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Abstract: A/B Testing can be used in digital contexts to optimize the e-commerce purchasing process so as to reduce
customer effort during online purchasing and assure that the largest possible number of customers place their
order. In this paper we focus on the checkout process. Most of the companies are very interested in agilice
this process in order to reduce the customer abandon rate during the purchase sequence and to increase the
customer satisfaction. In this paper, we use an adaptation of A/B testing based on multi-armed bandit algo-
rithms, which also includes the definition of alternative stopping criteria. In real contexts, where the family to
which the reward distribution belongs is unknown, the possibilistic reward (PR) methods become a powerful
alternative. In PR methods, the probability distribution of the expected rewards is approximately modeled and
only the minimum and maximum reward bounds have to be known. A comparative numerical analysis based
on the simulation of real checkout process scenarios is used to analyze the performance of the proposed A/B
testing adaptations in non-Bernoulli environments. The conclusion is that the PR3 method can be efficiently
used in such environments in combination with the PR3-based stopping criteria.

1 INTRODUCTION

In the current market of digital services an content
(retail, media, news, e-commerce) there is a continue
necessity in offering the best user experience by pro-
viding the customer with the right content that they
most likely to use and by offering and effortless ac-
cess to any task, transaction and process required to
complete a service.

The most used approach for this and other types
of service or user interface optimization solutions is
to continuously make changes to the offered services
or interfaces and use a specific indicator to measure
which change produces the best expected indicator
value. This type of experimentation is commonly
known as A/B testing.

In recent years, some companies and solutions
(for instance, Google Analytics) have addressed
this experimentation process as a multi-armed ban-
dit (MAB) problem (Audibert and Bubeck, 2010;
Baransi et al., 2014; Chapelle and Li, 2011; Gariv-
ier and Cappé, 2011; Kaufmann et al., 2012; Martı́n
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et al., 2018), using algorithms existing in the litera-
ture designed to optimize the conflict between explor-
ing all the variations and exploiting the best variation.
This drastically reduces the number of unnecessary
experiments. This is known in the A/B testing market
as dynamic traffic distribution.

The most used MAB algorithm is Thompson sam-
pling (Chapelle and Li, 2011), since it performs well
under delayed rewards conditions typical of A/B test-
ing. However, Thompson sampling can only be used
if the type of distribution associated with the rewards
or the indicator to be optimized is known a priori.
Bernoulli distributions often used to measure the suc-
cess or failure of an action (whether or not the cus-
tomer makes the purchase or views a content). In
other cases, however, the distribution type may be un-
known and depend on factors such as purchase price,
navigation time or number of pages visited before
purchase.

A complementary technique used to optimize the
performance of the A/B Testing is to improve the ex-
periment stopping criterion. To do this, some solu-
tions perform the hypothesis tests using a Bayesian
approach to ascertain the statistical significance. As
in Thompson sampling, however, the distribution
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family to which the rewards belong has to be known a
priori in order to perform this type of Bayesian anal-
ysis.

This drawback is the main reason why most of
the AB Testing using MAB algorithms and new stop-
ing criteria are limited most of the case to Bernoulli
experiments, however, the numerical analyses carried
out recently in (Martı́n et al., 2019) and (Martı́n et al.,
2020) show that the possibilistic reward (PR) meth-
ods (Martı́n et al., 2018) outperform other MAB al-
gorithms in scenarios with delayed rewards and also
where the associated reward distribution does not
have to be known: Test A/B in digital content web
when the reward is continue and increase if customer
read the content and campaign management in digi-
tal marketing recommendation systems. PR methods
approximate a distribution function for rewards that
can also be used to perform classic A/B testing, al-
beit with a stopping condition based on Bayesian and
non-frequentist hypothesis tests.

One of the most common business cases where is
continue optimizing scenarios where the reward dis-
tribution is unknown are those related with the pur-
chasing process so as to reduce customer effort to
complete the online purchasing process and assure
that the largest possible number of customers place
their order in e-commerce companies

In this paper we extend experiments carried out
(Martı́n et al., 2020) (using the adaptation A/B test-
ing to account for PR methods, together with the def-
inition of a new stopping criterion also based on PR
methods to be used for both classical A/B testing and
A/B testing based on MAB algorithms) with a com-
mon scenarios of optimize purchasing process in e-
commerce companies.

