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Abstract: The Australian Urban Research Infrastructure Network (AURIN – www.aurin.org.au) provides a data-driven, 
Cloud-based research environment for researchers across Australasia. The platform offers seamless and 
secure access to over 5000 definitive data sets from over 100 major government agencies across Australia 
with over 100 targeted tools that can be used for data analysis. One such tool is the walkability tool 
environment. This offers a set of Cloud-based components that generate walkability indices at user-specified 
scales. The walkability tools utilize geospatial data to create walkability indices that can be used to establish 
the walkability of given locations. The walkability workflow tools are built on a range of specialised spatial 
and statistical functions delivered as part of the AURIN environment. However, the existing AURIN web-
based tools are currently deployed on a single (large) virtual machine, which is a performance and scalability 
bottleneck. Container technologies such as Docker and associated container orchestration environments such 
as Docker Swarm and Kubernetes support Cloud-based scaling. This paper introduces the background to the 
walkability environment and describes how it was extended to support Docker in Swarm mode and 
Kubernetes to make the walkability environment more robust and scalable, especially under heavy workloads. 
Performance benchmarking and a case study are presented looking at the creation of large-scale walkability 
indexes for areas around Melbourne. 

1 INTRODUCTION  

Containerisation has now overtaken traditional 
cloud/hypervisor-based virtualization used to realise 
Infrastructure-as-a-Service (IaaS) Cloud 
environments (Bhardwaj, Jain, & Jain, 2010). Docker 
is the leading container-based application 
environment (Boettiger & Carl, 2015). It allows users 
to easily package, distribute and manage applications 
within containers, and conveniently utilize libraries. 
There are many benefits of using Docker: reducing 
infrastructure costs, continuous integration support, 
rapid deployment across multi-cloud environments 
and reducing the overheads incurred through typical 
IaaS platforms (Zhanibek & Sinnott, 2017).   

Docker alone however is inadequate when it 
comes to managing applications comprising hundreds 
of containers spreading across multiple hosts. 
Containers need to be managed, support scheduling, 
load balancing and auto-scaling. Container 
orchestration tools like Docker Swarm and 
Kubernetes are able to scale applications however the 
pros and cons of either technology is not well 

understood. In this paper, we present a scalable 
Dockerized application, show how it supports auto-
scaling, and compare and contrast Docker SWARM 
and Kubernetes.   

This application focuses on scaling a walkability 
analytics tool. The walkability of a given area is a key 
factor that can impact on the health and well-being of 
individuals in urban environments. The core idea is to 
consider how walkable a given area is. This is based 
on the road/street network and where individuals 
might be able to walk, coupled with the actual land 
use of where the individuals may walk. There are 
many walkability tools that have been developed. In 
this work, we focus on scaling a walkability tool that 
was originally developed and supported as part of the 
federally funded AURIN project (www.aurin.org.au). 
AURIN has been running since 2010 and the 
walkability tool is one of the most popular tools used 
by the community. However, this solution does not 
leverage the more recent advantages of container 
technologies and especially support for auto-scaling. 
It is noted that AURIN is a major platform that has 
galvanised urban research in Australia with over 
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16,000 users. It is regularly used in classes with over 
300 students. As such the need to support elastic 
scaling in bursty usage scenarios is essential. Given 
the near real-time performance expectations of users 
at scale, it is unrealistic to expect this scaling to be 
delivered by more traditional IaaS solutions, e.g. 
creating new virtual machine instances on the fly due 
to the time overheads that this involves. Container 
technologies offer a solution to address these issues, 
however there is a clear need for container 
orchestration tools to manage the scaling. In this work, 
we focus especially on Docker as the leading 
container environment and Kubernetes and Docker 
Swarm as predominant container orchestration tools.  

The rest of this paper is organized as follows. 
Section 2 provides an overview of the walkability 
environment and how it was realized in the AURIN 
platform. Section 3 discusses the cloud infrastructure 
and associated container orchestration technologies - 
Docker in Swarm mode and Kubernetes. Section 4 
presents a large-scale walkability case study around 
Melbourne. Finally, Section 5 draws final conclusions 
and identifies areas for future work.  

