) and Ke et al. (2017) apply neural 
networks for predicting passenger demand. A 
drawback of this approach is the required size of the 
training dataset. To overcome this, Ke et al. extract 1 
000 000 random orders from an existing DRT service. 
Hence, this approach is most feasible for improving 
an existing service, while it is challenging to apply for 
future services or services in different environments.  

Another approach for the generation of artificial, 
realistic, activities of persons include activity-based 
demand generation (ABDG), where intelligent agents 
proactively request journeys according to predefined 
behaviours. Rieser et al. (2007) demonstrate the 
combination of ABDG and traffic simulation using 
the MATSim simulator. The feasibility of ABDG has 
also been shown in other domains, e.g., smart homes 
(Renoux & Klügl, 2018). Moreover, population 
synthesis is a class of statistical approaches for 
predicting decision-making, which can be also 
applied to transport scenarios (Müller & Axhausen, 
2010). Still, both machine learning and agent-based 
approaches require detailed high-quality data on 
individuals and motivations for a specific behaviour.  

Deflorio (2011) outlines how the space-wise and 
time-wise dispersion of travel demand in DRT 
scenarios can be simulated. The author presents the 
use of Monte-Carlo methods and assumes that the 
number of requests per area is known and that 
detailed data in the current use of PT is available. 
Based on this, Deflorio derives probability 
distributions for estimating commuting behaviour on 
a zone-level. 

We may conclude that simulation has been proven 
suitable for investigating DRT design and utilization. 
Unrealistic representation of demand, disconnected 
from the real-world demand for DRT simulations, is, 
however, a weak point of many simulations. We 
argue that case-studies of realistic environment are 
required to understand how to get more benefits from 
DRT in a specific area. 

 
 
 
 

3 https://www.arrivabus.co.uk/arrivaclick/ 
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3 CASE STUDY OF SJÖBO AND 
TOMELILLA 

In a case study, we simulated DRT usage, aiming to 
identify how DRT can be implemented with 
maximum benefit, in the two rural municipalities of 
Sjöbo and Tomelilla. They are located in the Skåne 
County in the southern Sweden. They are the home to 
approximately 32 700 inhabitants, and they lie in the 
rural part of Skåne with a distance of 40–75 km to 
larger cities Kristianstad, Trelleborg, Lund, and 
Malmö. As of 2019, Sjöbo and Tomelilla have no 
regular, local, public transport, but they are connected 
with 9 bus lines: 6 with connection to close-by 
municipalities and 3 express lines to the above-
mentioned cities, yet, with only a small number of 
stops in central Sjöbo and Tomelilla. Tomelilla also 
has a railroad connection. As a part our simulation 
study, we developed a method to generate a realistic 
demand of DRT journeys. 

3.1 Available Data Sources 

It is generally known that modelling activities are 
highly dictated by the availability of data in a selected 
region. To estimate the demand for DRT services, 
data on living and working conditions of the 
investigated municipalities are required. Statistics 
Sweden 4  (SCB), the national statistics agency, 
provides aggregated socio-demographical 
characteristics in order to ensure the privacy of 
individuals. 

To derive more detailed information, data from 
different registers must be combined. The Swedish 
SAMS (Small Areas for Market Statistics) areas, 
which divides municipalities and cities into areas with 
an approximately equal number of inhabitants, is a 
typical basis for aggregation publicly available data. 
In our case study, the travel analysis zones are defined 
by SAMS. There are 17 zones in Sjöbo and 20 zones 
in Tomelilla. Other studies make use of these areas as 
well, such as the investigation of travel habits (RVU, 
2018). We base our study on RVU from year 2013 as 
we have full access to the dataset. RVU contains 
detailed travel information on 24 483 individuals in 
Skåne including their travel origin and destinations, 
specified on SAMS zone level, reasons for travel, and 
travel times, as well as information on their 
availability of other transport means, e.g., car or bike. 

