
OKIoT Open Knowledge IoT Project: Smart Home Case Studies of 
Short-term Course and Software Residency Capstone Project 

Victor Takashi Hayashi, Vinicius Garcia, Renato Manzan de Andrade and Reginaldo Arakaki 
Polytechnic School, University of São Paulo, Luciano Gualberto Venue, São Paulo, Brazil 

Keywords: Internet of Things, Arduino, Education, Smart Speaker, Smart Home. 

Abstract: The emergence of smart environments built on top of Internet of Things (IoT) solutions demand new skills 
and knowledge for developers. Dealing with inherent complexity of IoT architecture, constrained device 
limitations, communication faults and vendor lock-in can be drawbacks for successful deploy of IoT projects. 
With the objective of sharing knowledge between IoT developers, OKIoT project focuses on project-oriented 
education in Short-term and Long-term modes based on Software Engineering methodology. First qualitative 
results on a 6-week course on MBA subject offering and a case study of an open architecture for smart speaker 
executed with 1-year mentoring of a capstone project are summarized. Future steps based on case studies 
insights are presented. 

1 INTRODUCTION 

Cisco (2016) expects more than 25 billion devices to 
be connected to the internet by 2020, integrated in 
solutions like smart home, connected car and smart 
cities. Even though the opportunities are large, the 
question of whether there are enough expert 
developers to build these solutions still remains open. 

Building reliable systems is one of incoming 
challenges with the Internet of Things (IoT) trend. 
Applicability of Software Engineering methods and 
knowledge such as quality analysis should be 
addressed. For example, trade-offs between simple 
devices and robust computational platforms are 
common studies found on literature (Baresi, Mottola, 
& Dustdar, 2015; Gubbi et al, 2013; Lu et al, 2015; 
Matharu, Upadhyay, & Chaudhary, 2014). 

From a practical standpoint, developers could face 
challenges such as: 
● Complexity: how to integrate heterogeneous 

interfaces, services and devices? 
● How can one deal with faults like internet 

unavailability to maintain a desired level of 
service? 

● How to develop considering constrained devices? 
● When considering software developers, is it 

possible to overcome the hardware initial learning 
curve? 

Open Knowledge Internet of Things Project 
(OKIoT) aims to be an accelerator for smart 
environment innovation. It is based on non-functional 
requirements of availability, usability and 
rastreability on top of a fault tolerant IoT architecture. 

OKIoT is based on three pillars: 
● Conceptual Modelling: developers can 

understand Software Engineering fundamentals, 
technologies used in existing solutions in order to 
understand constituent parts (hardware, software, 
communication) and its integration; 

● Hardware Accelerator: encapsulates power 
control over smart plug appliance, rastreability 
components and serial communication used to 
integrate this solution with Arduino projects, as 
well as fault-tolerant architecture, provided with 
its documentation; 

● Software Solutions: projects should be hosted on 
platforms like GitHub, together with their 
components, libraries, programs, apps, 
maintenance, build and deploy procedures, so 
future developers could understand, use, 
collaborate and advance existing solutions. 
These IoT hardware, software and solutions 

combined build a growing knowledge project. This 
material may be widely used for teaching purposes in 
specialist training courses, higher education courses, 
technical training courses, and other types of special-
purpose education related to digital transformation. 
Students, teachers, professionals can help the project 

Hayashi, V., Garcia, V., Manzan de Andrade, R. and Arakaki, R.
OKIoT Open Knowledge IoT Project: Smart Home Case Studies of Short-term Course and Software Residency Capstone Project.
DOI: 10.5220/0009366002350242
In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (IoTBDS 2020), pages 235-242
ISBN: 978-989-758-426-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

235



with positive feedback, improvement points, 
benchmark with market solutions and system 
specifications. 

OKIoT was created based on: 
Elderaid Project architecture had redundancies for 

critical communication paths. The system was 
intended for elderly care, but had few developments 
on fault tolerance (Hayashi, 2016); 

Hedwig Capstone Project main deliverable was a 
proof of concept of a fault-tolerant smart home 
architecture, with three levels of functionality: direct 
to module, local and internet (Hayashi, 2017); 

By 2018, Hedwig was put into practice by 
continuous development and deployment on a real 
smart home, which enabled it to start domus open 
data smart home repository (Hayashi, 2019); 

A study on open architecture for smart speakers, 
further extended Hedwig Project, integrating it with 
conversational interface (Garcia et al, 2019). A short 
course was also supported (Hayashi, 2019b). 

