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Abstract: This paper deals with the problem of performance stability of software running in shared virtualized infras-
tructures. The focus is on the ability to build an abstract performance model of containerized application
components, where real-time scheduling at the CPU level, along with traffic shaping at the networking level,
are used to limit the temporal interferences among co-located workloads, so as to obtain a predictable dis-
tributed computing platform. A model for a simple client-server application running in containers is used as
a case-study, where an extensive experimental validation of the model is conducted over a testbed running a
modified OpenStack on top of a custom real-time CPU scheduler in the Linux kernel.

1 INTRODUCTION

The relentless evolution of information and commu-
nication technologies brought to a wide diffusion of
cloud computing technologies (Armbrust et al., 2010)
in the last decade. These are being adopted more
and more in industrial and commercial settings, for
various reasons. For example, they enable flexible
and efficient use of hardware resources that are multi-
plexed over multiple customers (tenants). Moreover,
they decrease the problems related to hardware obso-
lescence and the need of having expensive data cen-
ters operated by specialized personnel, sized for peak-
hour workloads. As a result, the ICT (Information
and Communications Technology) infrastructure and
services, operated 24/7, can be rented on-demand as
needed.

Not only public cloud providers are seeing a con-
tinuous growth of their business, but private cloud
computing is also emerging as an increasingly used
paradigm within an organization. This allows to opti-
mize the use of ICT infrastructures by multiplexing a
number of heterogeneous services on the same phys-
ical infrastructure providing computing, networking
and storage services. In this context, hybrid cloud
computing is emerging as an increasingly interesting
solution taking the best of the two approaches (Arm-
brust et al., 2010).

A set of technologies that played a key and en-
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abling role in cloud computing have been the ones
related to virtualization of resources. Disk virtualiza-
tion has been historically used to support disk parti-
tioning, aggregation and reliability (think of RAID)
in mainframes and personal computers. Network vir-
tualization has been at the heart of employing sep-
aration and security in networking for data centers.
Machine virtualization has been greatly leveraged to
build nowadays’ cloud services able to host a num-
ber of heterogeneous Operating Systems (OSes) on
the same physical nodes. Virtualization technologies
pose the foundation for a flexible and adaptable use of
the underlying infrastructure, enabling seamless mi-
gration of virtual machines and services throughout
the physical infrastructure as needed, including the
possibility to live migrate them, causing unnoticeable
down times in the range of a few hundred millisec-
onds.

1.1 Problem Presentation

This explosion in the use and adoption of cloud com-
puting services led to a corresponding evolution of the
users’ needs. Nowadays, cloud services are not only
used for storage or batch activities, but they are in-
creasingly used for on-line and (soft) real-time appli-
cations, where customers and users of the shared in-
frastructure exhibit higher and higher requirements in
terms of responsiveness and timeliness of the hosted
applications and services.

While the use of virtualization leads to the in-
crease in flexibility and security (Ardagna et al.,
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2015) of multi-tenant cloud infrastructures, it hurts
performance due to its associated overheads. This
problem, particularly nasty in machine virtualization,
has been tackled either in hardware by adding ac-
celeration capabilities available in hardware-assisted
virtualization, or in software by employing solutions
based on para-virtualization, requiring modifications
and customization of the guest OS. More recently, an
increasingly interesting alternative of the latter kind
is the one of using lightweight OS-level virtualiza-
tion, a.k.a., containers. These are effectively an ex-
tension of an OS kernel services with additional en-
capsulation capabilities that let users run completely
independent user-space software stacks. While mul-
tiple containers on the same physical machine share
the same OS kernel, achieving lower security and re-
silience levels when compared to machine virtualiza-
tion, they are also capable of accessing the underly-
ing hardware at bare-metal performance. As a result,
containerization technologies are used in a number
of application domains, ranging from serverless com-
puting (Akkus et al., 2018) (especially when dealing
with big-data processing services with such solutions
as AWS Lambda and Fargate or Google Functions)
to Network Function Virtualization (NFV) (Aditya
et al., 2019; Cucinotta et al., 2019).