The paper is structured as follows. Section 2
briefly reviews possibilistic reward (PR) methods.
Section 3 gives a brief description of A/B testing and
improvements aimed at optimizing how tests are car-
ried out (dynamic traffic distribution and stopping cri-
terion) and the use of PR methods in A/B testing. Sec-
tion 4 describes the numerical analysis carried out for
checkout process scenarios and the results. Finally,
some conclusions and future research work are out-
lined in Section 5.

2 POSSIBILISTIC REWARD
METHOD

Possibilistic reward methods (PR1,PR2 and PR3)
(Martı́n et al., 2017; Martı́n et al., 2018) have recently
been proposed as an alternative to MAB algorithms in

the literature. A review of the most important alloca-
tion strategies can be found in (Martı́n et al., 2017).

The basic idea of the PR1 method is as follows:
the uncertainty about the arm expected rewards are
first modelled by means of possibilistic reward dis-
tributions derived from a set of infinite nested confi-
dence intervals around the expected value on the ba-
sis of the Chernoff-Hoeffding inequality (Hoeffding,
1963).

Then, the method follows the pignistic probability
transformation from decision theory and the transfer-
able belief model (Smets, 2000). The pignistic prob-
ability transformation establishes that when we have
a plausibility function, such as a possibility function,
and any further decision-making information, we can
convert this function into an probability distribution
following the insufficient reason principle.

Once we have a probability distribution for the re-
ward of each arm, then a simulation experiment is car-
ried out by sampling from each arm according to their
probability distributions to find out which one has the
highest expected reward. Finally, the selected arm is
played and a real reward is output.

As mentioned above, the PR1 method starting
point is the Chernoff-Hoeffding inequality (Hoeffd-
ing, 1963). This inequality establishes an upper
bound on the probability that the sum of random vari-
ables deviates from its expected value for [0,1], which
can be used to build an infinite set of nested confi-
dence intervals.

The difference between PR1, PR2 and PR3 lies in
the type of concentration applied and subsequent ap-
proximations. PR1 and PR2 are based on the Hoeffd-
ing concentration, whereas PR3 is based on a combi-
nation of the Chernoff and Bernstein concentrations.

A numerical study based on of five complex and
representative scenarios was performed in (Martı́n
et al., 2018) to compare the performance of PR meth-
ods against other MAB methods in the literature. PR2
and PR3 methods perform well in all representative
scenarios under consideration, and are the best alloca-
tion strategies if truncated Poisson or exponential dis-
tributions in [0,10] are considered for the arms. Be-
sides, Thompson sampling (TS), PR2 and PR3 per-
form equally with a Bernoulli distribution for the arm
rewards. PR2 is exactly the same as the generalization
of the TS method proposed in (Agrawal and Goyal,
2012) (see Algorithm 2).

Moreover, the numerical analyses conducted re-
cently in (Martı́n et al., 2019) show that possibilistic
reward (PR) methods outperform other MAB algo-
rithms in digital marketing content recommendation
systems for campaign management, another scenario
with delayed rewards.
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Finally, PR methods have one big advantage over
other MAB algorithms, including TS: all they need
to know is the interval to which the reward belongs
rather than the total reward distribution. PR methods
approximate a distribution function for rewards that
can also be used to perform a classic A/B test, albeit
with a stopping condition based on Bayesian and non-
frequentist hypothesis tests. In this way, experimenta-
tion can be efficiently carried out with these methods
in contexts where the objective is not confined merely
to action success or failure (Bernoulli distribution) but
also to the minimization of the total number of page
views or the duration of a session, or the maximiza-
tion of the total income from web e-commerce.

3 A/B TESTING IN DIGITAL
SERVICES

It is common practice in companies that offer services
and products through online channels (web and mo-
bile apps) to continuously optimize their user inter-
faces with the aim of improving one or more of their
key business indicators, such as customer satisfaction,
online sales, content consumption times, or advertis-
ing conversion rates.

These experiments are known in the industry as
A/B testing, randomized control trials (RCT) where
different variations are tested until there is statistical
significance.

