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Abstract: This paper introduces an algorithm for the extraction of rules from trained neural network. One of the main 
disadvantages of neural networks is their presumed complexity and people’s inability to fully comprehend 
their underlying logic. Their black box nature deems them useless in cases where the process of classification 
is important and must be presented in an observable and understandable way. The described algorithm extracts 
rules from a trained neural network and presents them in a form easily interpretable to humans. The paper 
demonstrates different approaches of rule extraction. Extracted rules explain and illustrate the network’s 
decision-making process. Rules can also be observed in the form of a tree. The presented algorithm generates 
rules by changing the input data and classifying them using the Reverse Engineering approach. After 
processing the data, the algorithm can use different approaches for creating the rules. 

1 INTRODUCTION 

This paper observes a neural network for credit 
scoring. Currently, there exist several alternative 
solutions for the calculation of credit score, varying 
from vector machines to neural networks (NNs) and 
ensemble classifiers. However, the more 
sophisticated the method, the harder it is to 
understand the solution and its underlying patterns 
(Antonov, 2018). Unfortunately, NNs come with a 
strong disadvantage - it’s not easy to explain their 
underlying problem-solving methods, making it very 
difficult to understand their internal logic or their 
process of decision-making. In recent years, various 
studies have been conducted with the goal of 
unveiling the black box perception of NNs and bridge 
the gap between the complicated logic and a 
simplified interpretation understandable to humans. 
Rule extraction transforms all coefficient and 
numbers into simple conditions, easily understood by 
the average user (Jivani, 2014). The resulting 
outcomes of the algorithm are rules that explain the 
inner workings of the neural network. Those rules can 
also be presented in the form of a decision tree, by 
using other resources. A decision tree is a selection 
support tool that applies a tree-like model to 
demonstrate all possible consequences. It is also an 
approach that is able to display an algorithm that 
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mostly consists of conditional control. Unlike linear 
models, trees are skilled at mapping non-linear 
relationships exceedingly well and are quite adaptive 
to solving almost any type of problem, notably 
regression or classification. 

2 PREVIOUS WORK 

A popular solution for representing neural networks 
in finance is the Trepan Algorithm, proposed by 
Craven et al. (Craven, 1999), which extracts rules in 
a decision tree using sampling and queries. The 
Interval analysis method, proposed by Filer et al. 
(Filer, 1997), extracts rules in the form of M-of-N, 
which is also the core part of the algorithm proposed 
by Craven. 

In addition to these, there are several recursive 
rule extractions (Re-RX) algorithms. One that has 
been recently developed is by Setiono et al. (Setiono, 
2008), which repeats the backpropagation NN, NN 
pruning and C4.5 (Quinlan, 1993) for rule extraction. 
The advantage of the Re-RX approach is its design, 
as it was created for a rule extraction tool. It provides 
hierarchical and recursive distinctions for 
classification of rules from NNs. The algorithm 
achieves highly precise results when it comes to rule 
extraction. It also defines the corresponding 
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difference between discrete and continuous attributes 
for each extracted rule. 

Another approach of the Re-RX algorithm, 
proposed by Chakraborty et al. (Chakraborty, 2018), 
is Reverse Engineering Recursive Rule Extraction 
(RE-Re-RX). Re-RX cannot achieve the accuracy of 
NNs when the output is described as a non-linear 
function of continuous attributes, because Re-RX 
creates a linear hyperplane for such algorithms. 
Because of that, RE-Re-RX uses attribute data angel 
to create rules with continuous attributes. As a result, 
the rules are simple and understandable and the 
nonlinearity on data is managed. 

The algorithm described in this paper combines 
parts from each of the above-mentioned algorithms. 
Data pruning is reduced to a minimum, so that the 
final result can be as accurate as possible, as well as 
simple and easy to understand. The algorithm also 
contains a part that has not been introduced in any of 
the previous works. It is a combination of different 
approaches for the inclusion or exclusion of rules. 