Traditional cloud services tackle the problem of
performance control by deploying scalable virtual-
ized services, able to dynamically request and obtain
additional physical resources from the infrastructure
as needed, due to the typically dynamic nature of the
submitted workloads over time. This approach can
be effective only if the performance1 of the single in-
stance, e.g., the single virtual machine (VM) or con-
tainer, is sufficiently stable. However, multi-tenancy
in public clouds is well-known to cause unforeseeable
interferences among co-located workloads. A similar
problem occurs also in private cloud infrastructures,
when hosting services from different heterogeneous
departments of an organization. In that case, over-
provisioning, i.e. scheduling two (or more) contain-
ers on a single CPU core, may be used to achieve a
higher degree of efficiency in the use of the underly-
ing infrastructure. For example, if two containers are
known to run, in average, less than half of the CPU
time each, they could be placed on the same CPU core
to reduce costs, at the cost of predictability.

Unfortunately, scaling horizontally a service after
detecting some performance degradation is not suf-
ficient to grant a predictable performance to inter-
active cloud applications with tight timing require-
ments, due to the time needed to employ the moni-

1Expressed, for example, in terms of amount of work
performed in a time interval.

tor/decide/scale control loop. For example, a new VM
might require minutes in order to boot and be ready to
join an elastic group.

The classical way to provide a predictable perfor-
mance/quality of service to a container or VM is by
recurring to hardware partitioning. This means that
virtual cores (that is, the cores of a VM or container)
are pinned onto physical cores, and subsets of the
available physical cores are dedicated to specific VMs
or containers. This kind of approach forbids any pos-
sibility of over-provisioning, decreasing the effective-
ness of a cloud infrastructure to manage its resources
efficiently. Some researchers investigated on the use
of real-time scheduling in the hypervisor or OS kernel
for virtualized services (Abeni et al., 2018; Cucinotta
et al., 2009; Xi et al., 2011).

This last strand of research is the context in which
our investigation is located, as explained in what fol-
lows.

1.2 Contributions

This paper deals with the problem of performance
modeling in shared containerized infrastructures, pre-
senting an extensive and detailed validation of a per-
formance model from the literature (Cucinotta et al.,
2019). Such a model is based on a real-time schedul-
ing strategy providing temporal isolation at the pro-
cessing level, jointly with traffic shaping for isolation
of multiple networking flows. The model validated
in this paper currently consider only single-core con-
tainers, but extensions to multi-core/multi-processor
containers are currently being considered.

Since the scheduler has already been shown to
provide temporal isolation between containers (Abeni
et al., 2018), the performance evaluation can be per-
formed in isolation, running one single container per
node (the container-based real-time scheduler guar-
antees that the performance of a container is not af-
fected by the interference of other containers running
on the same node). Several experiments have been
performed in order to extensively validate all the as-
pects of the considered probabilistic analysis, includ-
ing the networking model (that did not receive too
much attention in previous works).

Moreover, this work presents a realistic deploy-
ment by using OpenStack containers to orchestrate
the distributed client-server application used for the
experiments.
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2 RELATED WORK

There is an increasing interest in providing a stable
and predictable Quality of Service (QoS) to applica-
tions running in cloud computing environments, rep-
resenting an interesting issue for researchers, both
from a theoretical and a practical point of view.
Some prior works focused on addressing these is-
sues through a better placement of network functions
on virtualized nodes (Rankothge et al., 2017; Sang
et al., 2017) and their dynamic migration (Gilesh
et al., 2018), or using elastic auto-scaling strate-
gies that cannot provide performance guarantees (Ali-
Eldin et al., 2012; Roy et al., 2011; Fernandez et al.,
2014).

Other works advocated the use of real-time
scheduling techniques to make the execution of virtu-
alized and distributed computing environments more
predictable, and easier to analyze (Xi et al., 2015; Xi
et al., 2011; Lee et al., 2012; Drescher et al., 2016;
Cucinotta et al., 2010). However, the theoretical anal-
ysis proposed in such works has often been extremely
simplistic, for example only considering worst-case
behaviors and ignoring communications among dif-
ferent virtualized activities (Li et al., 2016).