 

 

Figure 1: IoT Projects Timeline: past developments were 
the basis for OKIoT. 

2 RELATED WORK 

Smart speaker market leaders like Google and 
Amazon (Statista, 2017) make voice interfaces 
available on more than 200 million devices (Canalys, 
2019). Though natural language commands become 
accessible through these commercial products, the 
imposition of a closed architecture limits user 
interaction. Compulsory use of pre-set wake word 
(e.g. “Alexa”) raises problems for users whose names 
resemble the wake word (e.g. “Alex”). On 
developer ́s side, lock-in is clear: backend services 
and natural language understanding modules are 
attached to vendor platform. Portability becomes a 
challenge, as the assistants would be duplicated on 
different platforms and could have different 
responses for similar questions. with only cloud-
based solutions available, other common concern 
regards privacy: an American Alexa user reported 
that the smart speaker recorded a conversation 
without consent and sent it to another user, present on 
contact ́s list (The Guardian, 2018). 

Some projects were created to address mentioned 
existing smart speaker limitations: 

SpeechRecognition (Zhang, 2019) library makes it 
easy to use different speech recognition services. It is 
possible to choose, by command-line interface, which 
service the developer would like to use for speech 
recognition. Snowboy (Chen, 2019) is an open 
alternative for wake word creation, and “An Open 
Voice Command Interface Kit” (Ansari, 
Sathyamurthy, & Balasubramanyam, 2016) 
developed a low cost hardware and used 
PocketSphinx for speech recognition process. Alias 
Project (Karmann & Knudsen, 2019) created a 
hardware that blocks what existing smart speakers 
listen to with a white noise. When a personalized 
wake-word is called, the additional hardware then 
stops the white noise, triggers the interaction with the 
commercial smart speaker by playing vendor ́s wake 
word and letting the user complete the query. How to 
integrate these projects in order to create a smart 
speaker with an open architecture (and additionally 
perform a performance evaluation analysis) still 
remains an open question. 

On a broad IoT perspective, there are several 
commercial platforms (Amazon, 2019; IBM, 2019; 
Oracle, 2019) with support to cloud computing, 
machine learning and big data services, easy 
integration with voice interfaces like chatbots on 
smartphones and smart speakers like Alexa. They 
share a common drawback: vendor lock-in. 
Developers (and systems, by consequence) tend to 
have low flexibility on the system architecture. 

Some open IoT platforms have also been 
launched, such as DeviceHive, Mainflux, 
ThingsBoard, WSO2, Sitewhere, ThingSpeak, Zetta, 
Helix Sandbox and KnoT (DeviceHive, 2018; Helix 
Sandbox, 2018; KnoT, 2019; Mainflux, 2018; 
Thingsboard, 2018; ThingSpeak, 2010; Sitewhere, 
2018; WSO2, 2017; Zetta, 2015), just to name a few. 
They provide integration based on Representational 
State Transfer API (REST API), websockets and 
Message Queuing Telemetry Transport (MQTT), also 
support Big Data and Machine Learning services; 
different hardware platforms (Arduino, Raspberry Pi, 
Intel Edison, ESP8266); programming languages like 
C/C++, JavaScript and python; security mechanisms 
and personalized dashboards. They focus entirely on 
development skills for system development. Besides 
the open aspect of these platforms, developers face 
the great challenge of discontinued support for some 
low-engagement platforms, as there is no unified 
platform to date. 

Some institutions create their own tools for 
educational purposes, like IoTaaP and Copernicus 
(MVT Solutions, 2019; Szydlo & Brzoz-Woch, 

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

236



2019). As there is limited communication across 
institutions, expertise become constrained as well. 

The multiplicity of languages, communication 
protocols, hardware boards and interfaces make it a 
challenge to build a unified platform for IoT. 
Engaging and retaining a broad developer community 
is no easy task. As the applications have different 
system requirements, it is difficult to wonder about a 
platform that could be flexible enough to support all 
applications. 

Our hypothesis is built on the premise that 
knowledge is an intangible asset easy to share, 
agnostic to technology choice and not subject to 
vendor lock-in. Our objective is to build an open 
knowledge sharing community that engages 
developers and enthusiasts, skilful on different 
technologies, taking smart home as the starting field. 
With the focus on knowledge, the key differential is 
the integration of Software Engineering methodology 
with IoT education. 

An open architecture for smart speakers that 
allows developers to choose between different 
services on each step of the voice interaction process 
(speech-to-text, natural language understanding and 
text-to-speech), with the objective to optimize its end-
to-end performance. 