Neural networks can have various applications in 
finance. The current application of the observed 
network concerns Rating/Scoring systems. In recent 
past, automated calculations of credit score have been 
developed, providing sophisticated and accrued 
results for banking professionals in risk management. 
They enable the detection of hidden patterns, which 
can be hard to identify for bank experts. Automated 
lending risk calculations are currently not being 
perfected and incorrectness of the credit score might 
lead to the loss of resources in terms of default. 
Artificial intelligence (AI) methods have not been 
integrated into such systems, because they are 
considered too complex and require a lot of time and 
effort for result interpretation. This paper introduces 
several methods that will enforce the clarification and 
interpretation of the NN logic. 

3 THE OBSERVED NEURAL 
NETWORK 

There are different approaches in the field of artificial 
intelligence (AI), each with its own characteristics, 
advantages and disadvantages. Generally speaking 
we can distinguish two main subfields – symbolic and 
non-symbolic approaches. Symbolic approach is 
based on production systems with rules and facts. 

They are mainly used in cases when the theory of 
the problem is known and can be described in the 
form of sets with mutually dependent rules. Examples 
of such systems include medical or technical 

diagnosis, monitoring, repairing, etc. One of the 
advantages of this approach is that their inference 
process can be explained in a way that is 
understandable to humans. For this purpose, it is 
possible for fired rules to be extracted with the data 
that matched their antecedents and the actions 
performed in their consequences. 

Non-symbolic approaches are more convenient 
for problems with no information on the theory of the 
problem, but with available examples. It includes 
examples such as functional approximation, patterns 
recognition, forecasting based on historical data, 
voice processing and recognition, etc. One of its main 
disadvantages is that, unlike the symbolic approach, 
it is not able to explain its inference and reasoning 
process. In practical terms this matters greatly, as it is 
often necessary for users to have the required 
background knowledge. For that reason, the problem 
is addressed here by extracting observable and 
explainable rules, thereby retaining the symbolic 
approach characteristics from a trained neural 
network that is in the sub-symbolic approach. 

3.1 Training Network 

The neural network used here is a multilayer 
perceptron, which is a feed forward neural network 
and one of the most commonly used neural networks 
in practice. The training patterns represent input- 
output vectors that are applied in the training stage. In 
the generation stage, only input vectors are used and 
the trained neural network produces outputs for them. 
The training stage consists of two other stages: 
forward and backward stage. Figure 1 illustrates the 
structure of the network. 

 

Figure 1: The structure of the backpropagation neural 
network. 

Input vectors are represented as x and output 
vectors as y. The number of input neurons is A, of 
hidden neurons B and of outputs C. Symbol xi is used 
for the output values of input neurons, hj for hidden 
neurons, and ok for outputs. Index i represents input 
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neurons, j hidden neurons, and k output neurons. Each 
neuron from a given layer is connected to every 
neuron in the next layer. There are associated weights 
for these connections, such as those between the input 
and hidden layer – wji, as well as between the hidden 
and output layer – wkj. 

A and B are determined from the dimensions of 
input and output vectors from the training examples, 
B is determined by the formula C = sqrt(A*B), 
rounded to the nearest integer value. The output 
values of input elements are the same as their input 
values x1…xA, but for other layers a bipolar sigmoid 
activation function is used. 

3.1.1 Forward Stage 

The sum of the weighted input value is calculated for 
every neuron in the hidden layer: 
 

௝ݐ݁݊ ൌ෍൫ݔ௜ݓ௝௜൯

஺

௜ୀଵ

 (1)

 
Output values for hidden neurons are calculated 

as follows: 
 

௝݄ ൌ ݂ሺ݊݁ݐ௝ሻ (2)
 

In the same way, the weighted input sum is 
calculated for neurons in the output layer: 
 

௞ݐ݁݊ ൌ෍൫ ௝݄ݓ௞௝൯
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௞݋ ൌ ݂ሺ݊݁ݐ௞ሻ (4)

3.1.2 Backward Stage 

For every output neuron, the error is calculated as 
follows: 
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1
2
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To calculate the modification of the connections’ 

weights between hidden and output neurons, the 
following gradient descent formula is used: 
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where η is the learning rate, that should be known 
before the training and is normally a small real value 

that determines the convergence rate. Thus, the 
modification of the weight is: 
 

௞௝ݓ∆ ൌ ௞ݕሺߟ െ ௞ሻݐ௞ሻ݂ᇱሺ݊݁݋ ௝݄ (7)
 

By applying the following substitution: 
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the modification of the connections’ weights between 
the input and hidden layer can be calculated as 
follows: 
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After applying modifications Δwji and Δwkj, steps 

(1) to (9) are repeated for all training patterns. If the 
stop criterion of the training is still not being met, the 
steps are performed again. 

