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Abstract: Owing to advantages such as re-usability of components, broader options for composition requesters and
liberty to specialize for component providers, composite services have been extensively researched and signif-
icantly enhanced in several respects. Yet, most of the studies undertaken fail to acknowledge that every web
service has a limited context in which it can successfully perform its tasks. When used as part of a composition,
the restricted context-spaces of all such component services together define the contextual boundaries of the
composite service. However, from a thorough review of the existing literature on the subject, we have discov-
ered that no systems have yet been proposed to cater to the specific verification of internal constraints imposed
on components of a composite service. In an attempt to address this gap in service composition research, we
propose a multi-faceted solution capable, firstly, of automatically constructing context-aware composite web
services with their internal constraints positioned for optimum resource-utilization and, secondly, of validat-
ing the generated compositions using the General Intensional Programming SYstem (GIPSY) as a time- and
cost-efficient simulation/execution environment.

1 INTRODUCTION

Web services are independent, self-describing, modu-
lar programs that can be published, searched for, in-
voked, and executed via the World Wide Web. In
order to enhance their clarity and re-usability, web
services are usually designed to perform simple and
specific tasks. To accomplish more complex tasks,
such as a shopping process comprising of product cat-
alog display, customer order gathering, credit card
payment processing and product shipment initiation
(as depicted in Figure 1), simple web services (called
component services) are selected for each sub-task
and composed together in the form of a workflow
to build a composite web service, which is a cus-
tomized service assembled and arranged according to
each client’s particular and potentially elaborate re-
quirements. The process of web service composition,
besides broadening the client base for each service
provider, opens up a wide variety of service options
to choose from for each sub-task for the service users,
thereby benefiting both of the parties involved in the
transaction.

Figure 1: Composite Online Shopping Service.

Owing to such advantages, among others, service
composition has been extensively researched. Sev-
eral aspects of the composition process have been ex-
haustively explored and honed. Yet, there are certain
facets of composite web services that have not been
granted proper consideration. For example, almost all
of the existing research on web service composition
overlooks the fact that every service has a limited con-
text (albeit possibly wide) in which it can successfully
perform its tasks. Such limitations are defined by
service providers and are called internal service con-
straints. For example, while one credit card payment
service (say, W1) might be capable of processing only
Visa cards (internal constraint: CreditCardBrand =
Visa), another service (say, W2) might be able to
process both Visa and Master cards (internal con-
straint: CreditCardBrand ∈ {Visa,Master}). Simi-
larly, a shipment service (say, W3) might be capable of
delivering products only to addresses within Canada
(internal constraint: ShippingAddress ∈ {Canada}).
It cannot be assumed that services can process ev-
ery existing credit card brand or deliver products to
every country in the world. Furthermore, if the ser-
vices W1 and W3 mentioned above were to be used
as components of the composite online shopping ser-
vice depicted in Figure 1, the shopping service as a
unit would be constrained to {CreditCardBrand =
Visa∩ ShippingAddress ∈ {Canada}}, i.e., it would

282
Gupta, J., Paquet, J. and Mokhov, S.
Composite Web Services as Dataflow Graphs for Constraint Verification.
DOI: 10.5220/0009342302820291
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 282-291
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



be useful for only those customers who reside in
Canada and use a Visa card for online transactions.
Clearly, this limits the customer-base of the online
store employing the composite shopping service. Due
to such impact, it is important to take all the inter-
nal constraints of atomic services into account while
studying the behavior of composite services. Inter-
nal constraints in the context of service composition
have been discussed in elaborate detail only by Wang,
Ding, Jiang, and Zhou in (Wang et al., 2014), fol-
lowed by Laleh, Paquet, Mokhov, and Yan in (Laleh,
2018; Laleh et al., 2018; Laleh et al., 2017).

Due to the limited exposure received by this as-
pect of web service composition, no systems (as per
our knowledge) have yet been proposed to cater to the
specific verification and validation of constraints im-
posed on component atomic services by their devel-
opers/providers. Most of the existing research on ver-
ification/simulation/execution of composite web ser-
vices has been concerned with validating their Qual-
ity of Service (QoS) constraints (Shkarupylo, 2016),
functional requirements (Dechsupa et al., 2016) or or-
der of execution of the component services (Huynh
et al., 2015).

