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Abstract: Predicting the plant irrigation timing is an essential task in the domain of agriculture. A model that can 
predict the irrigation timing in tomato cultivation can assist new farmers who do not have sufficient 
experience and intuition. In this study, we propose an irrigation timing prediction method based on past 
irrigation data, environmental data, and plant water stress using a Random Forest model, which is a general 
machine learning method. Our proposed model reproduces irrigation decision making by an expert farmer 
for new farmers. Furthermore, we propose a method for resolving imbalances, focusing on the change in the 
characteristics of the state of plants due to irrigation. This is because irrigation timing data has a large 
imbalance, which is known to be difficult to formulate. Our proposed model clarifies the characteristics of 
the irrigation class, and can suppress its misjudgment. We evaluated the proposed method using tomato 
cultivation greenhouse data in Shizuoka, Japan. The results show a recall of 92% and f-measure 69% and 
hence, the irrigation timing can be predicted with high accuracy. In addition, the results show that the model 
works effectively to automatically determine the irrigation timing in greenhouse tomato cultivation. 

1 INTRODUCTION 

The internet of things (IoT) and artificial intelligence 
technology have been advanced and spread, and 
computers now support human decision making. In 
the domain of agriculture, several studies have been 
conducted to address the problems arising from the 
aging of the farmer population and the lack of heirs. 
These studies can be categorized as: studies to 
support the work process of farmers using 
technology (Vasconez, Kantor, & Auat Cheein, 
2019), and studies to formulate and mechanize the 
decision making of farmers (Yukimasa et al., 2017; 
Navarro-Hellín et al., 2016).  

Studies to support and mechanize the work 
performed by farmers use sensors, robots, and IoT 
technology to make farming efficient. For example, 
a farmer can monitor and control a farm without 
even visiting it by checking and controlling the 
sensors installed on the farm through the web or a 
smartphone (Capraro, Tosetti, Rossomando, Mut, & 
Serman, 2018; Joaquín,Gutiérrez, Jua, Francisco, 
Aracely, & Miguel, Porta-Gándara, 2015). In 
addition, by using autonomously operated tractors 

and drones, crops can be harvested without the 
farmer’s effort and agricultural chemicals can be 
efficiently sprayed with little effort (Vasconez et al., 
2019).  

Studies to formulate and mechanize decision 
making of farmers reproduce advanced cultivation 
techniques based on farmer’s experience and 
intuition. For this, the plant status, which is 
complex, is analyzed and quantified using various 
sensing data, such as temperature, humidity, 
scattered light, plant image, evapotranspiration, and 
plant water stress. In particular, a few studies z 
(Yukimasa et al., 2017; Liu et al., 2017; Peng et al., 
2019) have formulated the decision-making with 
small and frequent irrigation which is known as 
water stress cultivation. This is convenient to 
automatically cultivate high-quality fruits and crops. 
Peng et al. (2019) proposed a crop water demand 
prediction system by using the back propagation 
(BP) neural network. The BP neural network was 
trained using various environmental data such as the 
solar radiation, soil moisture, soil electrical 
conductivity, and temperature. The water demand 
was evapotranspiration calculated by the Penman-
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FAO formula (Liu et al., 2017). In order to realize 
automatic cultivation, it is necessary to determine 
the predicted water demand threshold based on 
appropriate irrigating timing. Determining the 
threshold value is difficult for new farmers because 
this requires experience and intuition cultivated over 
a long period of time. Yukimasa et al. (2017) 
proposed a model for predicting future plant water 
stress by using the Sliding Window-based Support 
Vector Regression (SW-SVR). The method was 
evaluated using environmental data inside the 
greenhouse and image data being generated from the 
movement of plant leaves. This study made it easy 
to understand future water stress using a simple and 
economical sensor. In addition, the model can 
understand the water stress from the data of the 
cultivation environment. Therefore, not only expert 
farmers, but also, new farmers who do not possess 
sufficient  experience of cultivation can understand 
the water stress with the prediction of future water 
stress by this method.  However, in order to realize 
automatic cultivation, it is necessary to determine 
the predicted water stress threshold based on 
appropriate irrigating timing likewise Peng et al. 
(2019). 

We propose an irrigation timing prediction 
method based on past irrigation data, environmental 
data, and plant state data by using machine learning. 
Our proposed method reproduces irrigation decision 
making by experts and helps new farmers. 
Furthermore, we propose a method that resolves 
imbalances by focusing on the change characteristics 
of the state of plants from irrigation. This is because 
the small and frequent irrigation data such as that of 
the cultivation of tomato and strawberry has a large 
imbalance that is known to be difficult to formulate. 
The small and frequent irrigation is conducted 
approximately 50 times (total time is approximately 
50 minutes) during the day, and non-irrigation 
accounts for the major part of the day.  

