
Condition Monitoring of Elevator Systems using Deep Neural Network

Krishna Mohan Mishra and Kalevi Huhtala
Unit of Automation Technology and Mechanical Engineering, Tampere University, Tampere, Finland

Keywords: Deep Neural Network, Fault Detection, Feature Extraction, Elevator Systems.

Abstract: In this research, we propose a generic deep autoencoder model for automatic calculation of highly informative
deep features from the elevator data. Random forest algorithm is used for fault detection based on extracted
deep features. Maintenance actions recorded are used to label the sensor data into healthy or faulty. In our
research, we have included all fault types present for each elevator. The rest of the healthy data is used
for validation of the model to prove its efficacy in terms of avoiding false positives. New extracted deep
features provide 100% accuracy in fault detection along with avoiding false positives, which is better than
statistical features. Random forest was also used to detect faults based on statistical features to compare
results. New deep features extracted from the dataset with deep autoencoder random forest outperform the
statistical features. Good classification and robustness against overfitting are key characteristics of our model.
This research will help to reduce unnecessary visits of service technicians to installation sites by detecting
false alarms in various predictive maintenance systems.

1 INTRODUCTION

In recent years, apartments, commercial facilities and
office buildings are using elevator systems more ex-
tensively. Nowadays, urban areas comprised of 54%
of the worlds population (Desa, 2014). Therefore,
proper maintenance and safety are required by ele-
vator systems. Development of predictive and pre-
emptive maintenance strategies will be the next step
for improving the safety of elevator systems, which
will also increase the lifetime and reduce repair costs
whilst maximizing the uptime of the system (Ebeling,
2011), (Ebeling and Haul, 2016). Predictive mainte-
nance policy are now being opted by elevator produc-
tion and service companies for providing better ser-
vice to customers. They are estimating the remaining
lifetime of the components responsible for faults and
remotely monitoring faults in elevators. Fault detec-
tion and diagnosis are required by elevator systems
for healthy operation (Wang et al., 2009).

State of the art include fault diagnosis methods
having feature extraction methodologies based on
deep neural networks (Zhang et al., 2017), (Jia et al.,
2016), (Bulla et al., 2018) and convolutional neural
networks (Xia et al., 2018), (Jing et al., 2017) for ro-
tatory machines similar to elevator systems. Fault de-
tection methods for rotatory machines are also using
support vector machines (Martı́nez-Rego et al., 2011)
and extreme learning machines (Yang and Zhang,

2016). However, to improve the performance of tra-
ditional fault diagnosis methods, we have developed
an intelligent deep autoencoder model for feature ex-
traction from the data and random forest performs the
fault detection in elevator systems based on extracted
features.

In the last decade, highly meaningful statistical
patterns have been extracted with neural networks
(Calimeri et al., 2018) from large-scale and high-
dimensional datasets. Elevator ride comfort has also
been improved via speed profile design using neural
networks (Seppala et al., 1998). Nonlinear time series
modeling (Lee, 2014) is one of the successful appli-
cation of neural networks. Relevant features can be
self-learned from multiple signals using a deep learn-
ing network (Fernández-Varela et al., 2018). Deep
learning algorithms are frequently used in areas such
as preventive maintenance (Arima et al., 2012), de-
cision support system (Sedlak et al., 2013), fraud
detection (Mendes et al., 2012), forecasting (Fer-
hatosmanoglu and Macit, 2016) and text classifica-
tion (Wang and Choi, 2012). Autoencoding is a pro-
cess based on feedforward neural network (Hänninen
and Kärkkäinen, 2016) for nonlinear dimension re-
duction with natural transformation architecture. Au-
toencoders (Albuquerque et al., 2018) are very power-
ful as nonlinear feature extractors. Autoencoders can
extract features of high interest from sensor data for
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increasing the generalization ability of machine learn-
ing models (Huet et al., 2016). Autoencoders have
been studied for decades and were first introduced
by LeCun (Fogelman-Soulie et al., 1987). Tradition-
ally, autoencoders have two main features i.e. fea-
ture learning and dimensionality reduction. Autoen-
coders and latent variable models (Madani and Vlajic,
2018) are theoretically related, which promotes them
to be considered as one of the most compelling sub-
space analysis techniques. Feature extraction method
based on autoencoders are used in systems like induc-
tion motor (Sun et al., 2016) and wind turbines (Jiang
et al., 2018) for fault detection, different from elevator
systems as in our research.

In our previous research, elevator key perfor-
mance and ride quality features were calculated from
mainly acceleration signals of raw sensor data, which
we call here statistical features. Random forest has
classified these statistical features to detect faults. Ex-
pert knowledge of the domain is required to calculate
statistical domain specific features from raw sensor
data but there will be loss of information to some ex-
tent. To avoid these implications, we have developed
a deep autoencoder random forest approach for au-
tomated feature extraction from elevator sensor data,
and based on these deep features, faults are detected.
The rest of this paper is organized as follows. Sec-
tion 2 presents the methodology of the paper includ-
ing deep autoencoder and random forest algorithms.
Then, section 3 includes the details of experiments
performed, results and discussion. Finally, section 4
concludes the paper and presents the future work.