The internal service constraints that we aim to ver-
ify are different from those discussed in the research
works cited above. These are restrictions imposed on
the context in which a service can be executed. We
borrow the concept of execution context of a web ser-
vice from (Laleh, 2018) and consider it to be an ag-
gregation of all the information that could affect the
execution of a service. According to this definition,
each element of an execution context is a name-value
pair. Based on that, the context of a service (be it
atomic or composite) is considered to be the set of all
its input parameters and the values that are assigned
to them at the time of a service call. For example,
consider the composite shopping service depicted in
Figure 1 and its component details for a sample run
provided in Table 1. For this sample run, the context
of atomic service W2 would be:
{ProductNumber : ST1234, ProductPrice : 75.00}

while the context of composite shopping service (as-
suming that it takes ProductName, CreditCardBrand,
CreditCardNumber and ShippingAddress as input)
would be:
{ProductName : StudyTable, CreditCardBrand : Visa,

CreditCardNumber : CCVS56789,
ShippingAddress : Canada}

For any composite service, many of the con-
text parameters/dimensions of its component services
could get their values assigned dynamically as the
composite service is being executed. Therefore, in

order to check if the restrictions placed on such vari-
ables (i.e., the internal constraints) are satisfied, we
must either actually execute the composite service
or else simulate its execution. For example, sup-
pose, the Shipment service provider imposes a 50-
pound weight-limit on packages shipped by the ser-
vice (internal constraint: ProductWeight <= 50). In
that case, the ProductWeight output parameter pro-
duced by the Catalog service (which is an input to the
Shipment service) would have to be inspected for val-
ues exceeding 50 before the Shipment service could
confirm acceptance of the shipment job. To accom-
plish that, the composite service would have to be
executed, which would produce some value for the
ProductWeight parameter to be compared with the
shipment weight-limit. Such verification demands
a simulation or execution environment capable of
executing composite web services composed of ei-
ther simulated or real-world, internally-constrained
atomic web services.

In an attempt to address the above concerns re-
lated to web service composition, in this paper,
we propose the use of the General Intensional Pro-
gramming System (GIPSY) (Paquet, 2009) as a
simulation/execution-based environment for verifica-
tion and validation of constraint- and context-aware
composite web services.

1.1 Objectives and Motivation

Consider an online store that needs a shopping ser-
vice that can display a product catalog to its cus-
tomers, accept their orders, process their credit card
payments and initiate shipment of the ordered goods.
Such a store effectively needs a composition engine
that can construct the required shopping service (sim-
ilar to the one depicted in Figure 1) based on the in-
puts that the store’s customers would be able to pro-
vide, the outputs that they would expect in return and
the set of atomic services available to perform each
of the required tasks. However, as discussed earlier,
atomic services may have restrictions, known as in-
ternal constraints, imposed on their execution context
by their providers, which, in turn, defines the con-
textual boundaries of any composite service of which
they form a part. Table 1 specifies such internal con-
straints placed on the Payment and Shipment services
that serve as components of the shopping service. The
combinatorial effect of these constraints transforms
the shopping service into a utility tailor-made for cus-
tomers who use Visa credit cards for online trans-
actions, order products weighing up to 50 lbs and
get their purchased goods delivered within Canada,
which makes it essential for the composition engine
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Table 1: Online Shopping Service Component Details.

Service Type Input Parameters Sample Input Output Parameters Sample Output Internal Constraints

Values Values

W1 Catalog {ProductName} {StudyTable} {ProductNumber, {ST1234, C1 = /0

ProductPrice, 75.00,

ProductWeight} 45}

W2 Order {ProductNumber, {ST1234, {OrderNumber, {ORD1234, C2 = /0

ProductPrice} 75.00} PaymentAmount} 82.50}

W3 Payment {OrderNumber, {ORD1234, {PaymentStatus} {Complete} C3 = {CreditCardBrand =Visa}

PaymentAmount, 82.50,

CreditCardBrand Visa,

CreditCardNumber} CCVS56789}

W4 Shipment {PaymentStatus, {Complete, {ShipmentStatus} {Confirmed} C41 = {ProductWeight <= 50}

ProductWeight, 45, C42 = {ShippingAddress =Canada}

ShippingAddress} Canada}

to take the internal constraints of the Payment and
Shipment services into account while assembling the
shopping service.