Two options are currently used to implement A/B
testing:

• Ad hoc developments, mainly using proprietary
software (primarily large content managers, such
as Google, Facebook, Netflix, Amazon...), or li-
braries, such as Facebook Planout, and plug-ins
by e-commerce platforms, such as Magento or
Pentashop.

• Specialized experimentation software, where
there is a wide variety of vendors, notably Google
Optimizer, Optimizely, AB Tasty and VWO.

The most advanced experimentation or A/B testing
solutions have incorporated improvements aimed at
optimizing how the tests are carried out. This opti-
mization consists of achieving statistical significance
with the lowest opportunity cost, that is, experiment
with the worst variations as few times as possible,
since they result in worse performance than the best
variation. To do this, two optimization processes ac-
count for dynamic traffic distribution and the stopping
criterion, respectively.

3.1 Dynamic Traffic Allocation

In A/B testing, traffic is originally distributed equally
for each of the variations to provide the same number
of experiments. However, it is more efficient to re-
distribute traffic dynamically, sending more or fewer
experiments to variations perform better or worse,
respectively, provided that statistical significance is
achieved.

Traffic can be distributed dynamically using
multi-armed-bandit (MAB) methods. In this con-
text, the decisions have to be taken each time
a user/customer accesses the web page by select-
ing the variation (arm) that will be shown to that
user/customer. Then, a delayed stochastic reward will
be received depending on the scenario under consid-
eration (Bernoulli or other reward distributions). The
aim is then to select a strategy (a sequence of variation
selections) that optimizes the expected reward value,
i.e. minimizing the expected regret or the opportunity
cost.

The three advanced solutions for optimizing the
dynamic traffic distribution using MAB methods for
an objective with a Bernoulli distribution (success or
failure), such as conversion ratios, click ratios, are:
1. A Thompson sampling variation for Bernoulli re-

wards. In this case, the original version is proba-
bility matching, where a weight consisting of the
probability of its expected value being better than
the rest is computed for each variation. The vari-
ation to be executed is then chosen based on a
random sample where the probability of select-
ing each variation corresponds to the previously
computed weight. In this way, the variations that
are more likely to be the best will be chosen more
times.
This is the dynamic traffic distribution technique
based on MAB methods most used by vendors,
since it performs very well, even under delayed
rewards conditions (Martı́n et al., 2019), where
there is a time delay between a variation and its
feedback, as in commercial A/B testing systems.

2. A variation of e-greedy algorithms. Some vendors
opt for this simpler algorithm, although conver-
gence is linear rather than logarithmic. According
to this approach, the best variations are calculated
periodically or after a series of N iterations. Then
80% of the traffic is uniformly distributed to the
best variations in order to optimize the expected
value and the other 20% is distributed uniformly
to all variations in order to perform exploration
tasks until the next iteration.
The companies adopting this approach include
Adobe, with Adobe Target.
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3. It is quite plausible, although it has not, as far as
we know, been published, that some large com-
panies developing their own ad hoc experimental
software, use Thompson sampling in its most ef-
ficient form in this context, where the algorithm
is dynamically updated at each decision and not
every N decisions.

In experiments where the objective follows a non-
Bernoulli distribution, measuring browsing time,
number of pages visited, total revenue, Thompson
sampling cannot be used since it is not possible to
parameterize the reward distribution. Therefore, the
main companies, such as Adobe and ABTasty, use
other alternatives, mainly a variation on e-greedy al-
gorithms. Other vendors such as Google, with Google
Analytics, and ABTasty, do not provide information
on whether or not and how they perform dynamic
traffic distribution with objectives not following a
Bernoulli distribution.

As cited before, the type of distribution associated
with the rewards or the indicator to be optimized does
not have to be known a priori in the possibilistic re-
ward (PR) methods. Thus, they constitute an alterna-
tive for dynamic traffic distribution for non-Bernoulli
reward distributions.

In (Martı́n et al., 2020) a variation for dynamic
traffic distribution in A/B testing accounting for PR
methods for non-Bernoulli reward distributions is
proposed.

3.2 Stopping Criterion

The stopping criterion plays a key role in the execu-
tion of A/B testing experiments. It is used to decide
when a variation is considered to be the best.