The mentioned real-time scheduling techniques
are based on CPU reservations, which are similar
to the well-known traffic shaping techniques (Geor-
giadis et al., 1996) used in computer networks. Both
reservation-based scheduling and traffic shaping are
based on the idea of enforcing a limit to the fraction
of resources a service/connection can use, and traffic
shapers (based on token bucket or similar) are often
used in cloud computing to limit the network band-
width a VM can use.

A promising first step towards more realistic
application models can be based on queuing the-
ory (Allen, 1978; Gross and Harris, 1985) that enables
probabilistic analysis (instead of simply considering
the worst case). Works going in this direction exist,
for example performing the probabilistic analysis of
client-server applications (Cucinotta et al., 2017) or
extending such an analysis to containerized execution
environments (when real-time scheduling techniques
are applied (Abeni et al., 2018)) to achieve predictable
QoS in private clouds (Cucinotta et al., 2019).

However, the correctness and accurateness of the
analysis has been verified through experiments lim-
ited to simplified setups, omitting (for example) net-
work delays (which the theoretical model and the
analysis can account for).

Finally, it is worthwhile to mention that some au-
thors (Mian et al., 2013) tried to build performance
models for applications running in public clouds, e.g.,

through the use of linear classifiers. However, using
effective techniques for temporal isolation among co-
located services, one could increase accuracy of this
kind of models.

3 SYSTEM MODEL

This section presents a summary of the model from
literature (Cucinotta et al., 2019) that is going to be
validated in the presented experiments.

The model assumes some kind of isolation be-
tween applications, that can be achieved (for ex-
ample) by using a container-based real-time sched-
uler (Abeni et al., 2018). This scheduler, based on
some modifications to the SCHED DEADLINE policy,
provides the real-time containers abstraction.

Using real-time containers, each containerized ap-
plication is reserved a runtime Q (meaning that it is
allowed to execute for a time Q and is guaranteed to
receive such an amount of execution time) every pe-
riod P, under the condition that ∑i Qi/Pi ≤ 1 among
all real-time containers hosted on each CPU core.

These real-time containers are used to execute a
set of server applications S1 . . .Sn receiving (and serv-
ing) requests from clients through network connec-
tions.

A server S receives a pattern of requests modeled
as a Poisson stochastic process. Namely, requests of
size zs are sent by the client with exponential and i.i.d.
inter-request times with average rate λ and exponen-
tial and i.i.d. packet processing times with average
rate µ (the processing time is measured when a whole
CPU core is dedicated to the processing of requests).

The end-to-end Round-Trip Time (RTT) for re-
quests is thus a stochastic variable Re = tS + tP + tR,
where tS is the time needed to send a request from the
client to the server, tP is the time needed by the server
to process the request and tR is the time needed by the
response to go back from the server to the client.

When a server S is deployed as a real-time con-
tainer with runtime Q and period P, its processing
time tP can easily be approximated if P is sufficiently
small:

tP ∼=
R

Q/P
. (1)

where R is the processing time when the server runs
on a dedicated physical CPU core in isolation (with-
out reservation or equivalently with Q = P).

The transmission and response times can be de-
tailed as:
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tS = qS +δ+
zS

σ

tR = qR +δ+
zR

σ

(2)

where:

• qS (qR) is the queuing time during which a request
is waiting to be transmitted (sent back), δ is the
client-server transmission latency (measurable as,
e.g., half the ping time between the client and the
server)

• zS/σ (zR/σ) is the time needed to transmit a re-
quest (reply) of size zS (zR) on a medium with
speed σ.