Geographical Sweden Data 5 (GSD) is a public 
database that contains data on the position and 
purpose of buildings, e.g., residential house, 
                                                                                                 
4 http://www.statistikdatabasen.scb.se/ 

industrial facility, or public building. While 
residential houses serve as home for commuters and 
thus tend to be the origin of commuting activities, 
industrial and public buildings are usually worksites 
and thus the destination of commuters. 

 

Figure 1: Transportation modeling process. 

4 MODELLING COMMUTING 
ACTIVITIES 

To investigate and assess the suitability of different 
DRT design choices, a model is required that allows 
for the dynamic planning and scheduling of DRT 
vehicle routes based on trips requested by travellers. 
In this section, a method for the generation of 
artificial commuting activities, i.e., work trips (home-
work-home sequences), is presented. We used a 
stepwise approach on the transportation modelling 
process for forecasting travel demand presented by 
Johnston (2014) (cf. Figure 1). In our study, steps 3 
and 4 are implemented in a simulation model. 

Due to reasons of data privacy, it is difficult to 
obtain detailed and reliable data on travellers’ habits, 
routines, and commuting activities. Thus, the required 
information must be deduced from other information 
sources, such as interviews, surveys or census. In 
these sources, data is often aggregated, e.g., for 
defined regions or groups, to ensure anonymization 
of the surveyed individuals, as it is the case in 
Sweden, where travel surveys are aggregated to the 
level of SAMS zones. The goal of the presented 
method is to build a transport demand model, based 
on statistical data, that allows for the estimation of an 
origin-destination (O-D) matrix on the number of 
commuting activities between multiple areas. 
Moreover, the start and end location as well as the 
time of each request need to be estimated in order to 
enable realistic simulation of DRT use. 

5 https://www.geodata.se/geodataportalen/ 
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Figure 2: Trip generation method. 

4.1 Trip Generation 

The goal of the trip generation step is to estimate the 
travel demand, i.e., the number of trips that start (have 
origin Oi) and end (have destination Di) in each of the 
predefined zones i. We use the terms production and 
attraction, which are used to describe traffic flows, 
where households “produce”, and workplaces 
“attract” trips or commuters. This step does not yet 
connect of origins and destinations (where from and 
where to trips are made). In the case of lacking 
individual survey data, such information can be 
deduced or predicted based on socio-demographic 
and household data (De Dios Ortúzar & Willumsen, 
2011). Due to limited availability of data, we limited 
the application of presented methodology to one 
purpose of journeys, which is commuting to work. 
Moreover, we explore a target group, commuters, that 
is not typically eligible to use DRT services. As 
home-work-home sequences start and end at the same 
location, they will be generated as one tour, 
consisting of two distinct trips. The return trip home 
is not counted towards production of a zone of a 
workplace. 

An approach that can be used for estimating the 
relationship between attraction and production of 
regions (zones) and socio-demographic data is linear 
regression trip generation models (De Dios Ortúzar & 
Willumsen, 2011). The benefit of regression is that it 
is simple, it produces interpretable results, and works 
sufficiently well with a medium sized dataset. 

When using regression models to estimate travel 
demand in terms of ingoing and outgoing work trips, 
it might occur that the sum of all respective trips over 
all zones is not equal. According to De Dios Ortúzar 
and Willumsen (2011), the assumption can be made 
that the overall sum of outgoing trips (T) is correct 
because the amount and quality of data on housing is 
typically better, and the number of ingoing trips is 

adjusted accordingly by factor f for all destination 
zones Dj with 

f	ൌT ∑ Djj
ൗ  . 

For our case study, we build a regression model to 
predict the number of trips produced and attracted by 
the municipalities of Skåne. Then we apply the model 
to predict the amount of trips in each SAMS zone of 
the target municipalities. To produce sane non-
negative results, we used lasso regression with zero 
intercept and strictly positive coefficients. We used 
demographical (different statistics on population 
size) and land use data (amount of buildings by type) 
out of which data on the day population (considering 
the workplace of individuals), night population 
(considering the residence of individuals) was 
significant and not strongly linearly correlated. The 
dependent variable for fitting, the number of outgoing 
journeys, is calculated based on SCB data on 
commuters between municipalities and adjusted by 
the average daily trip ratio extracted from the RVU 
2013 survey (cf. Figure 2). 