This paper brings two key contributions to the 
field of agriculture research: (1) New farmers can 
achieve automatic cultivation of fruits of high 
quality. This is because the proposed model uses IoT 
devices in the greenhouse. (2) Our proposed model 
leads to the technology development of modeling of 
small and frequent irrigation with data imbalance in 
the domain of agriculture.  

The rest of the paper is organized as follows: 
Section 2 presents a discussion of related techniques 
of resolving imbalanced data. Section 3 describes 
the proposed method. Section 4 presents the results 
from the evaluation of the proposed method using 
actual agricultural data. Finally, we present the 
conclusions and future work in Section 5. 

2 TECHNIQUES TO RESOLVE 
IMBALANCED DATA 

To solve the imbalance of datasets is an important 
task in predicting irrigation timing using machine 
learning. There are a few methods to solve data 
imbalance such as classifier level methods and data 
level methods.  

Classifier level methods are cost-sensitive 
learning methods that vary the error transmitted to 
each class. Cost-sensitive learning methods assign 
weights to the samples to match a specific data 
distribution. Weighting by inverse class frequency 
(Chen, Change, & Xiaoou, 2016; Yu-Xiong et al., 
2017) has often been adopted. To rephrase, the 
minority data which is difficult to classify, weights 
the penalty. In our evaluation, we adopt cost-
sensitive learning, in which the reciprocal of the 
ratio of minority data to the number of data points is 
multiplied as a penalty for errors in the minority data. 

Data level methods are data sampling techniques. 
Two types of sampling techniques are shown in 
Figure 1: oversampling methods that increase the 
number of minority data and undersampling 
methods that reduce the number of majority data.  
Oversampling methods add or reuse new data to 
increase the minority data. Random sampling 
repeatedly samples from the minority data. Synthetic 
Minority Over-sampling Technique (SMOTE) 
(Chawla et al., 2002) and Adaptive Synthetic 
Sampling (ADASYN) (Haibo et al., 2008) share the 
concept of generating new data on a line connecting 
minority data. SMOTE adds a random number 
multiplied with the sample on the line connecting 
the selected minority samples. In ADASYN, the 
value to be multiplied is determined according to the 
number of majority data contained in the K 
neighbors of the selected minority sample. Therefore, 
ADASYN reduces the frequency with which 
minority data is generated near the majority data. 
However in irrigation timing data, the minority data 
is similar to the majority data, and hence, we 
consider the data generated near the majority data.  

Undersampling methods eliminate a few samples 
from the majority data. Random sampling randomly 

 

Figure 1: Addressing imbalanced data with resampling.
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Algorithm 1: Undersampling for eliminating data based on near irrigation timing. 

Input: 

Imbalanced dataset: ܦ௜௠௕௔௟ = ൛൫࢞ଵ, ,ଵ൯ݕ   … , ൫࢞ே, ே൯ൟݕ ݁ݎℎ݁ݓ ௜ݔ ∈ ܺ, ௜ݕ ∈ ܻ
Distance parameter: n, m 

Output: 

Balanced dataset: ܦ௕௔௟ = ൛൫࢞ଵ, ,ଵ൯ݕ   … , ൫࢞ே, ே൯ൟݕ ݁ݎℎ݁ݓ ௜ݔ ∈ ܺ, ௜ݕ ∈ ܻ
Definition of Undersampling for eliminating data based on near irrigation timing: 

For t=1 to N 

if ݕ௧ is irrigation

Eliminate non-irrigation data for period ሺݐ − ݊ሻ to ሺݐ − 1ሻ
Eliminate non-irrigation data for period ሺݐ + 1ሻ to ሺݐ + ݉ሻܦ௕௔௟ ← Remaining data not eliminated 

determines the samples to be removed from the 
majority data. NearMiss algorithm (Jianping & 
Inderjeet, 2003; Yen & Lee, 2009) uses the K-
nearest neighbor method to remove clearly 
identifiable majority data. This eliminates data that 
is difficult to distinguish from between the minority 
class and the majority class. Therefore, it is possible 
to separate the details of the decision boundary by 
using data after applying the NearMiss algorithm. 
However, it is difficult to determine the parameters 
of the K-neighbor method using NearMiss.  This is 
because the irrigation timing data has a characteristic 
minority data and majority data that are similar. We 
consider that undersampling is suitable for resolving 
irrigation data imbalance. Therefore, we propose an 
undersampling method considering the 
characteristics of the irrigation data of plants. This is 
because the farmer does not irrigate depending on 
the moisture state of the plant even at the same 
temperature. Irrigation is performed depending on 
the amount of solar radiation and season even in 
different plant water states. Therefore, we consider it 
better to reduce the data so that the irrigation class 
and the non-irrigation class are clear rather than 
increasing the data using oversampling or by 
considering the cost. 