If the network is not congested, δ has very little
variability, the queuing times when sending requests
and replies are negligible (qS ∼= qR ∼= 0), zS is con-
stant and zR ∼= 0 (because the server sends back to the
client just a success/error code), then Eq. (2) simpli-
fies in tS∼= δ+ Z

σ
, tR∼= δ (where Z = Zs is the network-

ing time). Hence, the transmission and response times
can be substantially ignored, adding back the constant
2δ+ Z

σ
to the processing time tP in the final expres-

sion of the RTT. Considering for example a negligi-
ble bandwidth requirement Z u 0, Poissonian arrivals
with average rate λ and exponentially distributed ser-
vice times with average rate µ, the average end-to-end
response-time E[Re] and its φth percentile Pφ[Re] can
be approximated as:

E[Re] = 2δ+
1

µ Q
P −λ

Pφ[Re] = 2δ− ln(1−φ)

µ Q
P −λ

.

(3)

If the request sizes zs are distributed exponentially
with average E[s] (so the transmission times tS are
also exponentially distributed with rate ν = E[s]

σ
> λ)

and tR∼= δ, then the average round-trip time E[Re] and
its φth percentile Pφ[Re] can be approximated as:

E[Re] = 2δ+
1

ν−λ
+

1

µ Q
P −λ

Pφ[Re]≤ 2δ−
ln
(
1−
√

φ
)

α

(4)

where α, ( 1
ν−λ

+ 1
µ Q

P−λ
)−1. Note that the formula for

Pφ[Re] is a conservative bound, where ν→ ∞ leads to
an expression similar to Eq. (3), just with

√
φ rather

than φ, providing an insight into the approximation
implications. Refer to (Cucinotta et al., 2019) for ad-
ditional details.

4 IMPLEMENTATION AND
EXPERIMENTAL SETUP

To validate the performance model presented in (Cu-
cinotta et al., 2019) (as recalled in Section 3), an im-
plementation of the container-based real-time sched-
uler used in the original paper has been used. While in
previous works the containers were created and con-
figured manually, in this paper the practical usabil-
ity of the technique is demonstrated by deploying the
containers through OpenStack2.

The experiments have been carried out using
distwalk3, a simple yet realistic open-source dis-
tributed application able to impose a configurable
client-server networking traffic and processing work-
load on the server. In particular, the application client
sends requests to the server with a random interarrival
rate (λ) and random request size (zS). The server then
simulates the execution of the request for a random
amount of CPU time (1/µ) before sending a reply
packet to the client of random size (zR). The distri-
bution of the random variables λ, µ, zS and zR can be
configured from the client application interface (e.g.
constant, uniform, exponential).

4.1 Implementation

The container-based real-time scheduling patches
from (Abeni et al., 2018) enable the user to set run-
time and period for every cgroup. To use this new
feature through OpenStack, some modifications to its
“compute” component have been necessary. Nova
is the OpenStack “compute” component, that allows
to create virtual servers (based on different kinds of
VMs or containers). If the virtual server is imple-
mented using containers, Nova uses libvirt to interact
with the user-space tools used to manage the contain-
ers, such as LXC4.

The modifications to Nova added the following
functionalities:

• Real-time parameters for the containers can be set
directly from the command line user interface;

• User-defined parameters are set in the container’s
cgroup at container creation time;

• A simple allocation algorithm (worst-fit) is used
in order to choose the CPU in which to schedule

2More information can be found at: https://www.
openstack.org/.

3Available on GitHub: https://github.com/tomcucinotta/
distwalk.

4More information can be found at: https:
//linuxcontainers.org/lxc/
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the container (only single CPU containers are con-
sidered in this proof-of-concept setup);

• Parameters are periodically retrieved from the
container cgroup to monitor the utilization.

To implement such functionalities, the following
modifications to the Nova component have been re-
quired:

• New database columns have been added, to store
the container-specific real-time parameters and
the compute server metrics;

• A new flavor property and a new scheduler hint
have been added, to allow setting the real-time
parameters at both creation time and flavor defi-
nition;

• The Nova scheduler has been modified to choose
only RT-enabled compute servers when deploy-
ing a real-time container, making sure that the re-
sulting set of real-time containers in the server is
schedulable;

• The container creation method of the Libvirt
Driver has been modified to set the correct cgroup
parameters as well. This has been done by directly
setting the cgroup parameters through the filesys-
tem (an alternative solution is to modify Libvirt
too, adding the real-time parameters in the virtual
server description);

• The container creation method of the Libvirt
Driver has also been modified to choose the CPU
in which to pin the real-time container using a
worst-fit strategy;

• The possibility to read the real-time parameters
from the cgroup has been added for monitoring
the server utilization. This has been done by
adding a new monitoring method in the Libvirt
Driver.