2 WALKABILITY SYSTEM 
DESIGN AND 
IMPLEMENTATION  

The walkability environment is a set of opensource 
tools delivered as part of the AURIN infrastructure. 
The tool is used to calculate indices to measure the 
suitability for walking in given localities. Such 
information can be used to understand and potentially 
increase outdoor physical activity. It has been 
established that physical inactivity is tightly 
correlated with many diseases such as obesity and 
dementia. Creation of more walkable neighbourhoods 
is thus a key part of urban planning. Indeed, the 
Organisation for Economic Cooperation and 
Development (OECD - www.oecd.org) has called for 
the governments to encourage physical activities by 
offering the necessary legal and administrative 
regulations for targeted land use and transport 
planning (Eason, 2019). The AURIN walkability 
environment offers a set of Cloud-based tools to 
measure the walkability at different levels of 
granularities across Australia.  

Walkability tools are an example of a Geographic 
Information System (GIS).  Frank et al studied the 
influence of street networks, neighbourhood scales 
and land use types on assessing walkability 
(Walkability Tools, 2019). The basic steps to 

calculate walkability indices in AURIN are illustrated 
in Figure 1.  

 

Figure 1: The Steps for Walkability Analysis. 

• Generate Neighbourhood: In this step, the user 
has to input the Points of Interest, Maximum 
Walking Distance and Buffer Size. Based on 
this, the walkability tool will generate a 
polygon (network neighbourhood) 
representing potential walking routes a person 
might follow from an initial starting point. 
This network neighbourhood is used in other 
walkability tools. An example of two network 
neighbourhoods is shown in Figure 2. As seen 
the algorithm traverses the road network (in 
this case using data from the Public Sector 
Mapping Agency (www.psma.com.au)) based 
on an individual walking from a given location 
(shown by the dots) for a given distance, e.g. 
1km.  

 

Figure 2: Network Neighbourhood Generation.  

• Generate Connectivity Index: A Connectivity 
index represents the number of street 
intersections in the network neighbourhood 
generated in the previous step. The number of 
intersections has a positive correlation with 
people’s mobility for walking.  
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• Generate Density Index: Represents the 
average population density within each 
neighbourhood. This data is available from the 
Australian Bureau of Statistics (also available 
within AURIN).  

• Generate Land Use Mix Index: In urban 
environments, land can be used for different 
purposes, e.g. residential housing, parkland, 
commercial/industrial use, etc. The Land Use 
Mix index aims to calculate the homogeneity 
or heterogeneity of land use in a given 
neighbourhood. (This data is available from 
many sources within AURIN).  

• Generate Sum_Zscore: The Sum_Zscore 
represents a general walkability index derived 
from all of the measures above. This is a 
relative value which represents a scale from 
the most walkable neighbourhood to the least 
walkable one.  

Such information can be used and compared with 
other data sets existing within AURIN. For example, 
what is the correlation of the walkability index with 
the price of houses or with the average body mass 
index of people in a given area amongst many other 
scenarios. These other data sets are also available 
within AURIN.   

The workflow for calculating walkability is 
sequential. The current AURIN platform runs all of 
the previously identified steps on a single large virtual 
machine (VM) with 16 vCPUs and 64GB RAM. The 
bottlenecks of this solution are obvious. When a user 
selects a large amount of points of interest or when 
multiple users calculate the walkability concurrently, 
this single instance will be running out of the limited 
CPU and memory resources. Therefore, the goal is to 
split this workflow into several independent 
components. Each component can be encapsulated 
into a Docker container. Each container can 
subsequently perform the corresponding workflow 
steps in parallel. More than one container can be 
assigned for each walkability component to speed up 
calculations. Furthermore, we can auto-scale these 
units using orchestration tools, depending on the 
dynamic load on the system. However, first and 
foremost, it is necessary to convert the existing 
sequential workflow into a parallel one.  