The resulting model is presented in Table 1. There 
is not enough data in the RVU surveys to compare the 
model with the trips between SAMS zones, so the 
data were aggregated back to the level of 
municipalities and the predicted aggregated data is 
compared to the original data of production of 
municipalities from SCB. R2adj=0.99988 with a mean 
deviation in the amount of trips of 70 trips and 
standard deviation of 155. 

Likewise, the number of buildings that might 
serve as workspace, the day population in the public 
and economic sector, the number of inhabitants that 
are between 25 and 44 years (age range according to 
SCB division) are used to construct an attraction 
regression model (cf. Table 2). R2adj=0.9998, where 
the average deviation of predicted attraction 
aggregated to municipalities from SCB data is 94 
trips with standard deviation of 293. 

The results of the production model show that 
employees of private sector produce more trips than 
of public sector. However, the situation is opposite in 
relation to attraction. An explanation can be that the 
number of industrial buildings explains attraction 
better that the amount of registered people. 

4.2 Trip Distribution 

After estimating the total number of work trips that 
have their origin or destination in a specific zone, the 
next step is to generate a trip matrix, which contains 
information  on  the  number  of  trips  (Tij)  that  occur 
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Table 1: Production regression model. 

 
Coefficient 

Std. 
Error 

t-value*

Employees Public 
Sector (Night pop.) 

0.5158 0.018 28.324 

Employees Economic 
Sector (Night pop.) 

0.6993 0.010 68.610 

Employees Economic 
Sector (Day pop.) 

0.0372 0.008 4.949 

*all P values are less than 0.001 

 
between all possible pairs of considered zones as well 
as within zones. A common approach for estimating 
the number of trips between different zones is the use 
of gravity models, which is based on the assumption 
that a correlation exists between the number of 
travellers between two zones and the number of trips 
originating and ending in the respective zones. As 
there is enough data to rely on both attraction and 
production values, we may use the tri-proportional 
fitting method: 

Tijൌ	AiOiBjDjfሺcijሻ 

with two balancing factors Ai  and Bj  for ensuring 
both the origin and destination constraints 

Aiൌ	 1 ∑ BjDjfሺcijሻj
ൗ  , 

Bjൌ	 1 ∑ AiOifሺcijሻj
ൗ 	, 

and a deterrence function fሺcijሻ that fits a modelled 
distribution of tours into the observed trip length 
distribution in RVU. The process happens cyclically: 
first origins Oi and destinations Dj are balanced with 
balancing factors Ai  and Bj , then the deterrence 
function fሺcijሻ is adjusted to fit the resulting modelled 
trip length into observed trip length distribution. 

In our case study, for balancing production and 
attraction rates, attraction rates are scaled to the level 
of productions. The distance of a shortest-path car trip 
between the SAMS zones is used to assess travel 
costs. Length of trips within the zones is taken a as a 
half of distance to a closest zone. Deterrence function 
is balanced to represent distribution of trip lengths 
observed in RVU. Number of trips is rounded to 
nearest integer after each balancing operation. 

The trip matrix does only contain aggregated 
information on the number of journeys, not on 
individual travels. For the modelling of realistic DRT 
requests, this is not sufficiently detailed, as the 
temporal and spatial occurrence of requests might 
influence the success of different DRT design 
options. The desired arrival time of each traveller 
must be considered as well as information on the start  

Table 2: Attraction regression model. 

 
Coefficient 

Std. 
Error 

t-value*

Inhabitants with 
Age between 25-44 

0.2051 0.029 7.003 

Number of Industrial 
Buildings 

0.9510 0.197 4.833 

Employees Public 
Sector (Day pop.) 

0.6471 0.025 25.617

Employees Economic 
Sector (Day pop.) 