2 METHODOLOGY

In this research, we have used 12 different statisti-
cal features describing the motion and vibration of an
elevator. These features are derived from raw sen-
sor data for fault detection and diagnostics of multi-
ple faults. We have developed an automatic feature
extraction technique in this research as an extension
to the work of our previous research (Mishra et al.,
2019) to compare the results using new extracted deep
features. We have analyzed almost nine months of the
data from three traction elevators in this research as an
extension to the work of our previous research. Each
elevator produces around 200 rides per day. Data col-
lected from an elevator system is fed to the deep au-
toencoder model for new feature extraction and then
random forest performs the fault detection task based
on extracted deep features. We have used 70% of the
data for training and rest 30% for testing. Figure 1
shows the fault detection approach used in this pa-

per, which includes elevator data extracted based on
time periods provided by the maintenance data. Data
collected from elevator systems is fed to the deep au-
toencoder model for feature extraction and then ran-
dom forest performs the fault detection task based on
extracted deep features.
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Figure 1: Fault detection approach.

2.1 Deep Autoencoder

We have developed a deep autoencoder model based
on deep learning autoencoder feature extraction
methodology. A basic autoencoder is built on feed-
forward neural network with a fully connected three-
layer network including one hidden layer. Input and
output layer of a typical autoencoder have same num-
ber of neurons and reproduces output as its inputs. We
are using a five layer deep autoencoder (see Figure 2)
including input, output, encoder, decoder and repre-
sentation layers, which is a different approach than
in (Jiang et al., 2018), (Vincent et al., 2008). Every
movement of the elevator generates statistical features
from the vibration signal. In our approach, we first
feed the elevator data from each elevator movement
in up and down directions separately in the deep au-
toencoder model to extract new deep features from the
data. Then we apply random forest as a classifier for
fault detection based on new deep features extracted
from the data.
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Figure 2: Deep autoencoder feature extraction approach.
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The encoder transforms the input x into corrupted
input data x’ using hidden representation h through
nonlinear mapping

h = f (W 1x’ +b) (1)

where f(.) is a nonlinear activation function as
the sigmoid function, W 1 ∈Rk*m is the weight matrix
and b ∈ Rk the bias vector to be optimized in encod-
ing with k nodes in the hidden layer (Vincent et al.,
2008). Then, with parameters W 2 ∈Rm*k and c∈Rm,
the decoder uses nonlinear transformation to map hid-
den representation h to a reconstructed vector x” at the
output layer.

x” = g(W 2h+ c) (2)
where g(.) is again nonlinear function (sigmoid

function). In this study, the weight matrix is W2=W1
T

, which is tied weights for better learning performance
(Japkowicz et al., 2000).

2.2 Random Forest

Random forest is type of ensemble classifier selecting
a subset of training samples and variables randomly
to produce multiple decision trees (Breiman, 2001).
High data dimensionality and multicollinearity can be
handled by a RF classifier while imbalanced data af-
fect the results of the RF classifier. It can also be used
for sample proximity analysis, i.e. outlier detection
and removal in train set (Belgiu and Drăguţ, 2016).
The final classification accuracy of RF is calculated
by averaging the probabilities of assigning classes re-
lated to all produced trees (t). Testing data (d) that
is unknown to all the decision trees is used for eval-
uation by voting method. Selection of the class is
based on the maximum number of votes (see Figure
3). Random forest classifier provides variable impor-
tance measurement that helps in reducing the dimen-
sions of hyperspectral data in order to identify the
most relevant features of data, and helps in selecting
the most suitable reason for classification of a certain
target class.

Specifically, let sensor data value vl
t have training

sample lth in the arrived leaf node of the decision tree
t ∈ T , where l ∈ [1, ...,Lt] and the number of train-
ing samples is Lt in the current arrived leaf node of
decision tree t. The final prediction result is given by
(Huynh et al., 2016):

µ =
∑t∈T ∑l∈[1,...,Lt]

vl
t

∑t∈T Lt
(3)

All classification trees providing a final decision
by voting method are given by (Liu et al., 2017):

H(a) = argmax yj ∑
i∈[1,2,...,Z]

I(hi(a) = yj) (4)
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Figure 3: Classification phase of random forest classifier.

where j= 1,2,...,C and the combination model is
H(a) , the number of training subsets are Z depending
on which decision tree model is hi(a) , i ∈ [1,2, ...,Z]
while output or labels of the P classes are yj , j=
1,2,...,P and combined strategy is I(.) defined as:

I(x) =

{
1, hi(a) = yj

0, otherwise
(5)

where output of the decision tree is hi(a) and ith

class label of the P classes is yj, j= 1,2,...,P .

2.3 Evaluation Parameters

Evaluation parameters used in this research are de-
fined with the confusion matrix in Table 1.

Table 1: Confusion matrix.