3 MODEL DESCRIPTION 

We propose a method for resolving imbalances 
suitable for irrigation timing to build the model. We 
aim to build the model to predict the irrigation 
timing by farmers using the environmental data of 
the greenhouse and hereby, reproduce the irrigation 

timing automatically. Furthermore, we aim to 
automatically cultivate by controlling IoT devices, 
which are able to control the irrigation timing in the 
greenhouse based on the proposed method. The 
process is composed of two main elements to build 
the irrigation timing model. First, we address the 
imbalance of irrigation timing data by using 
undersampling for eliminating data based on near 
irrigation timing (ENIT). Next, we build the model 
to predict the irrigation timing using the balanced 
data after solving imbalance. Section 3.1 presents 
the algorithm of ENIT and Section 3.2 presents the 
irrigation timing prediction method using machine 
learning. 

3.1 Addressing Irrigation Data 
Imbalance 

We address the imbalance in the irrigation timing 
data by using undersampling for eliminating data 
based on near irrigation timing (ENIT) to eliminate 
the data of majority class (non-irrigation data) near 
the time of the data of minority class (irrigation data) 
(Algorithm 1). It may be noted that the irrigation 
timing data is imbalanced because the frequency of 
irrigation time is approximately 50 (total time is 
approximately 50 minutes) during the day, and non-
irrigation accounts for the major part of the day. One 
of the decisions on irrigation timing is to use the 
value of solar radiation accumulated from the 
previous irrigation (Takayoshi et al., 2018). 
Similarly, the value of evapotranspiration is used for 
the decision on irrigation timing (Pawlowski et al., 
2017; Peng et al., 2019). Irrigation is performed 
when the accumulated value exceeds the threshold. 
Therefore, we have considered that the plant state at 
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the time of irrigation and the plant state in the past 
direction for a certain period of time from the start 
of irrigation are similar. The accumulated 
environmental data, for example temperature and 
evapotranspiration from the last irrigation, are also 
assumed to be characteristically similar. In addition, 
we have considered that the state of the plants near 
irrigation are similar because irrigated plants need 
time to absorb moisture from the soil through the 
roots and through evapotranspiration from the leaves 
to allow water to enter the body. For this reason, we 
have eliminated the data of the majority class (non-
irrigation class) which is near the data of minority 
class (irrigation timing class) by using ENIT. ENIT 
is an undersampling method that removes the non-
irrigation data that is nearer in the time series based 
on irrigation timing, and the algorithm is shown in 
Algorithm 1. In the ENIT algorithm, when the 
duration of irrigation timing is t, the non-irrigation 
data represented by (t-n), …, (t-1) is eliminated for 
the parameter n in the past direction and the non-
irrigation data represented by (t+1),… , (t+m) is 
eliminated for the parameter m in the future 
direction. As a result, the non-irrigation class data 
that has similar characteristics to the irrigation class 
is eliminated by selecting the data from the non-
irrigation class of the majority based on the 
irrigation class of the minority. In addition, the 
characteristics of the irrigation class are clarified and 
misjudgment is suppressed. 

3.2 Predicting the Irrigation Timing 

We have used Random Forest (RF) to predict the 
irrigation timing when irrigation is necessary. The 
RF is one of the general machine learning methods 
and is an ensemble learning method combining 
multiple decision trees. An ensemble learning 
method is a modeling method that consists of a 
combination of prediction of multiple classifiers 
rather than the prediction of a single classifier. By 
applying ensemble learning, the predictive value is 
diverse and can be predicted robustly for unknown 
data. Therefore, we have adopted ensemble learning 
in order to make a robust prediction model.  

4 EXPERIMENTAL PROCEDURE 

In this section, we describe the dataset of the 
experiment for evaluation, the experimental 
parameters, and the results.  

 
(a) Overview of greenhouse and  

cultivation line. 

 
(b) Layout of measurement sensors. 

Figure 2: Dataset collection environment. 