Continuing with the motivation scenario, once
the composition engine assembles a suitable com-
posite shopping service, it must subject the service
to some basic behavioral tests, such as validation of
input-output relationships, correct constraint enforce-
ment, and elimination of inaccessible or malfunction-
ing components, before it can be proposed as a prac-
ticable solution to the service requester, i.e., the on-
line store. However, as mentioned in Section 1, while
there are systems available for testing composite ser-
vice behaviors in an unlimited context space, no exist-
ing research offers a solution for verification and val-
idation of internally-constrained composite web ser-
vices. Therefore, the composition engine in this sce-
nario has no option other than to trust the component
services to function well within their bounded con-
text space (as advertised in their descriptions) and to
present the composed shopping service to the service
requester without testing its contextual limits. Sim-
ilarly, the service requester has no alternative but to
trust the composition engine to have performed all
possible checks and to accept the composed solution
as a feasible one, following which it might enter into
a binding contract or lease with the providers of each
of the component services involved. Let us suppose
that the Payment component service, W3, has a faulty
implementation or its constraint description was mis-
takenly replaced by that of a different Payment ser-
vice. Because of one or more of such human-errors,
W3 ends up being presented as a Visa card process-
ing service while actually having been programmed
to process Master cards. Now, suppose that the on-
line shopping store is not allowed to accept Master
cards because of an agreement with Visa. In this sit-
uation, if a customer of the store attempts to make an
online purchase with their Visa credit card, the Pay-
ment service would fail and the order would be re-
jected. Meanwhile, another customer using a Master

card might succeed in placing their order, thus violat-
ing the store’s agreement with Visa. Not only would
such an event prevent the store from making any valid
sale until the service is repaired or replaced, it could
have an adverse effect on the store’s reputation, which
could harm its business. Additionally, the store might
have to suffer monetary losses because of the contract
signed with the provider of the Payment service (W3),
as it no longer holds any utility for it, or even face le-
gal consequences for their breach of agreement with
Visa. Besides, the composition engine is also likely
to get affected by such occurrences and lose its credi-
bility with its clients for supplying unreliable and de-
fective composite services.

As explained earlier, contextual elements of com-
ponent services often get their values assigned dy-
namically as their composite service is being exe-
cuted, which implies that any conditions placed on
those elements must be evaluated at run-time. There-
fore, a system meant for the verification of context-
and constraint-aware composite web services must be
capable of either simulating execution of or actually
executing those composite services.

While with the execution system we aim to test
the actual behavior of services and weed out non-
functional components or components that do not be-
have according to their agreed constraints/specifica-
tions, our purpose for the simulation system is to be
able to test the suitability of composition solutions
and implement quick fixes in case of issues with min-
imal resources and time and without requiring access
to any service’s code.

We recognize an enhancement in time-efficiency
by a reduction in the average response-time of a com-
posite service both during simulation and execution.
An increase in cost-efficiency, on the other hand, can
have two aspects: a reduction in the average fee to be
paid to the component service providers for utilizing
(i.e., executing) their services as part of a composi-
tion or a decrease in the number of component ser-
vice rollbacks to be borne due to constraint-violation
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during composite service execution.

1.2 Literature Review

The primary goal of this paper is to present a
simulation/execution-based verification solution for
context- and internal-constraint-aware composite ser-
vices. We present here some related solutions.

The research conducted by Wang et al. (Wang
et al., 2014) and Laleh et al. (Laleh, 2018; Laleh
et al., 2018; Laleh et al., 2017) on composition
of internally-constrained web services. These re-
searchers propose graph-search-based composition
algorithms augmented with novel techniques to merge
composition plans/sub-plans operating in different
contexts into a single larger plan for widening the
overall contextual range of a composite service. How-
ever, neither of these solutions can guarantee exhaus-
tive coverage of a context space, which leaves the
generated composite services vulnerable to run-time
constraint-verification failures, thereby necessitating
the construction of a behavior verification and vali-
dation system. Using Petri nets for composition of
internally-constrained services allows for such a ver-
ification to a certain extent by means of simulation.
For example, Cheng, Liu, Zhou, Zeng, and Yla-Jaaski
(Cheng et al., 2015) introduce an automated composi-
tion method for internally-constrained fuzzy semantic
web services using Fuzzy Predicate Petri Nets. Such
approaches ensure that the generated composite ser-
vices satisfy the input/output requirements of the user
while ensuring that they do not conflict with the inter-
nal constraints of component services. However, Petri
nets are not capable of executing real services and,
therefore, cannot be used for execution-based verifi-
cation of composite services.