The de facto method used to define the stopping
criterion in most approaches is based on a classical
hypothesis test. However, classic stopping criteria are
not very efficient, since they are unable to dynami-
cally stop the test when there is enough evidence to
suggest that one variation is better than the others
(Scott, 2015).

Recently, the most innovative companies are in-
troducing more dynamic stopping criteria to reduce
testing costs, leading to the same statistical signif-
icance in a similar way. These new methods, al-
though perfectly applicable to classical A/B testing,
come hand in hand with the new methods for dy-
namic traffic distribution. The multi-armed bandit
paradigm is the most popular, since the number of
samples that have to be executed for each variation
is determined dynamically rather than using classical
hypothesis tests to identify the number of samples re-
quired to achieve statistical significance.

These new criteria are based on different ap-
proaches (Bayesian, inequalities bounds...). In
(Martı́n et al., 2020) a review of the most important
approaches is provided, including Google Analytics,
which uses a stopping criterion based on a Bayesian
approach (Scott, 2015; Google, ), and Adobe Target
(Adobe, ), in which a stopping method based on con-
fidence intervals computed by the Bernstein inequal-
ity (Bernstein, 1946) is used. Google Analytics and
Adobe Target are the the stopping criteria most used
by the main vendors.

The stopping method based on the value remain-
ing used by Google Analytics (Scott, 2015) is very
efficient in environments with rewards following a
Bernoulli distribution, since it has to know the exact
distribution of the expected rewards in order to carry
out the simulations. The distribution of the expected
rewards is inferred with a Bayesian approach.

This approach, however, has a drawback: the
shape of the reward distribution has to be known or
modeled by a family of parameterizable distributions
on which priors can be applied. In addition, it should
be tractable or at least computationally efficient to up-
date the a posteriori distributions and the expected
value. This is not very often the case in many real
contexts, where the family to which the reward dis-
tribution belongs (normal, Poisson, Bernoulli) is un-
known. Besides, if the distribution is known or can
be modeled, it is very difficult to make an efficient
inference using, for example, conjugate priors.

To overcome this problem, a new approach was
proposed in (Martı́n et al., 2020), in which the prob-
ability distribution of the expected rewards efficiently
is approximately modeled by applying the possibilis-
tic rewards methods (PR2 and PR3) for the reward
in each variation. To do this, only the minimum and
maximum reward bounds have to be known rather
than the distribution of each reward. This information
is commonly available in real contexts.

Once the density function of the expected reward
(Step 3 in PR2 and PR3) is derived, the simulation and
stopping condition techniques used in (Scott, 2015)
are applied. In the Section 5, reporting a numerical
analysis of these methods on checkout process scenar-
ios, these approaches will be denoted as PR2 ValRem
and PR3 ValRem.

Besides, a stopping criterion computed from ap-
proximations to the probability distributions of the ex-
pected reward derived from PR2 and PR3 methods is
also proposed in (Martı́n et al., 2020) for emulating
confidence level-based stopping criteria, such as em-
pirical Bernstein in Adobe Target.

To do this, function that outputs the percentile
value is needed, which will be used as a confidence
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level, from distributions PR2 or PR3. As PR2 and
PR3 are Beta distributions, we can use the quantile
function, also called ppf (percentile point function),
to compute these dimensions. This function can be
analytically obtained and is available in any statistical
software library.

Once these dimensions have been derived, we
have practically the same stopping criterion as the one
used by Adobe Target.

In the Section 5, these approaches will be denoted
as PR2 bounds and PR3 bounds.

4 NUMERICAL EXPERIMENTS
AND RESULTS

In most e-commerce companies the purchase process,
also called checkout process in business argot, starts
when a customer after searching and evaluating some
service products he/she is interested in, decides to buy
one or several. This process usually start by clicking
the buy button associated to the product in the web-
site, or by clicking the checkout button and go to buy
the products previously added to the cart.

The checkout process in most cases consists of the
following tasks:

• Confirming from the cart the products and quanti-
ties the customer wants to purchase.

• Selecting a pay method (card, PayPal, etc.) and
providing the payment data (credit card number,
expiration date, etc.)

• Logistic information regarding transport duration
and fees is displayed, and the address information
is entered by the customer.