3 METHOD 

We validate our approach by taking qualitative 
feedback on proposed project-oriented methods: 
short-term course and capstone project throughout 
one year. 

On September-October 2019, a short-term course 
on an MBA course offering was supported. An 
accelerator kit and its manual were given to each of 
the 5 groups. 

One training session of 4 hours was implemented 
on each of the 6 weeks. As the opening class was 
based only on introduction of the accelerator kit, and 
the last had the final presentations, 4 hands on 
experiments were performed on the remaining 4 
weeks. 

Project proposals had a common theme: smart 
home. Groups of 2-3 people each had to choose an 
environment (e.g. kitchen, living room, bathroom), a 
value proposition and a persona. Initial brainstorming 
was based on smart home major areas of interest 
found on literature (Batalla, Vasilakos, & Gajewski, 
2017). 

A key aspect of project proposals was the user-
centric approach. IoT was presented as a supporting 
technology that must be centred on user interactions 

that create value. As smart homes are shared 
environments with different user profiles and goals, 
designing IoT systems based on value proposition 
was a must. 

 

 

Figure 2: Smart Home major interest areas. 

On first class, Hedwig Project IoT modules were 
presented in order to inspire the students (see Figure 
3). The presentation was focused on accessibility and 
fault tolerance over the different interfaces of a smart 
switch for smart lightning system (namely, presented 
interfaces were voice, switches, sensors and radio 
frequency controls). 

 

 

Figure 3: Hedwig Project demonstration case. 

The accelerator kit (as depicted in Figure 4) was 
handcrafted on this initial offering. It was developed 
based on past Hedwig capstone project infrastructure, 
and had the objective of easy transformation of 
Arduino projects into IoT projects, with a black box 
module that is integrated with Arduino modules 
through a serial protocol, has a smart plug for power 
appliance control and has a fault-tolerant architecture 
(e.g. tolerates internet unavailability). For cloud, 
Blynk Cloud IoT Platform was used (Blynk, 2019). 

 

 

Figure 4: Hedwig IoT Kit. 

OKIoT Open Knowledge IoT Project: Smart Home Case Studies of Short-term Course and Software Residency Capstone Project

237



The kit is composed by: 
● Relay: physical actuator; 
● Switch: local control of the device; 
● OLED Display: Used to view module's address 

after connecting to Wi-Fi network; 
● RTC: date/time synchronization, if offline 

operation is required; 
● Wemos D1 R2: ESP8266 based development 

board with built-in Wi-Fi (hotspot and client 
connection), responsible for direct 
communication, local network and internet 
connectivity. Performs serial communication 
with Arduino Nano, and it is used as a black box 
by developers; 

● Arduino Nano with protoboard: Development 
board to be programmed through Arduino IDE, 
with USB connection to a computer. Responsible 
for domain-specific rules, sensors and actuators. 

 

 

Figure 5: Hedwig IoT Kit Components. 

The accelerator has three-level fault tolerant 
architecture (module, local area network, and 
internet). Its communication channel redundancies 
allow for greater usability and accessibility 
(interfaces for different personas, at different times), 
as well as fault tolerance itself (local interfaces). 

 

 

Figure 6: Hedwig IoT Kit Architecture. 

Each hands-on procedure performed on class was 
matched to a communication level: 

0. User controls smart plug module on offline 
mode through physical switch, which is interpreted 
by black box; 

1. Direct communication between smartphone 
and black box allows local monitoring and control on 
a web interface, with support to HTTP requests to 
monitorate and control the smart plug. With this 
setup, black box operates as a Wi-Fi hotspot and the 
smartphone connects to it, with an integrated web 
server deployed entirely on the IoT module itself; 

2. Through the interface of procedure 1, the black 
box is connected to a local Wi-Fi network. The same 
requests can now be made to multiple modules, and 
the mobile phone becomes an integrated interface for 
all modules in the same Wi-Fi network; 

3. After account and project creation on Blynk 
platform, the match between the black box power 
module will occur through project auth token and 
V20 virtual pin mapping. With this setup, the module 
will be connected to the internet via local Wi-Fi 
network, and therefore connected to the Blynk server. 
Through mobile network, your mobile phone can 
access Blynk's server and control / monitor the black 
box. Blynk also offers a REST API for integrating 
other applications, like Google Assistant if you use it 
with IFTTT (IFTTT, 2019). 

All procedures are described step-by-step on 
specific document and videos (Hayashi, 2019b). 