Most of the simulation/execution solutions use
WS-BPEL representation of composite services as
their input, which they first translate into a verifica-
tion language or a formal simulation model and then
validate them using a simulator or model checker tool.
For example, Siala, Ait-Sadoune, and Ghedira (Siala
et al., 2014) propose translation of WS-BPEL pro-
cesses into Multi-Agent Systems, which can simu-
late service behavior using JADE framework for ob-
servation and detection of undesired properties, such
as live-lock and deadlock. Meanwhile, Juan and Hao
(Juan and Hao, 2012) use QPME tool for, first, trans-
forming WS-BPEL processes into Queuing Petri Nets
(QPN’s) and, then, simulating the QPN’s for quanti-
tative performance analysis. Dechsupa, Vatanawood,
and Thongtak (Dechsupa et al., 2016) suggest Col-
ored Petri Nets for formal modeling of WS-BPEL
processes and CPN Tool for editing, simulation and

analysis of the CPN’s generated. Translation of com-
posite services written using WS-BPEL into Promela
language is discussed by Nagamouttou et al. (Nag-
amouttou et al., 2015). SPIN tool is used for an-
alyzing these translations for various desirable and
undesirable properties. Chen, Tan, Sun, Liu, and
Dong (Chen et al., 2014) propose using VeriWS for
analyzing the semantics of a WS-BPEL process di-
rectly (i.e., without translation) to check for dead-
locks, reachability, and QoS constraint-satisfaction as
well as for detecting anomalies in the composition’s
functionality. Shkarupylo (Shkarupylo, 2016) pro-
poses synthesis of formal TLA+ specification for a
WS-BPEL composition and testing its functional and
non-functional properties using TLC model checker
and DEVS Suite toolkit through simulation and vi-
sualization of service behavior. Although several of
these approaches succeed in incorporating automa-
tion and extensibility into their translation processes
(similar to ours), none of them supports completely
automated composition of services, which limits their
practicality while handling complex compositions or
large repositories of services.

2 SERVICE COMPOSITION

While simulating and executing internally-
constrained composite services is the primary
goal of this paper, constructing such services based
on a composition request and a set of services avail-
able for composition is an essential prerequisite to the
simulation/execution process. The automated service
composition technique that we employ in this paper
has been borrowed from the research conducted by
Laleh et al. (Laleh, 2018; Laleh et al., 2018; Laleh
et al., 2017; T. Laleh et al., 2017) for its formal model
of constraint-aware composite services and its unique
constraint-adjustment technique, which enhances the
time- and cost-efficiency of the composition and,
subsequently, the simulation/execution process.

To aid with a better understanding of the service
composition methodology devised by Laleh et al., in
this section, we present the formal definitions of the
fundamental entities and concepts involved in the pro-
cess (Laleh, 2018).

Definition 1. A Service is a tuple S =
〈I,O,C,E,QoS〉 where: I is the set of ontology
types representing the input parameters of the
service; O is the set of ontology types representing
the output parameters of the service; C is the set
of constraint expressions representing limitations
on service features; E is the set of ontology types
representing parameters whose values are affected as
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a result of the execution of the service; QoS is the set
of quality parameters of the service.

Definition 2. An Internal Constraint
is a boolean expression of the form:
〈feature〉〈operator〉〈literalValue〉, where:
〈feature〉 represents an input parameter of a
service, which is an ontology type; 〈operator〉 repre-
sents operators such as =,<,>,≤,≥; 〈literalValue〉
represents a value or a set of values of the same data
type as the expression feature.

Definition 3. A Service Composition Request is a tu-
ple R = 〈I,O,QoS,C〉 where: I is the set of ontology
types representing the input the customer can provide;
O is the set of ontology types representing the output
expected by the customer; QoS is the set of quality pa-
rameters expected from the service by the customer;
C is the set of constraints representing limitations of
service requester.

Since, in this paper, we take only internal constraints
into consideration, our current implementation of a
composition request models but does not process the
requester’s QoS and constraint requirements. In re-
sponse to a composition request, we generate a set of
one or more solution plans, i.e., workflows of compo-
nent services capable of producing the requested out-
put by processing the given input while verifying the
internal constraints placed on the components. These
plans are called constraint-aware plans.
Definition 4. A Constraint-Aware Plan is a directed
graph extracted from the search graph in which each
node is a service-node 〈CS,service〉, using initial pa-
rameters (R.I), whose successive application of ser-
vices of nodes eventually generates the goal parame-
ters (R.O).