4.2 Experimental Setup

As shown in fig. 1, the experimental setup consisted
of three nodes:

• A compute node, in which the application’s server
ran;

• A client node, in which the client ran

• A controller node, which is required by Open-
Stack to deploy and manage the virtual machines
but has no influence on the experiments.

The application’s server ran inside a real-time
container on a computer with Linux kernel v5.1.0.
The server container was restricted to use only one
CPU core and its reservation period was always set to

L2 switch

Figure 1: Schematization of the Experimental Setup. In
Reality, All Nodes Have Both wlo1 and eno1 Interfaces but
Some Are Not Relevant to the Experiments and Thus Have
Been Omitted for Simplicity Sake.

P = 2ms, a value small enough to enable the approxi-
mation of Eq. (1). The client ran on another machine
with Linux kernel v4.4.0. Both machines were iden-
tical, with an Intel(R) Core(TM) i5-4590S CPU @
3.00GHz and 8GB of RAM. They both had a 1Gbps
NIC connected to an L2 switch. The client-server la-
tency has been measured using ping and gathering
10K samples, obtaining δ = 363/2 = 181.5µs. Fur-
thermore, in both machines high resolution timers and
HRTICK5 were enabled and HZ6 was set to 1000
(1ms), in order to obtain more accurate results.

In what follows, every measurement has been ob-
tained from 10K samples over each run, with the af-
fected machines running with CPU frequency switch-
ing and hyper-threading disabled.

Network bandwidths lower than 1Gbps were ob-
tained using a token bucket traffic shaper set-up using
the tc tool with the smallest possible buffer size7 and
latency set to 100ms8.

In the following figures, LD represents the CPU
load ( λ

µ ), zS is the packet size, the average inter-arrival
period corresponds to 1/λ and the response time is Re,
as in Section 3. Furthermore, we introduce the com-
putational load ratio (LDR) and the network band-
width ratio (BWR) which represent the saturation
level of the resources and are defined as the amount
of used resources divided by the available amounts
(note that 0≤ LDR,BWR≤ 1):

5Use high-resolution timers to deliver accurate preemp-
tion points.

6Compile-time constant of the Linux kernel that defines
the internal timer rate, used, for example, by the scheduler.

7Due to timer resolution of 1/HZ, we have bu f f er =
min(mtu, rate

HZ ).
8Latency is the maximum amount of time a packet can

sit in the TBF before being dropped. We chose this value
since it is sufficiently high to avoid excessive packet drops
in our use case.

Performance Modeling in Predictable Cloud Computing

73



LDR =
LD

Q/P

BWR =
λE[zS]

σ
.

(5)

5 EXPERIMENTAL VALIDATION

In the following, the accuracy of the performance
model, in the studied case of one server and one client,
is evaluated in various configurations, by first consid-
ering negligible networking time, then one-way com-
munications from the client to the server with constant
and exponentially distributed packet sizes under con-
strained network bandwidth. Finally, effects of high
network bandwidth saturation are highlighted.

5.1 Negligible Networking Time

The first set of experiments deals with negligible
sending and receiving times (Eq. (3)). Various val-
ues of the computational workload and reservation
have been tested with an average request inter-arrival
time ranging from 100µs to 5ms. The small packet
size of zS = 2048 bytes and the high network band-
width of σ u 1Gbps made networking time negli-
gible with regards to processing time9. Results are
shown in Figure 2, where the continuous lines repre-
sent the theoretical average and 99th percentiles of the
response-time distributions, while the markers repre-
sent the respective experimental values obtained from
the real platform. Note that increasing the average
inter-arrival times (X-axis) implies a corresponding
increase of the average processing times on the server,
thus of the response times, since the computational
workload (LD) is kept constant in each plot (as de-
tailed on top of each plot).