 

 

Figure 7: Video tutorial example with subtitles. Local web 
interface is accessed on smartphone. 

For final evaluation, a qualitative questionnaire 
was given to each student at the end of the 6-week 
subject. This quick survey had 6 questions: 
1. What is your overall course evaluation? 
2. In your opinion, what were the main concepts 

learned? 
3. Based on your perspective, how important are the 

architectural concepts explored in the course? 
4. What did you think about the pedagogical 

approach of the course (learning software 
engineering concepts through IoT)? 

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

238



5. Suggestions for course improvements 
6. Free comments: 

A Software Residency program was deployed 
over February-December 2019 for a long-term 
approach for OKIoT. It was composed of the 
following steps: 
1. User-centric Value Proposition: it was proposed 

a smart home for elderly care, but with a focus 
on user ́s independence and ease of use; 

2. Software Engineering Modelling Method: user 
journeys, prioritization of critical aspects with 
system modelling and specification by 
description of functional and non-functional 
requirements, along with architecture and 
sequence diagrams (for static and dynamic 
modelling); 

3. Iteration: with chosen qualitative and 
quantitative programmed tests, iterative 
development was performed, with some relevant 
changes on initial scope value proposition and 
system specification; 

4. Results and Analysis: documentation of results 
and analysis. For OKIoT, this is the most 
important step, as it is how the knowledge will be 
passed on. 

A main contribution of the software residency for 
OKIoT Project was the study of an open architecture 
for a smart speaker, whose development and 
evaluation method are described below. 

An API was created in order to provide flexibility 
for the developer to choose between 2 services on 
each of the basic services of a smart speaker. With the 
setup shown in Figure 8, the objective was to propose 
a method to evaluate possible combinations of these 
basic services (Amazon, 2019b; Dialogflow, 2019; 
Google, 2019a; Google, 2019b; IBM, 2019b; Rasa, 
2019). 
 

 

Figure 8: Smart Speaker Basic Services API. 

The API was run on a Dell Inspiron 15 7000 series 
notebook, 16GB RAM, 7th generation Core i7 
processor running Windows 10 operating system and 
connecting via ethernet cable to a 60mb internet. 
Connection quality was monitored by using 
SpeedTest (Speedtest, 2019). 

Quantitative results for each scenario were 
obtained by using the average of 50 tests. Four 
different audios were analysed, for a total of 200 tests. 
The audios were chosen in order to considerate the 
clarity of speech and the noise of the environment: 
● On first audio, the speech is loud and clear, 

without external interference and with very little 
ambient noise; 

● The second recording contains a song that is 
played along with the speech; 

● An old recording is accompanied by a certain 
echo and an ambient noise; 

● On fourth recording, it is possible to understand 
the speech, but some effort is necessary due to 
the low volume of the speech and the 
environment noise. 

Speech-to-text assertiveness was evaluated 
qualitatively in relation to the expected transcription 
performed by a human. 

Time markers were inserted in the API code for 
the quantitative evaluation. It was possible to measure 
the interval between the activation of a service and its 
response. Results were recorded in a log file in CSV 
format. These times are represented by “t0” and “t1” 
present in the interaction arrows between the API and 
the services in Figure 8. 

4 RESULTS 

Short term course projects are described in brief: 
1. Bathroom: people with visual impairments have 

difficulties finding the towel after taking a 
shower. Sound-based offline feedback was 
designed; 

2. Kitchen: gas leakage, temperature, humidity and 
presence sensors were used together in order to 
detect safety threatening situations; 

3. Home Office: redundancy of temperature 
monitoring with external data source for thermal 
comfort; 

4. Room: automatic light bulb for children going to 
the bathroom at night, parent monitoring and 
control with smartphone; 

5. Living room: accessibility for the physically 
handicapped through curtain automation, 
through voice and smartphone app. 

OKIoT Open Knowledge IoT Project: Smart Home Case Studies of Short-term Course and Software Residency Capstone Project

239



Feedbacks obtained by quick surveys run at the 
end of the short-term course were: 
● More classes must be integrated, as the content 

and hands on procedures were passed very 
quickly; 

● Projects could be more related to everyday life; 
● Smart home area generated interest of some 

students to continue with some home automation 
projects; 

● Hands on approach was approved by most 
students, but some of them had some difficulties 
(e.g. students without technical background); 

● Explain some practical cases concerning the 
Software Engineering methodology in a dynamic 
and critical way. 
Smart speaker results supported initial 

proposition that combining different vendor’s basic 
services could be the best option for an efficient smart 
speaker, with minimized response time. 