0.5360 0.026 20.234

*all P values are less than 0.001 

 
and endpoint of the trip that is as accurate as possible. 
Each trip ti  T is represented by a tuple  
<oi, di, ti>, with origin (oi), destination (di), and 
desired arrival time (ti). 

GSD land use datasets are used to randomly 
assign each traveller with a residential building of its 
origin zone, from where the work trip is requested and 
a workplace with company or public buildings, to 
which the journey is requested. The point in time for 
which the traveller decides to request a DRT journey 
is determined based on the RVU survey. Probability 
distribution fitting can be used to derive adequate 
probability distributions of travel start or end times as 
well as on the working hours based on data acquired 
by the survey (cf. Figure 3). Through this, realistic 
travel and work behaviour of an arbitrary number of 
inhabitants can be modelled. 

To validate the generated commuting trips, they 
can be compared to real-world survey data. To this 
end, attraction and production rates estimated by the 
regression models can be compared to SCB data on 
commuters per municipality and the resulting O-D 
matrix can be validated against data from the RVU 
survey. 

In Table 3, the commuting tours of the generated 
O-D matrix are compared against data from SCB. As 
SCB data on commuters is not available for the 
considered year, datasets from two surrounding 
studies have been linearly interpolated. A deviation 
between SCB and RVU data can be observed, which 
might be due to the origin of the data. While RVU 
data was acquired directly by surveying travellers, 
SCB commuting data might be based on estimations 
from other surveyed data, e.g., residence and 
workplace of individuals. Hence, we assume that 
RVU data we used as basis for our regression model 
is more representative and scale the interpolated SCB 
data according to RVU data with a derived factor of 
0.65 such that they can be compared to the data we 
simulated. 

It can be observed that the simulated number of 
outgoing, incoming, and intra-zonal tours deviates 

Modelling Commuting Activities for the Simulation of Demand Responsive Transport in Rural Areas

93



between 3 and 20% from data that is provided by 
SCB. It is also important to notice that SCB data only 
exists on a municipality level, while the simulated 
data from all zones within the municipality was 
cumulated for the comparison.  

4.3 Modal Choice 

As a result of the previous two steps, an O-D matrix 
is generated, which estimates the flows of commuters 
between the investigated zones. In the classical 
transportation forecasting model, the selected travel 
mode is determined by statistical choice models, e.g., 
direct demand models. 

To allow for more sophisticated and individual 
decision-making, the use of agent-based modelling 
(ABM) is suitable (DeAngelis & Diaz, 2019). Instead 
of forecasting the use of PT and DRT based on, for 
instance, travel time diversion curves or by means of 
utility functions, travellers in ABM proactively and 
individually select the travel mode that seems most 
suitable considering their current personal situation, 
environment, and desires. This is done through agent 
function F, which determines a decision on whether 
or not to accept an offered DRT trip (action 
A={accept, reject}) from information that is provided 
on  the  offered  journey  (e.g.,  estimated  departure,   

 

Figure 3: Probability distribution of a) work and home trip 
start times b) work length distribution. 

Table 3: Comparison of simulated O-D matrix and SCB 
commuter data. 

 Simulated 
Data 

Interpolated 
SCB Data 

Dev. in 
Percent 

Sjöbo 
- outgoing
- incoming
- within 

 
2 955 
1 633 
2 957 

 
3 050 
1 296 
2 680 

 
  -3.2% 

  +20.6%
  +9.3% 

Tomelilla
- outgoing
- incoming
- within 

 
1 803 
1 434 
2 242 

 
1.863 
1 173 
2 044 

 
  -3.3% 
+18.2%
 +8.8% 

 
travel, or arrival time) as well as on the traveler’s 
individual circumstances (perceptions P; e.g., access 
to car, age, or income). 

Fi: P*  A 

In transportation, econometric utility-based 
models are the dominate modelling approach, where 
the most widely used is multinomial logit model 
(McFadden, 1973). There are other approaches, such 
as Machine learning based methods (Chen et al., 
2017, Daisik et al., 2017). They have a potential to 
produce good results, but they require large dataset 
for training. In this case study, we do not possess data 
to produce a complex model for choice of DRT. 