The search graph referred to in the above definition
is the graph of service nodes that gets generated as a
result of the forward expansion stage of the composi-
tion process and represents a collection of all the solu-
tion plans that can be constructed for a given compo-
sition request. For each service-node 〈CS,service〉 in
a constraint-aware plan, CS refers to the set of all ser-
vice constraints that must be verified before service
can be executed as part of the plan. The term R.I
refers to the input parameters specified as part of the
given composition request R while R.O refers to the
requested output parameters. Each service-node in a
constraint-aware plan has a set of predecessors and a
set of successors associated with it, which are defined
as follows:
Definition 5. The predecessor set of a service-node
in a constraint-aware plan represents the set of all
services-nodes that must be executed before the exe-
cution of the service-node, and the successor set rep-

resents the set of all services-nodes that will be exe-
cuted only after the execution of the service-node in
the constraint-aware plan.

We present our service composition methodology
as a set of algorithms, which transform a given com-
position request and set of available services into a
set of constraint-aware composition plans or compos-
ite services.

The main ServiceComposition algorithm drives
the service composition process: (1) forward expan-
sion constructs a search graph based on a given com-
position request and available services; (2) backward
search extracts solution plan sets from the search
graph; (3) plan construction discards extraneous ser-
vices from solution plan sets and arranging the re-
maining ones into solution plans, and (4) constraint-
aware plan construction transforms solution plans
into constraint-aware plans with their constraint ver-
ification points adjusted to optimum locations.

The ForwardExpansion algorithm generates a
search graph for a given composition request. A
search graph is a directed graph composed of ordered
layers, each of which is assigned certain specific ser-
vices selected from the given repository. As forward
expansion begins, prdSet is initialized with the initial
parameters, after which the repository is searched for
those services all of whose input parameters exist in
prdSet. Each of the suitable services discovered dur-
ing the search must generate an output parameter that
is not already present in prdSet and must not violate
any of the requested constraints. Services that match
these criteria are added to the next layer in the search
graph. The output parameters produced by all the ser-
vices included in the layer are then added to prdSet
and the repository is searched again for services that
can be added to the following layer based on the up-
dated set of parameters. The search graph thus grows
layer by layer until no more services from the reposi-
tory can be added. If the prdSet obtained at the end of
the expansion contains all the goal parameters (R.O),
the problem is solvable and the search graph is re-
turned to the ServiceComposition algorithm for fur-
ther processing.

The BackwardSearch algorithm recursively ex-
tracts service sets that can reach the goal parameters
from the initial parameters from a search graph us-
ing a backward-chaining strategy. The algorithm be-
gins by generating all possible combinations of the
services in the last layer of the search graph. For
each of these combinations, it extracts their predeces-
sors from the previous layer and generates all possi-
ble combinations. The process is repeated for these
and all subsequent combinations until the first layer
is reached. Thus, a large number of branches or se-
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quence of sets of services (planSet) going from the
first to the last layer of the search graph are created.
For each of these sets, the set of outputs of all its ser-
vices is checked to ensure that it includes all the goal
parameters. Each planSet that is successfully verified
is returned to the Service Composition algorithm for
further processing while others are discarded as in-
valid. This process is repeated with each layer of the
search graph serving as the starting layer for back-
ward search.

The ConstructPlans algorithm first organizes the
services in a planSet from the BackwardSearch algo-
rithm in order of their layer indexes to create a lay-
ered directed graph, or plan. Then, for each service
in the plan, the set of outputs of all its predecessors
present in the plan together with the initial parame-
ters is checked to ensure that it includes all the inputs
of the service, otherwise, the service is removed from
the plan. Each of the remaining services in the plan
that neither have a successor in the plan nor produce
any goal parameter are also discarded. This removal
process continues until no more services can be re-
moved from plan. If the set of outputs of all remain-
ing services in the plan includes all the goal param-
eters, the plan is returned to the ServiceComposition
algorithm for further processing.