As visible, the experimental average and 99th per-
centile of the response times match quite closely with
theoretical expectations. Furthermore, going from the
top plot with LDR = 0.5/0.8 = 0.625 to the middle
one with LDR = 0.7/0.9 u 0.778 to the bottom one
with LDR = 0.8/0.9 u 0.889, we can observe that in-
creasing LDR causes a decrease in stability and pre-
dictability of the experimental response times. This
is due to the fact that we get closer to the instability
region (LDR > 1). This effect has been already noted
and discussed in (Cucinotta et al., 2019).

In the following, we discuss results obtained in
scenarios with non-negligible networking times.

9Networking time: zS/σ∼= 16µs
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Figure 2: Experimental Response Times (Markers) for Var-
ious Configurations of Load and CPU Reservation, Com-
pared with Theoretical Expectations of Eq. (3) (Lines).
Both Average (Green) and 99th Percentile Are Shown.

5.2 Non-negligible but Constant Packet
Sizes

The following set of experiments tests the model un-
der constrained network bandwidth. In these exper-
iments, request packet sizes are kept constant, thus
they are not exponentially distributed as considered
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Figure 3: Experimental Response Times (Markers) for Dif-
ferent Inter-Arrival Times Compared with the Theoretical
Expectations (Lines) of Eq.(4), for Both Average (Green)
and 99th Percentile (Blue). Note That the Sent Packet Size
Is Constant and That Theoretical 99th Percentile Is a Con-
servative Approximation.

in the model of Eq.(4).
In Figure 3, the computational workload LD and

CPU reservation Q/P are constant, while request
inter-arrival times range from 100µs to 5ms. Note
that, differently from the previous set of experiments,
from a certain point decreasing the average inter-
arrival times (on the X axis) causes an increase of the
response times. This is due to the fact that packets
get queued causing a significant increase in network
delays and therefore a corresponding increase in the
response times that is much higher than the benefit
from the reduction in the processing times.

It can be noted that the model overestimates the
response times. In the case of the 99th percentile, this
was expected since Eq. 4 is a conservative approxi-
mation of it. However, the overestimation is evident
also for the average response times. This can be ex-
plained by the fact that packet sizes are not exponen-
tially distributed, as considered in the model, where
higher response times are due to the presence of big-
ger requests.

Figure 4 compares the results obtained with differ-
ent network bandwidths (σ = 16,32,64Mbps). As in
the previous figure, experimental values fall below the
expected ones for the very same reasons. In addition,
it can also be noted that the 99th percentile approxi-
mation is more conservative near the “bending point”,
than it is farther from it, where it is more accurate.

In addition, the leftmost regions of both plots
show that, even near the instability region due to net-
work saturation (marked by min 1/λ in the plot), the
model still predicts the response times with a good
accuracy.
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Figure 4: Average (Top Plot) and 99th Percentile (Bottom
Plot) Response Times Obtained Experimentally (Markers)
and Theoretically Expected from Eq.(4) (Dashed Lines), for
Different Network Bandwidths and Average Inter-Arrival
Periods.

5.3 Non-negligible Networking Time
with Exponentially Distributed
Packet Sizes

The following set of experiments tests the model un-
der a constrained network bandwidth with exponen-
tially distributed packet sizes.

In Figure 5, the computational workload LD and
CPU reservation Q/P are constant, while the average
request inter-arrival time 1/λ ranges from 100µs to
5ms (on the X axis). The same considerations as in the
previous case apply here, with the difference that this
time the average experimental values match closely
with the expected values, since this time the model is
accurate. Instead, the 99th percentile values still fall
below the theoretical lines since the Pφ[Re] approxi-
mation of Eq. 4 is conservative, as discussed earlier.