3.2 Generation of Output Vectors via a 
New Unknown Input Vector 

When the neural network is used for pattern 
recognition or classification, new input vectors do not 
have to have associated output vectors. Output 
vectors are generated from the neural network by 
doing the calculations from the forward stage only. 
Prior to doing that, input vectors are transformed into 
the interval of the activation function range, using the 
coefficients scale and shift obtained from the 
processing of training patterns. 

4 DETERMINING THE 
SIGNIFICANCE OF EVERY 
NEURON 

In this extraction phase of the decision tree, all 
insignificant input neurons are removed from the 
neural network. (Biswas, 2018) The detection of 
immaterial neurons is based on the number of 
incorrectly classified samples. The network classifies 
all samples N-times, where N is the number of input 
neurons. The neural network first classifies the data 
without using a different input neuron. Then the 
classification output from each iteration without input 
neurons is compared to the original classification of 
the network. By comparing the classification of the 
neural network without its i-th neuron with the 
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original network, the number of misclassified 
examples is obtained. An example is considered 
misclassified if the absolute value of the difference 
between its value and the value of the original 
network classification for the same sample is higher 
than a threshold value. After calculating the results 
for each neuron, insignificant neurons are removed 
(pruned) from the network. The network repeats this 
process until there are no insignificant neurons to be 
removed. The pruning is performed in order to 
simplify the neural network, without changing its 
functionality. As the number of burrows decreases, so 
does the complexity of the tree, which in this case is 
essential for extracting a foreseeable decision tree. 
Figure 2 depicts a simple block scheme of the first 
phase of the algorithm, which demonstrates the 
removal of insignificant neurons for the purpose of 
simplifying the result. 

 

Figure 2: Pseudo scheme of the first phase of the algorithm. 

5 GENERATION OF LENGTH 
AND RANGE MATRICES 

5.1 Data Length Matrices (DLMs) 

As the network consist of important neurons only, it is 
used for the generation of a matrix that contains 
information on the number of examples classified in 
different categories (Augasta, 2012). The rows within 

the matrix correspond to different output categories of 
the neural network. The number of columns is equal to 
the number of input neurons. There are three versions 
of this matrix. The first, shown in Table 1, contains 
properly classified examples only. This is valuable for 
the decision tree extraction. The main disadvantage of 
this version, however, is not being able to provide the 
necessary information on the most important input 
neurons. As the significance of the neuron increases, 
the number of correctly classified samples declines. 
Therefore, the proper information from this neuron 
decreases and can even descend to zero. 

Table 1: DLM filled with properly classified samples. 

 Input 1 Input 2 Input 3 Input 4 Input 5

Class 1 1 1 0 4 1 
Class 2 6 3 0 5 2 
Class 3 8 8 0 4 1 
Class 4 30 23 0 29 0 
Class 5 91 98 0 94 0 
Class 6 65 60 0 55 1 
Class 7 77 96 0 59 1 
Class 8 72 84 0 50 1 
Class 9 28 44 3 21 1 
Class10 5 6 0 5 0 

Miss 438 398 818 495 813 
Sum count 383 423 3 326 8 

 
The second matrix type, shown in Table 2, is in 

contrast to the first one, as it contains misclassified 
samples only. It provides information on the most 
significant neurons, but it is also used for the exclusion 
of information that is regarded as incorrect. This matrix 
type also grants a clear view of the most significant 
inputs, as their absence generates a lot of mistakes. 

Table 2: DLM with misclassified samples only. 