The ConstructCAPlans algorithm first trans-
forms the solution plans generated by ConstructPlans
into constraint-aware plans and then adjusts each
constraint of each service-node (serviceNode) in each
plan to an optimal location. To accomplish that, a pre-
decessor service-node (preNode) to serviceNode that
affects the value of the feature to which the constraint
applies is selected. The constraint is then moved to
verification points immediately before the execution
of all successor service-nodes of preNode. This pro-
cess is repeated with all the predecessors of serviceN-
ode as well as their predecessors until the constraint
is moved to the earliest and most efficient verifica-
tion point in cnstrAwrPlan. In case no predecessors
are found to affect the constrained feature’s value, the
constraint is moved to the beginning of cnstrAwrPlan.
Once all the constraints in all cnstrAwrPlans are ad-
justed, they are returned to the main ServiceCompo-
sition algorithm as constraint-aware solutions to the
given composition request.

3 TRANSLATION TO OBJECTIVE
LUCID

We propose the use of GIPSY as the simulation/exe-
cution environment for context- and constraint-aware
composite services. However, since GIPSY is dedi-

cated to the compilation and execution of LUCID pro-
grams (Ashcroft et al., 1995; Wadge and Ashcroft,
1985), composite services, before being executed on
GIPSY, must be translated into a LUCID dialect,
which, in our case, is OBJECTIVE LUCID (Mokhov,
2005; Mokhov and Paquet, 2005). To accomplish
that, we design and implement a flexible translator
framework capable of allowing modular plugging-
in and -out of different translator programs, as and
when required. This framework can accept a com-
posite service as input through an extensible multi-
modal input system and translate it into any of the
target models for which a translator module is avail-
able. There are several reasons responsible for our
decision to use OBJECTIVE LUCID for represent-
ing and GIPSY for simulating/executing context- and
constraint-aware composite services, which we dis-
cuss below:

LUCID, being an intensional programming lan-
guage, it can efficiently represent context-dependent
entities, allowing each context to be composed of
infinite-many dimensions and each dimension to be
defined as a regular variable in a concise and precise
manner besides providing operators # and @ for di-
rectly extracting values from and specifying values
for the contextual dimensions respectively. Addition-
ally, the whenever operator supplied by LUCID en-
ables context-dependent conditions (i.e., internal con-
straints) to be placed on variable and function defi-
nitions (i.e., services), allowing them to be comput-
ed/executed only if the conditions evaluate to true
(Ashcroft et al., 1995; Wadge and Ashcroft, 1985).

OBJECTIVE LUCID is a hybrid language that em-
ploys LUCID for representing a composite service as
a dataflow network and JAVA for specifying the op-
erations performed by component services, thereby
combining the ease and enhanced productivity of pro-
gramming in mainstream languages with the effi-
ciency of intensional dataflow languages (Mokhov,
2005; Mokhov and Paquet, 2005). In addition to that,
its use of JAVA enables a simulated function defini-
tion for a component service to be easily swapped
with a definition that invokes the real online service,
thereby allowing the verification process to be con-
ducted through simulation as well as execution while
minimizing the effort involved in switching between
the two modes.

Since LUCID is a dataflow programming lan-
guage, upon execution, a LUCID program repre-
senting a constraint-aware composite service is in-
terpreted as a dataflow network of concurrently-
executing component service filters enveloped in
wrappers serving as internal-constraint-verification
layers. GIPSY’s eductive, demand-driven approach
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towards execution together with its warehouse unit
capable of storing and being queried for execution
results computed earlier in specific contexts (instead
of re-evaluating them) significantly reduce the over-
all time, effort and cost spent on simulation/execution
of composite services (Paquet, 2009; Ashcroft et al.,
1995).

The implementation and operation of our OBJEC-
TIVE LUCID translator is based on a set of algorithms
that together define our translation methodology. In
this section, we present and explain these algorithms
using the shopping composite service depicted in Fig-
ure 2.

The TransCSToOLucid algorithm drives the
translation process, invoking the other algorithms
when required. It consists of four major steps: (1)
ValidateInpValues responsible for ensuring that each
composite service input parameter receives a value of
appropriate data type, (2) GenerateJavaSegment for
producing the JAVA segment of the translation, (3)
GenerateOLucidSegment tasked with generating the
LUCID segment of the resultant program, and (4) ap-
pending the generated JAVA segment with the LU-
CID segment for constituting the complete OBJEC-
TIVE LUCID translation of the given composite ser-
vice.