Predicted (P) (N)
Actual (P) True positive (TP) False negative (FN)

(N) False positive (FP) True negative (TN)

The rate of positive test result is sensitivity,

Sensitivity =
T P

T P+FN
∗100% (6)

The ratio of a negative test result is specificity,

Speci f icity =
T N

T N +FP
∗100% (7)

The overall measure is accuracy,

Accuracy =
T P+T N

T P+FP+T N +FN
∗100% (8)
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3 RESULTS AND DISCUSSION

In this research, we have included all three elevators
E001, E002, E003 and their combined version (All)
similar to our previous research. First, we selected
the faulty data based on time periods provided by the
maintenance data. In the next step, an equal amount
of healthy data was also selected and labelled as class
0 for healthy, with class 1 for faulty data. Finally, the
deep autoencoder model is used for feature extraction
from the data.

3.1 Up Movement

We have analyzed up and down movements separately
because the traction based elevator usually produces
slightly different levels of vibration in each direction.
Healthy and faulty data with class labels are fed to the
deep autoencoder model and the generated deep fea-
tures are shown in Figure 4. In Figure 4, we can see
that both features with class labels are perfectly sep-
arated, which results in better fault detection. These
are called deep features or latent features in deep au-
toencoder terminology, which shows hidden represen-
tations of the data.
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Figure 4: Extracted deep autoencoder features for combined
version (All) (Visualization of the features w.r.t class vari-
able).

The extracted deep features are fed to the random
forest algorithm for classification and the results pro-
vide 100% accuracy in fault detection, as shown in
Table 2. We have also calculated accuracy in terms of
avoiding false positives from both features and found
that the new deep features generated in this research

outperform the statistical features. We have used the
rest of the healthy data to analyze the number of false
positives. This healthy data is labelled as class 0 and
fed to the deep autoencoder to extract new deep fea-
tures from the data, as presented in Figure 5. These
new deep features are then classified with the pre-
trained deep autoencoder random forest model to test
the efficacy of the model in terms of false positives.

Figure 5: Extracted deep features (only healthy data) for
combined version (All).

Table 2 presents the results for upward movement
of the elevator in terms of accuracy, sensitivity and
specificity. We have also included the accuracy of
avoiding false positives as evaluation parameters for
this research. The results show that the new deep fea-
tures provide better accuracy in terms of fault detec-
tion and avoiding false positives from the data, which
is helpful in detecting false alarms for elevator predic-
tive maintenance strategies. It is extremely helpful in
reducing the unnecessary visits of maintenance per-
sonnel to installation sites.

Table 2: Fault detection analysis (False positives field re-
lated to analyzing rest of the healthy data after the training
and testing phase).

Deep features Statistical features
Accuracy 1 0.78
Sensitivity 1 0.78
Specificity 1 0.78

False positives 1 0.94

3.2 Down Movement

For downward motion, just as in the case of up move-
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ment, we feed both healthy and faulty data with class
labels to the deep autoencoder model for the extrac-
tion of new deep features, as shown in Figure 6.
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Figure 6: Extracted deep features for combined version
(All).

Finally, the new extracted deep features are clas-
sified with random forest model, and the results are
shown in Table 3. After this, the rest of the healthy
data with class label 0 is used to analyze the num-
ber of false positives. The extracted deep features are
presented in Figure 7. Table 3 presents the results for
fault detection with deep autoencoder random forest
model in the downward direction. The results are sim-
ilar to the upward direction, but we can see significant
change in terms of accuracy when analyzing the fault
detection and number of false positives with new deep
features.

Table 3: Fault detection analysis.

Deep features Statistical features
Accuracy 1 0.74
Sensitivity 1 0.78
Specificity 1 0.70

False positives 1 0.89

4 CONCLUSIONS AND FUTURE
WORK

In this research, we propose a novel fault detection
technique for health monitoring of elevator systems.
We have developed a generic model for automated
feature extraction and fault detection in the health
state monitoring of elevator systems. Our approach

Figure 7: Extracted deep features (only healthy data) for
combined version (All).

with new extracted deep features provided 100% ac-
curacy in detecting faults and in avoiding false pos-
itives. The results show that we have succeeded in
developing a generic model, which can also be appli-
cable to other machine systems for automated feature
extraction and fault detection. The results are useful
in terms of detecting false alarms in elevator predic-
tive maintenance. If the analysis results are utilized
to allocate maintenance resources, the approach will
also reduce unnecessary visits of maintenance person-
nel to installation sites. Our developed model can also
be used for solving diagnostics problems with auto-
matically generated highly informative deep features
in different predictive maintenance solutions. Our
model outperforms because of new deep features ex-
tracted from the dataset as compared to statistical fea-
tures calculated from the raw sensor dataset of the
same elevators. No prior domain knowledge is re-
quired for the automated feature extraction approach.
Robustness against overfitting and dimensionality re-
duction are the two main characteristics of our model.
Our generic model is feasible as shown by the exper-
imental results, which will increase the safety of pas-
sengers. Robustness of our model is tested in the case
of a large dataset, which proves the efficacy of our
model.

In future work, we will extend our approach on
more elevators and real-world big data cases to val-
idate its potential for other applications and improve
its efficacy.
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