• The customer is sometimes asked to sign-in or
sign-up and/or offered a coupon, some cross-
selling or up-selling products.

• Finally, the customer is requested to confirm all
the entered information to process the purchase,
and the corresponding recipe order is displayed.

The different variations of the process usually consist
of grouping or splitting the different tasks in different
steps, adding and/or removing steps, in order to check
what variations and designs are more efficient.

In this optimization process, reducing the number
of abandons becomes crucial but also the time the cus-
tomer spends in the purchase. Therefore, the objetive
or reward will be a time function, in which the reward
is 0 if the customer abandons the process and, other-
wise the reward is higher the less time is spent in the
purchase.

The checkout process consists on 1 to n steps, cor-
responding to pages necessary to read or enter some
information. In any step, we will simulate an aban-
don rate by means of a Bernoulli distribution. If the
customer abandons the process then we have a reward
0, otherwise the user has spent some time in this step
and go to next step. A gamma distribution is used
to generate the times spent in the different steps and
the total time of customer purchase process will be
the sum of the times spent in the steps throughout the
checkout process.

We have simulated two different scenarios with
only one and with more than one variations.

4.1 Checkout Process Scenario with
Only One Variation

In this scenario the current state compared against
only one variation. The current process consists of
a purchase process with two steps: A step to enter
all the information (pay methods, pay data, name, ad-
dress, etc.) and a second step to review information
and confirm the purchase.

The first step has an abandon rate of 10% and the
time spent in this step follows a Gamma distribution
with parameter α = 540 and β = 0.16, what leads to
a mean time of 85 seconds. The abandon rate in the
second step is 1% and the time spent in this step fol-
lows a Gamma distribution with parameter α = 140
and β = 0.16, with a mean time of 21 seconds.

Finally, the maximum timeout to complete the
purchase is 300 seconds.

The challenger checkout process we will have the
next configuration. It consists of three steps: A step to
enter all the payment information (pay methods, pay
data, name), a second one to enter logistic information
and a third step to review information and confirm the
purchase.

The first step has an abandon rate of 5% and the
time spent in this step follows a Gamma distribution
with parameter α = 340 and β = 0.16, with a mean
time of 55 seconds. The abandon rate in the sec-
ond step is 5% and the time spent in this step fol-
lows a Gamma distribution with parameter α = 240
and β = 0.16, with a mean time of 39 seconds. Fi-
nally, in the third the gamma parameters are α = 140
and β = 0.16, with a mean time of 21 seconds.

The maximum timeout to complete the purchase
also is 300 seconds.

The reward distributions for the variations are un-
known for the tested algorithms and the aim is to
analyse throughout the simulation their reinforcement
learning capacity on the basis of the accumulated re-
grets together with the number of samples necessary
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for the corresponding stopping criterion.
Table 1 shows the Scenario 1 results for all the

combinations of methods and stopping criteria un-
der consideration. Mean values are provided in all
columns derived from 500 simulations, and the meth-
ods are ordered from lowest to highest mean accumu-
lated regret. Besides, the accumulated regret density
for the best 10 combinations are shown in Fig. 1.

Table 1: Results in Scenario 1 with only one variation.

method stopping crit. accum. regret std. dev. samples

PR3 PR3 ValRem 11.394 7.952 2604.25

PR2 PR3 ValRem 12.366 7.610 2014.75

PR3 PR3 bounds 16.284 9.574 6655.90

A/B test PR3 ValRem 16.398 9.318 1917.25

e-Greedy PR3 ValRem 19.298 3.954 2252.75

PR2 PR3 bounds 20.694 10.031 4387.10

PR3 PR2 ValRem 21.407 11.237 19912.50

PR2 PR2 ValRem 26.623 13.537 6727.75

e-Greedy PR3 bounds 28.746 12.341 3358.80

A/B test PR3 bounds 31.501 13.803 3691.80

PR3 PR2 bounds 33.708 11.698 309003.85

e-Greedy PR2 ValRem 38.334 18.029 4482.25

A/B test PR2 ValRem 43.608 18.840 5107.25

PR2 PR2 bounds 51.540 19.331 30505.50

e-Greedy PR2 bounds 117.740 34.735 13778.80

A/B test PR2 bounds 117.756 33.241 13781.40

Figure 1: Ripple graph of Scenario 1.