Google’s speech-to-text and IBM Watson 
qualitative results are given below: 
● First Audio (loud and clear speech): no 

significant difference; 
● Second Audio (speech with song): IBM Watson 

delivered an incomplete transcription. Google 
performed a complete transcription, with some 
mistakes 

● Third Audio (echo and ambient noise): Google 
could understand some words, while IBM 
Watson could not deliver any word; 

● Fourth Audio (low volume and ambient noise): 
similar result to third audio. 
As for the quantitative evaluation, average 

response time difference was ~7,021ms, which 
represents an approximately 68% greater response 
from Google speech-to-text than IBM Watson. 
Higher response times were observed when the audio 
had a lot of noise (third and fourth audios). Regarding 
Natural Language Understanding (NLU) modules, 
Dialog Flow's performance was over 7000% higher 
than rasa's performance, with a difference of 
approximately 1103ms between them. It was 
expected, as Rasa is a local service. 

For instance, a developer building a smart 
speaker could choose to combine three basic services 
from different vendors: Google Speech-to-text, 
RASA and Amazon Polly. Proposed evaluation 
method provides some possible reasons: RASA and 
Amazon Polly showed better response times and no 
clear disadvantage. 

Even though the method provides a base to 
evaluate smart speaker basic services, the results are 
not absolute. When analysing speech-to-text services, 
there was a better performance of Google's service in 

the qualitative approach and better performance of 
IBM's service in the quantitative approach. The 
developer could choose the best speech-to-text that 
better fits its application environment: he could 
choose IBM because of lower response time if the 
ambient noise is not relevant; or choose Google 
because of its higher accuracy on environments with 
high noise. 

 

 

Figure 9: Response times (seconds) for smart speaker basic 
services. 

 

 

Figure 10: Response time (seconds) comparison for open 
architecture (up) and closed architecture (bottom). 

5 CONCLUSIONS 

OKIoT Project initial results were presented. 
Proposed IoT education method, project-oriented 
with Software Engineering methodology was 
evaluated on short term course and long-term 

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

240



capstone project mentoring. A study on the open 
architecture for smart speakers and associated 
evaluation method were also presented as one initial 
contribution to OKIoT. 

As future steps, OKIoT roadmap include: 
1. Support to developers: creation of forum and 

blog, aimed to complement existing GitHub and 
videos; 

2. Online course: future creation of specific courses 
on online platforms after some presential course 
iterations; 

3. Undergraduate course: future support for 
undergraduate course, project-oriented, with 
more classes than the MBA; 

4. Hackathon: future sessions of hackathons in 
order to test IoT education with Software 
Engineering concepts; 

Additionally, Problem Based Learning (PBL) as 
an alternative to black-box approach is being 
considered for future OKIoT deployments. Regarding 
smart speaker study, local alternatives to basic 
services could be a way to preserve user privacy and 
reduce response time. 

REFERENCES 

Amazon (2019). AWS IoT. Retrieved from 
https://aws.amazon.com/iot/ 

Amazon Polly (2019) Amazon Polly - Text to Speech in 47 
Voices and 24 Languages. Retrieved from 
https://aws.amazon.com/polly/ 

Ansari, J. A., Sathyamurthy, A., Balasubramanyam, R. 
(2016). An Open Voice Command Interface Kit. IEEE 
Transactions on Human-Machine Systems 46 (3), 467-
473. 

Baresi, L., Mottola, L., & Dustdar, S. (2015). Building 
Software for the Internet of Things. IEEE Internet 
Computing, 6-8. 

Batalla, J. M., Vasilakos, A., & Gajewski, M. (2017). 
Secure Smart Homes: Opportunities and Challenges. 
ACM Comput. Surv. 50, 5, Article 75. 
https://doi.org/10.1145/3122816 

Blynk (2019). Blynk IoT Platform. Retrieved from 
https://blynk.io/ 

Canalys. (2019, April 15). Canalys: Global smart speaker 
installed base to top 200 million by end of 2019. 
Retrieved from https://www.canalys.com/newsroom/ 
canalys-global-smart-speaker-installed-base-to-top-
200-million-by-end-of-2019 

Chen, G., et al. (2019, November 5). Snowboy Hotword 
Detection. Retrieved from https://snowboy.kitt.ai/ 

Cisco. (2016). Global - 2020 Forecast Highlights - Cisco. 
Retrieved from https://www.cisco.com/c/dam/m/en_ 
us/solutions/service-provider/vni-forecast-highlights/ 
pdf/Global_2020_Forecast_Highlights.pdf 