The GenJavaSegment algorithm is responsible
for generating the JAVA segment of the OBJECTIVE
LUCID translation of a composite service. This seg-
ment, comprises of a collection of JAVA class and
method definitions representing two types of nodes:
the output accumulator node and the component ser-
vice nodes. The output accumulator node represented
as JAVA class CAWSReqComp, where CAWS stands
for Constraint-Aware Web Service) assembles com-
posite service outputs generated by one or more com-
ponent services as data members of a single object,
which can be returned as the computed value of the
composite service’s LUCID expression, thereby al-
lowing the composite service to produce multiple out-
puts in any given context.

The GenAtomSvcJavaDef algorithm is invoked
by GenJavaSegment for generating a pair of JAVA
class and free function definitions that together de-
fine and provide the means of triggering the opera-
tion of a component service. For example, consider
the call to service W4’s free function w4. User input
shippingAddress and outputs productWeight and pay-
mentStatus produced by components W1 and W3 re-
spectively, which serve as inputs to W4, are supplied
as arguments to this function call to be used by the
function as arguments while calling the corresponding
service class (CAWSW4) constructor. The constructor
initializes W4’s input parameters acting as CAWSW4’s

data members with these arguments while initializ-
ing the output data members with dummy values.
Once service object oCAWSW4 is created, method w4
uses it to invoke CAWSW4’s process member method
responsible for processing the given inputs and up-
dating the output data members with the results ob-
tained, following which method w4 returns the up-
dated oCAWSW4 object and, hence, the service out-
puts to the LUCID segment. The algorithm begins
by defining the given component service’s JAVA class,
comprising of its input and output parameters as data
members, a constructor to initialize them, and process
member method to transform the inputs into outputs.
Then the algorithm generates the component service’s
free function definition.

The GenOLucidSegment algorithm builds the
LUCID segment of the OBJECTIVE LUCID translation
of a composite service. The algorithm starts by defin-
ing the main LUCID expression, representing the out-
come of the composite service, along with the global
execution context, comprising of composite service
input name-value pairs leading to context-driven exe-
cution. Then the algorithm constructs the LUCID ex-
pression representing the output accumulator node of
the composition. This node accepts composite ser-
vice outputs as inputs or arguments to its JAVA func-
tion call, which assembles them into an object. Val-
ues for the arguments are extracted from the local
context of the accumulator’s LUCID expression de-
fined as a set of composite service output parameter
names paired with their respective values generated
by various component services. The LUCID represen-
tation of each of the component services, which also
forms part of the accumulator node’s where clause,
is generated by the GenAtomSvcLucidDef algorithm
invoked iteratively from the GenOLucidSegment for
each service-node in the composition’s constraint-
aware plan.

The GenAtomSvcLucidDef algorithm is invoked
by GenOLucidSegment for generating the LUCID
representation of a component service. It begins by
defining the set of the given service-node’s input pa-
rameters and constraint-features as the contextual di-
mensions for its LUCID expression. Since, before
computing a component service expression in LU-
CID, all the constraints attached to its service-node
must evaluate to true, constraint-features must be in-
cluded in the component service’s dimension list as
well as evaluation context, which specifies the source
of their values – essential for their computation. The
algorithm builds this evaluation context, pairing the
component’s dimensions with values either received
from the user (extracted from global dimensions using
# operator) or generated as outputs by other compo-
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Figure 2: Constraint-aware Shopping Composite Service.

nent services. The algorithm then extracts the inputs
and constraints attached to the given service-node and
use them as the second and fifth arguments respec-
tively to DefineSvc procedure while leaving its last ar-
gument blank (depicted as /0) as there are no compo-
nent service definitions to be included in the given ser-
vice’s where clause. During execution of the OBJEC-
TIVE LUCID program so generated, component ser-
vice name, which serves as the first argument to De-
fineSvc, is used to invoke the free function defined for
the service in the JAVA segment with the input values
extracted from its LUCID expression’s local context
(using # operator) passed as arguments to the func-
tion call and the outputs obtained by processing them
returned as an object from the JAVA segment.