First is important to point out that the mean ac-
cumulated regret derived from the classical A/B test-
ing with also the classical stopping criterion is 248.41,
whereas the number of samples needed is 28228, be-
ing both measures clearly outperformed by the com-
binations analysed in the numerical study.

In this scenario, PR3 + PR3 ValRem is the best
combination, followed by PR2 + PR3 ValRem and
PR3 + PR3 bounds in terms of mean accumulated re-
grets. Moreover, the three best-ranked combinations

in terms of mean accumulated regrets also good val-
ues with respect to standard deviations (dispersion of
accumulated regrets). They are only outperformed by
the combination e-Greedy +R3 ValRem, but with a
worst mean accumulated regret. However, PR2 + PR3
ValRem slightly outperforms the other two combina-
tions in terms of maximum accumulated regret (see
Fig. 1).

We can also find that for the same stopping cri-
terion, PR3 is always better than the rest of the al-
gorithms: The accumulated mean regret and stan-
dard deviation (except for the combination e-Greedy
+ PR3 ValRem with a lower std. deviations) are lower.

Regarding the stopping criteria, we find, looking
at the mean samples column, that the values for com-
binations with the PR3 value remaining (PR3 Val-
Rem) stopping criterion are the lowest, followed by
PR2 ValRem and PR3 bounds (depending on the com-
bination) and PR2 bounds. The two best-ranked com-
binations in terms of mean accumulated regrets are
among the best with respect to the number of mean
required samples.

We can conclude that the combinations PR3 +
PR3 ValRem and PR2 + PR3 ValRem outperforms
the other combinations in this Scenario 1 with good
performances regarding the mean samples.

4.2 Checkout Process Scenario with 7
Variations

In this scenario 7 possible variations are consider to
test the behaviour of algorithms under consideration.
First, we have considered 5 variation types as follows:

Variation types 1, 2 and 3 consist of a purchase
process with two steps: A step to enter all the infor-
mation (pay methods, pay data, name, address, etc.)
and a second step to review information and confirm
the purchase. Variation types 4 and 5 consist of three
steps: A step to enter all the payment information
(pay methods, pay data, name), a second one to enter
logistic information and a third step to review infor-
mation and confirm the purchase.

The times spent in each of the different steps in
the 5 variations under consideration follow a Gamma
distribution with parameter β = 0.16 and the values
for parameter α shown in Table 2, which also includes
the corresponding mean time spent and abandon rate
for each step and variation.

Fig. 2 shows the reward distribution for the five
variation types under consideration. Note the differ-
ent heights in the vertical bar for the reward 0 cor-
responding to 5 variation types under consideration,
which match up with the corresponding abandon rates
for each variation type in Table 2. We can see that the
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best variation types are the 1 and 4, which also match
up with the mean times included in Table 2 since al-
though the mean accumulated time spent in their steps
are lower than in the other variations, the accumulated
abandon rates are lower (see the vertical lines associ-
ated to the zero reward value in the figure).

The above reward distributions for the variations
are unknown for the tested algorithms and the aim is
to analyse throughout the simulation their reinforce-
ment learning capacity on the basis of the accumu-
lated regrets together with the number of samples nec-
essary on the basis of the stopping criteria.

Finally, in the five variations the maximum time-
out to complete the purchase also is 300 seconds.

In the simulation process carried out we consider a
variation of types 1 and 2 and two variations of types
3, 4 and 5 each.

Table 2: Variation parameters (β = 0.16) in Scenario 2.

Variation Step α mean time abandon rate

Variation type 1 step1 540 85 sec. 10%

step2 140 21 sec. 1%

Variation type 2 step1 440 70 sec. 20%

step2 100 15 sec. 2%

Variation type 3 step1 640 110 sec. 0.2%

step2 200 30 sec. 0.02%

Variation type 4 step1 340 55 sec. 5%

step2 240 39 sec. 5%

step3 140 21 sec. 1%

Variation type 5 step1 240 39 sec. 10%

step2 200 30 sec. 10%

step3 100 15 sec. 2%

Figure 2: Reward distribution in Scenario 2.