To address this, we split the workflow into six 
parallel components: Send Points, Generate 
Neighbourhood Polygon, Generate Connectivity 
Index, Generate Density Index, Generate Land Use 
Mix Index and Generate Sum_Zscore. It should be 
noted that dependencies still exist between some steps. 
For example, the Generate Connectivity Index process 
must obtain the neighbourhood polygons from the 

Generate Neighbourhood Polygon process. To 
support this, the queueing system Apache ActiveMQ 
is introduced to support message passing between 
different processes (Apache Active MQ, 2019).   
As shown in Figure 3, initially, the process Send 
Points reads in a multi-point JSON file, converts each 
point into GeoJson format and places it into a queue 
named PointQueue. Once the process Generate 
Neighbourhood Polygon receives a point from the 
queue, it generates the neighbourhood polygons and 
sends the resultant polygon in GeoJson format into the 
three queues: PolygonConnectivity, PolygonDensity 
and Polygon LUM. Following this, the three processes 
Generate Connectivity Index, Generate Density Index 
and Generate Land Use Mix Index receive the 
polygon from the queues and generate Connectivity 
Index, Density Index and Land Use Mix Index 
concurrently. They will each append the result to their 
own output files: Connectivity Output File, Density 
Output File and LUM Output File. They will also 
continue to send the results into the three queues 
respectively: ConnectivityZscore, DensityZscore and 
LUMZscore. Finally, the process Generate 
Sum_Zscore is used to generate a final walkability  
 

 
Figure 3: Workflow of The Improved Walkability Tool. 
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Sum_Zscore and output this as a GeoJson file. 
The original walkability application code was 

written in Java and deployed as a Maven Project on 
the Cloud.  

3 CLOUD INFRASTRUCTURE 
AND CONTAINER 
ORCHESTRATION TOOLS  

This work utilized the National eResearch 
Collaboration and Tools and Resources research 
cloud (NeCTAR – www.nectar.org.au). This is a free 
public research Cloud for researchers in Australia. 
The NeCTAR infrastructure is implemented and 
managed as an OpenStack Cloud-based computing 
framework. The project utilized 16 compute instances 
comprising 32 CPUs with a total of 128GB RAM and 
300GB attached volume. The storage was set up as a 
cluster to deal with a large amount of calculations 
required for the walkability application. One VM was 
assigned as a manager and the other fifteen VMs were 
assigned as computational data processing workers.  

The VMs were automatically setup using the 
Python library Boto and the various software 
dependencies were installed and configured using the 
scripting language Ansible. Compulsory software 
dependencies included Maven, Openjdk-8 and 
Docker. The OpenStack Heat orchestration service 
was also used to provide a template-driven service to 
manage the lifecycle of the walkability applications 
on the Cloud.  

3.1 Docker SWARM Realisation of 
Walkability  

A Docker Swarm cluster is a group of machines 
(servers), physical or virtual that run Docker and can 
connect to each other. A machine in a Swarm cluster 
is called a “node”. The role of each node can be either 
a manager or a worker. A manager node is capable of 
assigning containers to worker nodes and to distribute 
the workload “evenly” over the cluster. A manager 
node is typically used as the interface for clients. A 
worker node provides its resources and executes 
whatever it is required based on requests from the 
master node.    

As discussed, we decomposed the walkability tool 
into six separate services: (1) Send Points, (2) 
Generate Neighbourhood Polygon, (3) Generate 
Connectivity Index, (4) Generate Density Index, (5) 
Generate Land Use Mix Index and (6) Generate 
Sum_Zscore. We built six Docker images for each of 

these six services. Each service runs only a single 
image. However, multiple containers can run the same 
service if required. These services are defined, run 
and auto-scaled on the Docker platform by a 
dockercompose.yml file. An example of this file is 
shown in Figure 4.  

 

Figure 4: A snippet of a docker-compose.yml file.  