4.1 Data Collection and Preprocessing 

A system was developed to collect agricultural data 
in a greenhouse of tomato (Solanum lycopersicum L. 
cultivar Frutica) at Fukuroi, Japan. We installed 
environmental sensor nodes, laser displacement 
sensors (HL-T1010A Panasonic Corporation), and a 
datalogger (midi LOGGER GL840 Graphtech 
Corporation) on the greenhouse. An overview of the 
greenhouse and cultivation line and the layout of 
measurement sensors are shown in Figure 2 (a) and 
(b), respectively. Environment data such as  
 

temperature, relative humidity, solar radiation, and 
vapor pressure deficit (VPD) was collected along 
with the data of the plant stem-diameter and 
irrigation timing. Drip irrigation was used in which a 
certain amount of water was released in one 
irrigation. In addition, time series features related to 
water stress and tomato irrigation were calculated to 
create datasets. Stem-diameter represented the plant 
growth and water stress. However, Kazumasa et al. 
(2019) showed that the diameter could not be used 
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as a water stress index directly because it changed 
with the growth of the plant and diurnal variation. 
Therefore, we have defined the difference in stem 
diameter calculated using the most recent irrigation 
(DSR) as a water stress index in accordance with the 
work of Kazumasa et al. (2019). The DSR is a value 
calculated by subtracting the current stem diameter 
from the maximum stem diameter. The recent 
irrigation in current time t is calculated as follows:  ݀ݎݏ௧ ,௧ି௡݉݁ݐݏሺݔܽ݉ = ,௧ି௡ାଵ݉݁ݐݏ … , ௧ሻ݉݁ݐݏ −  ௧.  (1)݉݁ݐݏ

 

Where t is the current time and n is the time 
elapsed since the most recent irrigation. Additionally, 
we have defined the time series features such as the 
elapsed time since sunrise, elapsed time since the 
previous irrigation, and accumulated environmental 
data from the previous irrigation. This is because 
Kazumasa et al. (Kazumasa et al., 2018) showed that 
the machine learning method without recursion can 
be improved by considering the time series features. 
Table 1 shows the features of the dataset that were 
finally calculated. All data were collected at a 
frequency of once every minute and during the 
periods A (from March 28 to October 22, 2018 in 
greenhouse A), B (from October 23, 2018 to January 
16, 2019 in greenhouse B), and C (from April 25 to 
June 20, 2019 in greenhouse C). During periods A, 
B, and C, the irrigation data was collected for one, 
four and four blocks, respectively. Therefore, we 
have collected irrigation data for nine blocks, or to 
paraphrase, datasets were created for nine different 
scenarios.  

4.2 Experimental Condition 

We have evaluated the performance of the proposed 
method using actual agricultural data. In the 
evaluation, the prediction accuracy of the irrigation 
timing was compared by using environmental data 
related to the irrigation of tomato as shown in Table 
1. The recall and f-measure were used as error 
indicators when the threshold for classification 
judgment is 0.5 (50%). Recall shows the rate at 
which the irrigation timing predicted by the model 
matches the irrigation timing by the farmer. F-
measure shows the accuracy and completeness of the 
irrigation timing predicted by the model. The 
conditions are detailed in Table 2. There are 
seventeen different conditions: no addressing of 
imbalance, cost-sensitive learning, three 
oversampling methods, two undersampling methods, 
with and without ENIT before applying 
undersampling method, and changing the 

undersampling rate. The important parameters of the 
RF method were tuned by using grid search:  

Table 1: Features of dataset. 

Type Feature 

Environmental data 

Temperature 

Relative humidity 

Solar radiation 

Vapor pressure deficit 

Plant water stress 
Stem-diameter 

DSR 

Time-series feature 

Elapsed time since sunrise 

Elapsed time since last irrigation 

Accumulated Environmental  
data 

Table 2: Evaluation condition. 

Name Address imbalanced

Base No  

Cost Inverse Class Frequency 

OverRandom RandomSampling 

SMOTE SMOTE 

ADASYN ADASYN 

UnderRandom02* 

RandomSampling 

UnderRandom04* 

UnderRandom06* 

UnderRandom08* 

UnderRandom10* 

ENIT_UnderRandom10* 
ENIT &  
RandomSampling 

NearMiss02* 

NearMiss-1 

NearMiss04* 

NearMiss06* 

NearMiss08* 

NearMiss10* 

ENIT_NearMiss10* ENIT & NearMiss-1 

*: "02" means that the number of minority data is 2 when the 
number of majority data 10 and "10" means balanced between 
majority data and minority data. 
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Table 3: The number of training and validation data 
points. 

Name 
The number of data 
points (Non-
irrigation/irrigation) 

Base, Cost 231,250 / 11,047 

OverRandom,SMOTE,ADASYN 231,250 / 231,250 

UnderRandom02, NearMiss02 55,235 / 11,047 

UnderRandom04, NearMiss04 27,617 / 11,047 

UnderRandom06, NearMiss06 18,411 / 11,047 

UnderRandom08, NearMiss08 13,808 / 11,047 

UnderRandom10, NearMiss10, 
ENIT_UnderRandom10, 
ENIT_UnderRandom10 

11,047 / 11,047 

 

n_estimators (10, 20, 30) and max_depth (15, 20, 
40).  In addition, we set the ENIT hyperparameter n 
and m to 2.  