Figure 6 compares the obtained average and 99th

percentile of the response times with different net-
work bandwidths. As in Figure 5, it can be noted that
the 99th percentile approximation is less accurate in
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Figure 5: Experimental Response Times (Markers) for Dif-
ferent Inter-Arrival Times Compared with Theoretical Ex-
pectations of Eq.(4) (Lines), for Both Average (Green) and
99th Percentile (Blue). Note That the Theoretical 99th Per-
centile Is a Conservative Approximation.

the “bending point”, even though this effect is less
noticeable than before, since this time we have expo-
nentially distributed packet sizes, reflecting better our
model assumptions.

However, note that in this case, approaching the
instability region BWR > 1, we can see a number of
experimental response times statistics that exceed the
predicted values, confirming that our model suffers of
some limitations in this area.

5.4 Network Utilization Comparison

This set of experiments highlights the effect of very
high network utilization, close to saturation condi-
tions (bandwidth ratio BWR approaching 1).

In Figure 7, the 99th percentile of the response
times at different loads (LD) and load ratios (LDR)
for two different network bandwidth ratios (BWR),
0.5 and 0.9, are shown, along with the theoretical con-
servative approximation of Eq. 4.

Results highlight that, when the BWR is kept low
(top plot), values are below the conservative approx-
imation and also pretty stable. However, when ap-
proaching saturation of the available bandwidth (bot-
tom plot, with BWR = 0.9), values become unpre-
dictable and can also be observed over the conserva-
tive approximation line. Indeed, high network utiliza-
tion saturating the available bandwidth can generate
packet drops, which are not modeled.
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Figure 6: Average (Top Plot) and 99th Percentile (Bottom
Plot) Response Times Obtained Experimentally (Markers)
and Theoretically Expected from Eq.(4) (Dashed Lines), for
Different Network Bandwidths and Average Inter-Arrival
Periods. Note That the Theoretical 99th Percentile Is a Con-
servative Approximation.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, the problem of validating a container-
based performance model using real-time scheduling
has been addressed. In particular, the accuracy and ef-
fectiveness of performance analysis for real-time con-
tainers (based on real-time scheduling of the CPU,
coupled with traditional traffic shaping techniques)
from literature (Cucinotta et al., 2019) has been evalu-
ated through several experiments performed on a real
implementation of the technique (exploiting custom
modifications to OpenStack and the Linux kernel).

The results showed that a simple client-server ap-
plication with Poissonian traffic characteristics can be
tightly modelled thanks to the adopted mechanisms.
Our experimentation has shown that in most cases the
considered performance model matches the experi-
mental results. However, in this paper we also high-
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Figure 7: Experimental 99th Percentile Response Times
(Markers) for Different Loads (LD) and Load Ratios (LDR)
at Two Different Network Bandwidth Ratios (BWR), Com-
pared with the Theoretical Expectations of Eq.(4) (Dashed
Lines).

lighted some limitations of the model arising when
getting closer to the instability region (saturation of
the reserved/available computational or networking
bandwidth), in addition to the well-known limitation
due to non-negligible scheduling overheads as hap-
pening with too small CPU reservation periods.

This shows that real-time containers really enable
a predictable performance for the hosted software
components, so that we can build abstract, high-level
performance models useful for designing applications
with strong end-to-end QoS guarantees.

As a future work, the model validation presented
in this paper can be extended in various ways. First,
scenarios with more concurrent clients could be taken
into consideration. This would also require some mi-
nor modifications to the performance model.

Second, the isolation capabilities of our proposed
architecture has to be validated under more complex
interference scenarios with a multitude of workload
types. For example, mechanisms to control storage
access and its associated model could be added – at
least when using SSD drives.

Third, the studied model considers containers us-

ing only a single CPU core. However, in many NFV
scenarios the containers run concurrent servers us-
ing multiple threads for handling the clients requests.
Hence, leveraging multiple CPU cores per container
would be more realistic. This is among the planned
extensions of this work in our future investigations.

Finally, the performance of some real virtualized
network function could be analyzed – e.g., deploy-
ing Open Air Interface10, Kamailio11 or similar open-
source software.
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