Table 3 shows the Scenario 2 results for all the
combinations of methods and stopping criteria un-
der consideration. Mean values are provided in all
columns derived from 500 simulations, and the meth-
ods are ordered from lowest to highest mean accumu-
lated regret. Besides, the accumulated regret density
for the combinations are shown in Fig. 3.

Is important to point out again that the mean accu-
mulated regret derived from the classical A/B testing

with also the classical stopping criterion is 2819.334,
whereas the number of samples needed is 211980, be-
ing both measures clearly outperformed by most of
the combinations analysed in the numerical study.

In this scenario, PR3 + PR3 bounds is the best
combination, followed by PR3 + PR3 ValRem and
PR2 + PR3 ValRem in terms of mean accumulated re-
grets. Moreover, the three best-ranked combinations
in terms of mean accumulated regrets also the best
values with respect to standard deviations (dispersion
of accumulated regrets) and in terms of maximum ac-
cumulated regret (see Fig. 3).

Regarding the stopping criteria, first we can see
that the mean number of samples for the combina-
tions in this Scenario 2 are much higher than in Sce-
nario 1 since a more variations are considered in Sce-
nario 2. We find, looking at the mean samples column
(last column), that the values for combinations with
a PR3-based stopping criterion are the lowest. The
three best-ranked combinations in terms of mean ac-
cumulated regrets are among the best with respect to
the number of mean required samples.

We can conclude that the combinations PR3 +
PR3 ValRem and PR2 + PR3 ValRem outperforms
the other combinations in this Scenario 1 with good
performances regarding the mean samples.

Table 3: Results in scenario 2 with seven variations.

method stopping crit. acc. regret std. dev. samples

PR3 PR3 bounds 227.55 64.05 5.179e+04

PR3 PR3 ValRem 243.51 70.22 5.718e+04

PR2 PR3 ValRem 259.64 78.12 3.714e+04

PR2 PR3 bounds 364.11 124.84 5.830e+04

A/B test PR3 ValRem 599.94 267.34 5.522e+04

e-Greedy PR3 ValRem 609.77 223.52 6.317e+04

PR2 PR2 ValRem 609.92 142.70 1.209e+05

PR2 PR2 bounds 849.74 212.81 2.052e+05

e-Greedy PR3 bounds 853.88 356.47 8.947e+04

PR3 PR2 ValRem 1182.72 341.18 4.978e+06

PR3 PR2 bounds 1183.33 340.75 4.999e+06

A/B test PR3 bounds 1190.37 571.33 1.095e+05

e-Greedy PR2 ValRem 1654.84 528.65 1.760e+05

A/B test PR2 ValRem 2051.88 781.56 1.888e+05

e-Greedy PR2 bounds 3182.26 985.21 3.426e+05

A/B test PR2 bounds 5101.73 1456.92 4.696e+05

5 CONCLUSIONS

In this paper we analyze the use of the A/B Testing to
optimize the e-commerce purchasing process, specifi-
cally the checkout process, aimed at reducing the cus-
tomer abandon rate during the purchase sequence and
to increase the customer satisfaction reducing the time
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Figure 3: Ripple graph of Scenario 2.

required to end it.
A numerical study has been carried out to com-

pare different adaptations of the A/B Testing based
on multi-armed bandit algorithms, also including al-
ternative stopping criteria.

First, we can conclude the the different adapta-
tions of the A/B Testing on the basic of possibility re-
ward (PR) methods together with the alternative stop-
ping criteria outperform the classical A/B Testing in
terms of both the mean accumulated regret and the
number of samples necessary.

The PR3-based adaptation is the best one in the
two scenarios under consideration, together with the
PR3-based stopping criteria (PR3 ValRem and PR3
bounds). PR3-based adaptation outperforms the PR2-
based adaptation because it better takes advantage of
the sample variance to limit the distribution function
of the regret expected value, then becoming much bet-
ter than the PR2-based adaptation the lower is the re-
ward variance.

These conclusions match up with those reached in
(Martı́n et al., 2020), in which a comparative numer-
ical analysis based on the simulation of real scenar-
ios is used to analyze the performance of the same
A/B Testing adaptations in both Bernoulli and non-
Bernoulli environments.
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