 Input 1 Input 2 Input 3 Input 4 Input 5

Class 1 0 1 0 0 0 
Class 2 5 8 4 8 8 
Class 3 16 6 4 16 13 
Class 4 55 34 7 37 14 
Class 5 101 86 19 98 59 
Class 6 77 89 19 130 197 
Class 7 98 89 122 122 157 
Class 8 68 66 238 67 206 
Class 9 17 19 278 17 127 
Class10 1 0 126 0 32 

Miss 383 423 4 326 8 

Sum count 438 398 817 495 813 
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The third matrix type is shown in Table 3 and has 
been used in this paper. It is comprised of properly 
classified samples, together with those that are 
misclassified. The samples are combined in order to 
generate an overall view of the classification of the 
data. In the last row one can observe an aggregated 
value, i.e. the sum of elements from this column. This 
sum is used for determining the significance of 
information within the values. 

Table 3: DLM filled with properly classified and 
misclassified samples. 

 Input 1 Input 2 Input 3 Input 4 Input 5 

Class 1 1 2 0 4 1 
Class 2 11 11 4 13 10 
Class 3 24 14 4 20 14 
Class 4 85 57 7 66 14 
Class 5 192 184 19 192 59 
Class 6 142 149 19 185 198 
Class 7 175 185 122 181 158 
Class 8 140 150 238 117 207 
Class 9 45 63 281 38 128 
Class10 6 6 126 5 32 

Miss 0 0 1 0 0 

Sum count 821 821 820 821 821 

 
After creating the matrix, values that do not 

provide enough information are removed. Data that is 
not sufficient for the tree extraction is truncated from 
the matrix. A value is considered not informative if it 
does not satisfy the following condition: 
 

݆݅ܯ ൐ ܣ ∗ (10) ݆ܿܯ
 
where A is a threshold value within the range [0.05; 
0.5]. It determines the minimum percentage of the 
data needed for the corresponding range to remain in 
the DRM. Mij is the elements in the row with index i 
and the column with index j and Mcj is the sum of 
elements in the column with index j. If Mij is lower 
than the multiplication of the threshold value or lower 
than the Mcj from this column, then the corresponding 
range is no longer determinative. (Biswas, 2017) 

5.2 Data Range Matrices (DRMs) 

After generating a data length matrix, the next step is 
to construct a data range matrix (DRM), as shown in 
Figure 3. The data range matrix is equal in size as the 
data length matrix. However, its values represent 
ranges that contain the minimum and maximum value 
of each input neuron that has been classified into the 

corresponding output category (Augasta, 2012). 
Analogous to the DLM, the DRM can be divided into 
three different types. The first includes ranges from 
the correctly classified samples only. The second type 
consists of ranges from misclassified samples only. It 
is used to show what data should be excluded. The 
third type contains ranges from both correctly and 
incorrectly classified samples. Depending on the 
approach used for the rule construction, different 
matrices can be applied. There are two approaches 
when it comes to rule construction – inclusion and 
exclusion. The inclusion approach classifies data if 
their properties lie within the values of the data range 
matrix. Contrary to that, the exclusion approach 
verifies whether the properties of the sample by 
columns are excluded from the range. This study has 
been observing the inclusion approach and has 
therefore used the third data range matrix. 

 
Figure 3: Abstract view of the Data Range Matrix. 

where n in the number of input neurons and m is the 
number of output categories. 

The DRM matrix is used directly in the process of 
extracting the rules for the decision tree. For this 
purpose, all values that do not convey clear 
information, as well as those that might blur the 
results, are removed. For example, those values 
where the distance between the upper and lower limits 
is close to the maximum possible distance to the 
bottom limit. Such values cannot provide clear 
information on the sample borders in this diapason. 
For the purpose of generating a more refined tree, 
values from the DRM that don’t have corresponding 
counterparts in the DLM are also removed. The 
reason for their removal lies in the fact that the sample 
size, from which the ranges were provided, is not 
sufficient enough. 