Evaluation data such as training, validation, and 
test data were divided as per the following procedure. 
First, the data set was divided into periods A to C. 
Next, a day was calculated that included 80% of the 
total number of irrigations in each period. The data 
of the period after that date was set as the test data. 
For training and validation data, the data excluding 
the test data was divided into 5 parts, and 5-fold 
cross validation was applied. In addition, from the 
test and validation data, the majority data was 
deleted to random to create equilibrium data to 
obtain the correct accuracy. The number of test data 
points were 4,896 (of which 2,448 were irrigation 
data).  The number of training and validation data 
points before 5-fold cross validation were shown in 
Table 3. 

4.3 Results and Discussion 

Figure 3 shows the errors of each comparison for the 
testing data. The combination of the proposed 
method and NearMiss has the highest score for both 
recall and f-measure: 0.92 recall and 0.69 f-measure. 
Only NearMiss has a score of 0.91 recall and 0.69 f-
measure. In addition, the combination of the 
proposed method and random undersampling scores 
better than only random undersampling. This is 
because, the combination of the proposed method 
and random sampling and only random sampling 
have a score of 0.78 recall and 0.69 f-measure and 
0.71 recall and 0.66 f-measure, respectively. These 

 

Figure 3: The results of each approach for imbalanced 
data. 

 

Figure 4: The results of undersampling with changing rate. 

results show that the proposed method works  
effectively. In addition, the results show that 
undersampling is superior to cost-sensitive learning 
and oversampling. Random oversampling is 
considered to be inaccurate because irrigation data 
that provide useful features are not selected. In 
SMOTE and ADASYN, the data is generated on a 
line connecting minority data. Therefore, minority 
data may be generated in the majority area. However, 
undersampling by NearMiss, which has the highest 
accuracy, does not generate data near the majority 
data. NearMiss has the characteristic that the 
majority data near the decision boundary is 
unchanged when ideal processing is performed. 
Therefore, the model using NearMiss learns detailed 
decision boundaries and the accuracy is improved. 
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Figure 4 shows the result of changing the 
sampling rate of undersampling. Both random 
sampling and NearMiss increase in accuracy as the 
sampling rate increases. To paraphrase, the accuracy 
is higher for the cases having data closer to the 
balanced data. In particular, 
ENIT_UnderNearMiss10 has a recall of 0.92 and 
can predict irrigation timing with high accuracy.  

5 CONCLUSIONS 

We proposed a novel method for resolving 
imbalances suitable for irrigation timing and its 
prediction. We addressed the imbalance of irrigation 
timing data by using undersampling for eliminating 
data based on near irrigation timing (ENIT), to 
eliminate the non-irrigation data near the time of 
irrigation. The performance of the proposed method 
was evaluated using actual agricultural data. In the 
evaluation, the prediction accuracy of irrigation 
timing was compared by using environmental data 
related to the irrigation of tomato. In the results, The 
accuracy was improved by the two methods that 
applied the proposed method. We showed that the 
prediction accuracy of small frequent irrigation can 
be improved by applying the method for eliminating 
imbalances that takes into account the characteristics 
of irrigation timing data. This result shows that it is 
necessary to eliminate the imbalance in the 
prediction of irrigation timing. Furthermore, the 
result shows that it is effective to consider irrigation 
characteristics to eliminate imbalance. The aim in 
future is to automatically cultivate various crops by 
controlling through IoT devices, which are able to 
control the irrigation timing in greenhouses based on 
the proposed method. IoT technology has already 
been introduced in the agricultural domain.  

In future, we will evaluate the general purpose of 
the proposed method under various conditions with 
different greenhouses, cultivation methods, and 
water supply. In addition, the prediction model will 
be examined. Specifically, the application of Long-
Short Term Memory (LSTM) (Sepp & Jurgen, 1997), 
which is one of the most powerful deep learning 
methods, will be considered. LSTM can be 
considered for irrigation timing because it can 
consider long-term time series. In addition, we will 
consider Dynamic Time Warping (DTW) (Bemdt & 
Clifford, 1994) to error indicator. Recall and F-
measure are evaluated for one point in time without 
considering time series. Thus, a model that is off by 
only one point in time and a model that cannot be 
predicted at all are both incorrect. Therefore, we 

evaluate the similarity between two time-series 
sequences using DTW. 
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