To implement an initial decision-making of the 
traveller, we compare a planned DRT travel time (dt) 
against the assumed travel time by car (ct) and a factor 
of maximum acceptable deviation (dev) from this 
travel time is suitable, e.g., 

Fiሺd	tሻൌ	 ൜
accept,	if	d	t	൏	ሺct	∙	dev୧ሻ൅c୧
reject,	else.																														

 

This factor describes the relative delay that the 
traveller is willing to accept in favour of DRT 
transportation regarding the length of a direct trip. c୧ 
is a constant value that is added to the previously 
determined deviation time. Both delays can either be 
individual values for each traveller i, e.g., depending 
on its access to other means of transportation, or equal 
for all travelers. Also, the delay can refer to the entire 
work trip, from home to workplace, or only on the 
DRT leg, e.g., from home to the first PT stop.  

4.4 Traffic Assignment 

Finally, as a last step of the methodology, the choice 
of the route takes place (Patriksson, 2015). This step 
considers overload and congestions that might occur 
if all travellers chose the same route for their journey. 
In the presented case study, the focus lies on DRT and 
PT in a low-density area. Thus, it can be assumed that 
PT services will not deviate from their planned route  
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Figure 4: Distribution of start points of DRT journeys a) potential travellers and b) subset of simulated requests that were 
accepted (green), rejected (red), and ignored due to its closeness to PT stops (black). 

and that significant delays due to increased traffic 
density will not occur. Still, the number of DRT 
vehicles as well as their capacity are limited. 
Accordingly, trip request put a load on the DRT 
service resulting in increased waiting and travel times 
for travellers due to detours to serve multiple clients. 
The trips with the large detours will likely be rejected 
by travellers, which prevents overload of the DRT 
service itself in a self-regulatory way.  

An important assignment task that must be solved 
and optimized in DRT scenarios is the dynamic 
planning and scheduling of the DRT vehicles. Each 
of the travellers’ requests must be allocated to one of 
the vehicles and both pick-up and drop-off must be 
scheduled in accordance with maximum deviation 
restriction. This results in a vehicle routing problem 
with paired pickups and deliveries, i.e., the dial-a-
ride problem, with the goal of minimizing the total 
costs of transportation 

min෍ ෍ cijxij
k

ሺi,jሻ∈Vk∈K

 

according to (Parragh et al., 2008), with a set of 
vehicles K and set V of available edges leading from 
node i to node j. c୧୨	is defined as the costs to pass edge 
(i,j) and xij  {0,1} being 1 only if edge (i,j) is used 
by vehicle k. The costs might consider both the time 
and distance of the journey. 

This optimization problem is dynamic, as request 
may come in a real-time. When a traveller requests a 
trip, a state of the service (position of vehicles, 
planned routes) are determined by previous travel 
requests. The resulting characteristics of a trip (travel 

                                                                                                 
6 https://www.opentripplanner.org/ 
 

and waiting times) can be compared to the 
expectations of the requesting traveller to evaluate 
whether the person will use DRT to make a trip. 
Simulation of DRT service and traveller behaviour 
allows to realistically estimate operational 
characteristics of a service. Furthermore, data is 
generated that allows for the assessment and 
comparison of the performance and utility of different 
DRT designs. 

5 RESULTS  

To simulate the request of DRT journeys by 
commuters for Sjöbo and Tomelilla and to estimate 
the travel times for each requested journey, two tools 
are combined. First, OpenTripPlanner 6  is used to 
identify suitable multi-modal trips based on a road 
network (OpenStreetMap 7 ) and PT timetables. To 
provide efficient DRT services, requests can be 
grouped and served together, so that pick-ups and 
drop-offs of other potential passengers must be 
considered when estimating travel times. To this end, 
we used jsprit8, a vehicle routing problem solver, to 
find optimal routes for a set of requests. 