In the configuration settings, we mounted the 
Maven dependencies from the host machine into the 
containers. This saves considerable time since the 
containers do not need to download all of the required 
dependencies at the very start.  

3.1.1 Docker SWARM Experiments  

We deployed the walkability application into the 
aforementioned 16-node Docker Swarm cluster. The 
test files included different multi-point input 
(geoJSON) files comprising 100, 500 and 1000 
geolocations (points).  For each dataset, we changed 
the number of containers assigned to each service and 
compared their running time and speedup compared 
to the original (sequential) version used by the 
AURIN platform.  

In the tables below, we denote the number of 
containers for each service in the sequence of (1) Send 
Points, (2) Generate Neighbourhood Polygon, (3) 
Generate Connectivity Index, (4) Generate Density 
Index, (5) Generate Land Use Mix Index and (6) 
Generate Sum_Zscore. For example, [1,1,1,1,1,1] 
implies that we allocated one container for each 
service. Service (1) Send Points and Service (6) 
Generate Sum_Zscore could only be assigned one 
container to run because they have to utilize the global 
ordering of the messages. From initial experiments, 
we also identified that service (4) Generate Density 
Index and service (5) Generate Land Use Mix Index 
consumed very little CPU resources (~1%). Hence, 
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there was no need to scale them up. As a result, we 
mainly focused on the scaling of service (2) Generate 
Neighbourhood Polygon and service (3) Generate 
Connectivity Index.  

Table 1: 100 Points Running Time & Speedup (Sequential 
Running Time: 79s). 

Number of 
Containers  

Running Time (s)  Speedup 

[1,1,1,1,1,1]  62  1.27 

[1,2,2,1,1,1]  61  1.30 

[1,3,3,1,1,1]  52  1.52 

[1,4,4,1,1,1]  54  1.46 

[1,5,5,1,1,1]  57  1.39 

[1,6,6,1,1,1]  55  1.44 

Table 2: 500 Points Running Time & Speedup (Sequential 
Running Time: 176s). 

Number of Containers  Running Time (s)  Speedup 

[1,1,1,1,1,1]  242  0.73 

[1,2,2,1,1,1]  169  1.04 

[1,3,3,1,1,1]  131  1.34 

[1,4,4,1,1,1]  104  1.69 

[1,5,5,1,1,1]  84  2.10 

[1,6,6,1,1,1]  89  1.98 

Table 3: 1000 Points Running Time & Speedup (Sequential 
Running Time: 252s). 

Number of Containers Running Time  
(s)  

Speedup 

[1,1,1,1,1,1]  461  0.55 

[1,2,2,1,1,1]  251  1.00 

[1,3,3,1,1,1]  205  1.23 

[1,4,4,1,1,1]  177  1.42 

[1,5,5,1,1,1]  141  1.79 

[1,6,6,1,1,1]  98  2.57 

 

From the above results shown in Figure 5, we can 
clearly observe the trend that when the number of 
replicas was increased, the speedup increased 
accordingly. Initially with one container assigned for 
each service, it can be seen that the speedup for 100 
and 500 points was below 1, i.e. the running time was 
slower than the sequential case for the baseline 
AURIN walkability deployment. This indicates that 
the overheads generated by the Docker Swarm cluster 
orchestration and communication are non-negligible. 
However, when more replicas were allocated for the 
Generate Neighbourhood Polygon and Generate 
 

 

Figure 5: Speedup for 100, 500 and 1000 Points with 
Docker Swarm. 

Connectivity Index services, the speedup exceeded 2.5 
(in the 1000 points case). We also note that the 
speedup of 500 or 1000 points is more obvious than 
for 100 points, demonstrating that more data can take 
more advantage of the Dockerized version of the 
walkability tool.    

More containers do not always bring more speed 
however due to the associated container overheads. 
For example, in the experiments above, for the 
100points dataset, the combination [1,3,3,1,1,1] 
achieves the maximum speed up. For the 1000-points 
dataset, the combination [1,5,5,1,1,1] reaches the 
maximum speed up.  