DeviceHive (2018). DeviceHive. Retrieved from 
https://devicehive.com/ 

Dialogflow (2019) Dialogflow. Retrieved from 
https://dialogflow.com/ 

Garcia, V., et al. (2019, December 8). Smart Home for 
Elderly. Retrieved from https://github.com/ 
ViniciusGarciaSilva/ speaker-API 

Google (2019). Google Speech-to-text. Retrieved from 
https://cloud.google.com/speech-to-text/ 

Google (2019) Google Text-to-speech. Retrieved from 
https://cloud.google.com/text-to-speech/ 

Gubbi, J., et al. (2013). Internet of Things (IoT): A vision, 
architectural elements, and future directions. Future 
Generation Computer Systems, 29.7, 1645-1660. 

Hayashi, V. T. (2019, December 8). OKIoT Open 
Knowledge Internet of Things. Retrieved from 
https://github.com/vthayashi/OKIoT 

Hayashi, V. T., et al. (2016, September 28). Elderaid. 
Retrieved from https://github.com/usp-labsoft/Home-
Elderaid/ 

Hayashi, V. T., et al. (2017, December 21). Hedwig 
Connected Home. Retrieved from https://github.com/ 
hedwig-project 

Hayashi, V. T., et al. (2019, June 23). Domus Smart Home 
Testbed. Retrieved from https://github.com/vthayashi/ 
domus 

Helix Sandbox (2018). Helix Sandbox. Retrieved from 
https://github.com/helix-iot/helix-sandbox 

IBM (2019). Watson IoT. Retrieved from 
https://www.ibm.com/internet-of-things 

IBM (2019). IBM Watson Speech-to-text. Retrieved from 
https://www.ibm.com/watson/services/speech-to-text/ 

IFTTT (2019). IFTTT. Retrieved from https://ifttt.com/ 
Karmann, B., Knudsen, T. (2019, January 14). Project 

Alias. Retrieved from https://bjoernkarmann.dk/ 
project_alias 

KnoT (2019). KNoT Network of Things. Retrieved from 
https://knot.cesar.org.br/ 

Lu, J., et al. (2015) Roundtable: The Future of Software 
Engineering for Internet Computing. Software, IEEE 
32.1, 91-97. 

Mainflux (2011). Mainflux Open Source IoT Platform. 
Retrieved from https://www.mainflux.com/ 

Matharu, G. S., Upadhyay, P., & Chaudhary, L. (2014). The 
Internet of Things: Challenges & Security Issues. 
Emerging Technologies (ICET), 2014 International 
Conference. 

MVT Solutions (2019). IoTaap Connectivity platform. 
Retrieved from https://iotaap.mvt-solutions.com/ 

Oracle (2019). Internet of Things (IoT) | Oracle. Retrieved 
from https://www.oracle.com/internet-of-things/ 

Rasa (2019). RASA: Open source conversational AI. 
Retrieved from https://rasa.com/ 

Sitewhere (2018). SiteWhere Open Source Internet of 
Things Platform. Retrieved from https://sitewhere.io/ 

Speedtest (2019) Speedtest by Ookla. Retrieved from 
https://www.speedtest.net/ 

Statista. (2017) Global intelligent assistant market share 
2017-2020 | Statista. Retrieved from 

OKIoT Open Knowledge IoT Project: Smart Home Case Studies of Short-term Course and Software Residency Capstone Project

241



https://www.statista.com/statistics/789633/worldwide-
digital-assistant-market-share/ 

Szydło, T., Brzoza-Woch, R. (2019) AGH Copernicus. 
Retrieved from http://galaxy.agh.edu.pl/~tszydlo/ 
copernicus/ 

The Guardian (2018, May 24). Amazon's Alexa recorded 
private conversation and sent it to random contact. 
Retrieved from https://www.theguardian.com/ 
technology/2018/may/24/amazon-alexa-recorded-
conversation 

Thingsboard (2018). Thingsboard. Retrieved from 
https://thingsboard.io/ 

ThingSpeak (2010). ThingSpeak. Retrieved from 
https://thingspeak.com/ 

WSO2 (2017). IoT - WSO2. Retrieved from 
https://wso2.com/iot 

Zetta (2015). Zetta. Retrieved from http://www.zettajs.org/ 
Zhang, A. (2019, July 2). Uberi/speech_recognition - 

GitHub. Retrieved from https://github.com/Uberi/ 
speech_recognition 

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

242