We assume that individuals are allowed to request 
DRT services for trips with a distance of more than 
two kilometres. It may be a direct trip by DRT within 
the borders of the two municipalities or a connecting 
trip by DRT to a PT stop if a person commutes out of 
or into the studied municipalities. Moreover, we 
assume that travellers are not willing to accept DRT 
legs with an estimated travel time of more than 1.5 

7 https://www.openstreetmap.org/ 
8 https://jsprit.github.io/ 
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times the travel time of using direct car transport plus 
15 minutes, i.e., devi = 1.5 and ci = 15. For example, 
a car trip of 15 minutes will only we replaced by a 
DRT trip if this trip does not take longer than 38 
minutes. The simulated requests are shown in Figure 
4, where each blue point represents the start point of 
a work trip. 

The simulation was run with 30 vehicles (minibus 
with 8 seats) and for the morning of a workday, i.e., 
outward journeys. DRT trips could be successfully 
offered to 990 travellers and the rejection rate was 
27%. In average, there were 42.6 travellers per 
vehicle and the total distance driven by all vehicle 
was 18 444 km (average of 614.8 km per vehicle). 47 
trips were not served as they were too short (2 km). 

On the right side of Figure 4, the simulated 
requests are shown. Here, green dots represent 
requests that were accepted by the travellers as the 
estimated travel time was satisfactorily for them. Red 
dots mark requests that were rejected or trips that 
could not be routed by the planning and scheduling 
engine. This might be due to unavailability of 
adequate PT connections or capacities of DRT 
vehicles. Black dots represent travellers that are 
excluded from the system due to their closeness to PT 
stops. In the simulation, this occurs in some parts of 
the city centre.  

6 CONCLUSIONS  

In this paper, we presented an approach for the 
modelling of realistic commuting activities, which 
can be used for the assessment and comparison of 
DRT designs. In contrast to many other existing 
approaches, requests for DRT journeys are generated 
on a level of individuals, such that individual pick-
ups and drop-offs at the home or workplace of the 
commuters can be simulated. To show the feasibility 
of the approach, a case study is presented of Sjöbo 
and Tomelilla, two municipalities that are located in 
the rural area of southern Sweden. 

The case study presented in this paper is only a 
first step towards showing the feasibility of the 
generated requests. The results do not yet allow for 
assessing the effectiveness or viability of a DRT 
service. For this purpose, a more advanced simulation 
study must be conducted in which different designs 
are systematically compared. The intention of the 
presented simulation experiments is to show the 
feasibility of the approach. For the design of an 
efficient DRT service, extensions of the presented 
simulation are reasonable. There is a need in more 
advanced mode choice model, that considers further 

attributes of the travellers that influence their decision 
towards the use of DRT services, e.g., climate 
protection awareness, availability of car, or age. 
Accordingly, the route scheduling should not only 
focus on operational costs but also optimize quality 
of the service for passengers. In this case study, road 
congestions were not considered as we investigate 
rural areas. However, in urban conditions, congestion 
is an important factor. Still, the presented case study 
indicates where potential DRT requests occur and 
when rush hours can be expected. Also, a first 
estimation of the number of required vehicles can be 
made based on the number of requests. 

The generation of demand for DRT is a key 
component of a simulation framework for 
investigating the suitability of different DRT design 
decisions. We plan to not only simulate commuters 
that use DRT on their way to work but also other 
types of travel, for instance, school, medical, or 
leisure trips. 

Our overall goal is to provide decision-makers 
with a tool that can be used to explore and assess, how 
to plan and execute an efficient and high-quality DRT 
services. The development of a modelling and 
simulation framework facilitates the conducting of 
comprehensive simulation studies of DRT services. 
This includes the consideration of specific local 
conditions such as the distribution of inhabitants or 
existing PT lines but also of different performance 
measures on the utilization of vehicles or average 
travel times. This allows for the thorough 
investigation of different design decisions and 
parameters, to identify whether and how they affect 
efficiency, viability, and acceptance of DRT for 
specific scenarios. 
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