6 CONSTRUCTION OF RULES 

The tree is constructed from DRM ranges (Biswas, 
2018) and uses easily obtained rules. Rules analyze 
whether the input values lie within the corresponding 
ranges. The following formulas give an abstract 
representation of the extracted values, including 
rules. 
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if(L11 ≤ s1 ≤ U11 AND L12 ≤ s2 ≤ U12 
AND...AND L1n ≤ sn ≤ U1n) 
then Class = 1 

 
if(L21 ≤ s1 ≤ U21 AND L22 ≤ s2 ≤ U22 
AND...AND L2n ≤ sn ≤ U2n) 
then Class = 2 
 
...    ...   ... 
 
if(Lm1 ≤ s1 ≤ Um1 AND Lm2 ≤ s2 ≤ Um2 
AND...AND Lmn ≤ sn ≤ Umn) 
then Class = m 

 
where L and U are lower and upper limits, N is the 
number of input nodes and M the number of output 
classes. 

It is possible for the values of one sample to be 
classified into several categories. This is corrected by 
adding priorities to the output categories, which can 
be achieved in two ways. The first is by prioritizing 
categories according to the number of samples that 
have been classified by the input network. The 
second, more precise, approach is by prioritizing 
categories according to the number of actual 
informative ranges within the DRM. It can therefore 
be stated that the most demanding category is the 
first. If a particular sample conforms to the 
conditions, no other processing will be required. 

7 RULE UPDATE 

Even though the extracted rules provide information 
on the inner workings of the network, sometimes they 
are not clear enough. The first step in improving an 
extracted rule is by removing the redundant 
verification. Rules can be improved by being 
simplified and corrected. The simplification can be 
compared to the network pruning, which is performed 
at the beginning of the rule extraction. This is 
achieved by classifying the sets with no verification 
in the rule and by comparing the generated results 
with the original ones. The absence of some 
verification can improve the accuracy, since such 
verifications would be considered redundant and are 
therefore removed. Other verifications do not change 
the accuracy of the rule but can be removed as well, 
in order to create a simpler tree that is easier to 
understand. 

The second step regarding the improvement of 
rules is redefining the upper and lower limits of 
ranges. By shifting them, it is possible to generate 
more accurate rules (Chakraborty, 2018). The 
adjustment is performed busing a value that 

represents the minimum difference between any two 
possible values from the corresponding inputs. It is 
possible to compare the original results with results 
created by the adjusted rules to assess a negative 
impact. In this way, both the adjustment is performed 
and the accuracy increases. 

8 RESULTS 

Results can be presented in two different ways. The 
first is as raw results of rules, which are short and 
clear. The only drawback of rules is that they do not 
provide visual representations. They do, however, 
possess a form that is perfect for creating decision 
trees and presenting them in a way that is easily 
understandable. Rules are converted into a tree by 
using the RBDT-1 method, known for making rule- 
based decision trees (Kalaiarasi, 2008). The RBDT-1 
method is not the subject of this paper and is not 
observed in detail. Figure 4 depicts a decision tree 
generated from rules that have been extracted from a 
neural network for the purpose of determining a credit 
score. The tree is simplified for a better understanding 
and a clearer view. The complexity of a tree grows as 
the number of input neurons increases. The result is 
highly dependable on the parameter used in formula 
10. Extracted rules are cleaned with a coefficient of 
0.2. 

 

Figure 4: Rule-based decision tree. 

The classification of the dataset that has been used 
for the generation of the algorithm is based on 
extracted rules. Several tests have been carried out 
using different approaches of algorithms, including 
various matrices and the including or excluding of 
rules. Table 6 shows the different approaches and 
their accuracy. Diff in % stands for the difference 
between the original classification of the data set and 
the classification after applying the rules. 
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Table 6: Results of the combination of different approaches. 

DLM DRM RULE Diff in % 

Right Right Include 16 

Right Full Exclude 45 

Full Right Include 16 

Full Right Exclude 63 

Full Full Include 27 

Wrong Full Include 19 

9 CONCLUSIONS 

One of the main disadvantages of neural networks is 
people’s inability to fully comprehend their workings. 
Their black box nature makes them useless in cases 
where the process of classification is important and 
must be presented in an observable and understandable 
way. The algorithm described in this paper extracts 
rules from a trained neural network and presents them 
in the form of a decision tree. In general, decision trees 
are easy to understand and memorize. 
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