4 SOLUTION EVALUATION

To assess the operational aspect of our solution, we
focus our evaluation process on ensuring that the
composition and translation applications that we de-
veloped based on these designs function absolutely in
accordance with them and, hence, achieve each of the
research goals defined on the operational level. We
meticulously analyzed every step of the algorithms
and prepared exhaustive lists of all their constituent
operations/tasks together with all the essential condi-
tions to be met and properties to be exhibited at every
step. We divided the composition and translation pro-
cesses into various stages each of which has a specific
goal to be achieved by performing a well-specified
series of tasks. For example, the forward expansion
stage of the composition process aims at generating
a valid search graph while the backward search stage
is focused on extracting valid solution plan sets from
that search graph. Each separate modular task can
then be more effectively specified and then tested. We
manually designed test cases, including atomic and
composite services, repositories, and composition re-
quests required as input for each of them, to ensure
that each of the required operations, conditions, and
properties are properly incorporated into the imple-

mented solution and that the composition and trans-
lation applications function as per their designs both
individually and as a unified process. This thorough
analysis and careful design enabled us to design 76
different unit tests.

5 CONCLUSION

Owing to advantages such as clarity of structure, re-
usability of components, broader options for users
and liberty to specialize for providers, composite web
services have been extensively researched over the
past two decades. Yet, from a thorough review of the
literature available on the studies undertaken in the
field so far, we gather that most of these studies fail
to acknowledge that every service has a limited con-
text in which it can successfully perform its tasks, the
boundaries of which are defined by the internal con-
straints placed on the service by its providers. When
used as part of a composition, the restricted context-
spaces of all such component services together define
the contextual boundaries of the composite service as
a unit, which makes internal constraints an influen-
tial factor for composite service functionality. How-
ever, due to the limited exposure received by this as-
pect of web service composition, no systems (as per
our knowledge) have yet been proposed to cater to
the specific verification and validation of internal con-
straints imposed on components of a composite ser-
vice.

Based on the concept of context found in in-
tensional logic together with the definition proposed
by (Laleh, 2018), the execution context of a web ser-
vice can be considered as a set of all its input param-
eters paired with the values assigned to them at the
time of the service call. In case of composite services,
many of these contextual parameters for component
services could get their values assigned dynamically
as the composite service is being executed. There-
fore, in order to check if the restrictions placed on
such variables (i.e., the internal constraints) are satis-
fied, any verification solution proposed would need to
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either actually execute the composite service or else
simulate its execution.

In an attempt to address the above problems re-
lated to web service composition, in this paper, we
propose the use of GIPSY as a simulation/execution-
based environment for verification and validation of
constraint- and context-aware composite web ser-
vices. Since GIPSY is a system dedicated to the com-
pilation and execution of LUCID programs, it requires
the composite services under examination to be trans-
lated into programs written in some LUCID dialect.
Therefore, as part of our proposed solution, we design
and implement in JAVA an automated and extensible
translator framework that allows modules for translat-
ing composite services into OBJECTIVE LUCID.

In order to assess the extent to which these two
processes fulfill their design goals, we prepare ex-
haustive lists of all their constituent operations to-
gether with the other required conditions to be met
by each of their algorithms and perform tests on them
individually as well as all of them combined as a
composition or translation process. Taking our scope
and time restrictions under consideration, the meticu-
lous study that we have conducted on the composition
methodology and the LUCID/GIPSY model, we can
conclude that we have been able to effectively eval-
uate our composition and translation solutions and
have found them to be capable of fulfilling all their
design objectives.

6 LIMITATIONS AND FUTURE
WORK

During the course of this research, we discovered sev-
eral features that can be incorporated into our current
verification solution in order to make it more compre-
hensive, maintainable, efficient, robust, reliable and
versatile while improving the quality of the composi-
tions that it generates and validates. The current user
interface for the service composition application can
be enhanced to assist the user in applying customized
termination conditions on the forward expansion pro-
cess for increased control over the processing dura-
tion. For instance, growth of a search graph can be
stopped once a certain number of possible solutions
are likely to have been obtained, a certain number of
layers have been constructed or a certain amount of
time has been consumed. Although we allow service
requesters to specify their constraints and expected
QoS features as part of a composition request for
the sake of completeness, we do not implement any
mechanisms as of now that would enable requester
constraints or QoS features to be included in a solu-

tion plan. While our composition application allows
composite services to be used as components in other
compositions, our translator framework still assumes
the components of its source composite services to
be atomic in nature. We plan to improve the design
of our existing translator modules so as to be able to
represent composite component services in the trans-
lations generated. We currently use a scenario-based
testing approach which does not represent an abso-
lute proof of absence of unexpected or faulty behav-
ior. We are working on the design of a formal model
of the OBJECTIVE LUCID translation model followed
by development of a correctness proof.
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