Docker Swarm provides features to scale up 
services. However, Docker Swarm requires manual 
adjustment of the number of replicas to establish 
which combination had the best performance. This 
can be very time-consuming since it involves manual 
changes to the YAML files. To address this, a more 
advanced technique is required to achieve intelligent 
and automatic resource allocation. Kubernetes was 
used for this purpose.  

3.2 Kubernetes-based Realisation of 
Walkability  

Kubernetes is an open-source container orchestration 
tool created by Google. It builds upon many years of 
experience of running production workloads at 
Google, combined with best-of-breed ideas and 
practices from the Cloud community.  Kubernetes 
helps users to orchestrate computing, networking, and 
storage infrastructure required for their workloads. 
Kubernetes is more complex than Docker Swarm, 
however it offers a more flexible and resilient tool that 
can support automated auto-scaling ("Kubernetes 

Auto-scaling Walkability Analytics through Kubernetes and Docker SWARM on the Cloud

265



Horizontal Pod Cluster Auto-scaling: All You Need 
to Know", 2018).  

A Kubernetes cluster includes a master node, 
worker nodes and Addons. A master node manages 
resources, schedules workloads and typically interacts 
with the user. A master node cannot run tasks, in 
contrast to master nodes in Docker Swarm. Worker 
nodes typically run containerized applications 
scheduled by master nodes through pods. Addons are 
pods and services that implement associated cluster 
features such as DNS, Web UI (Dashboard), Cluster-
Level Logging, etc.    

A pod is the basic building block of Kubernetes 
(Kubernetes Documentation, 2018). A pod can 
encapsulate one or more Docker containers. 
Containers within a pod typically share a unique 
network IP, storage, network and various other 
features. Pods are considered to be relatively 
ephemeral entities. When they are created, they are 
assigned a unique ID and subsequently they are 
available to other nodes. If a node dies, the pods 
within that node are also deleted. Pods can be created 
by YAML files, and each system component is 
typically encapsulated in a pod with just one container. 
A pod always runs on a node, i.e. a worker node in a 
Kubernetes cluster. A node can have multiple pods. 
The Kubernetes master node automatically schedules 
the pods across the nodes in the cluster (Hightower, 
Burns, & Beda, 2017).   

A deployment is an object in Kubernetes that 
supports the management of a set of identical pods. 
Without a deployment, it is necessary to manually 
create, update and delete bunches of pods. With a 
deployment, a single object can be defined in a 
YAML file. A deployment object is then responsible 
for creating pods and ensuring their health. The 
deployment YAML files were created for the scalable 
parts of the walkability application. There were four 
deployments in total, including sendpolygon-
deployment, sendconnectivity-deployment, 
senddensity-deployment and sendlum-deployment.   

3.2.1 Horizontal Pod Auto-scaling  

A Horizontal Pod Auto-scaler (HPA) can 
automatically scale the number of pods in a cluster 
based on the observed CPU utilization or other 
custom metrics. An HPA controller periodically 
adjusts the number of replicas through a replication 
controller or deployment to match the required CPU 
utilization, which can be specified by the user.   

An HPA auto-scaling algorithm was implemented 
using a default 15 seconds control loop. This was 
designed to be configurable based on the 

horizontalpod-auto-scaler-sync-period. The HPA 
periodically queries the pods to collect information on 
their CPU utilization and compares the mean value of 
all pod CPU utilization levels against the required 
target. The HPA adjusts the number of replicas based 
on satisfying the conditions below:  

• MinReplicas <= Replicas <= MaxReplicas  
• CPU Utilization (U) = recentCPU usage of 

a pod (average across the last 1 minute) / 
CPU requested by the pod  

• Target Number of Pods = ceil(sum(Current 
Pods CPU Utilization)) / Target  
CPUUtilizationPercentage (T)  ܶܽݏ݀݋݂ܲ݋݉ݑܰݐ݁݃ݎ = අ൭෍ܷ௡௡

௡ୀଵ ൱ ܶൗ ඉ 
In this work, the HPA waits for 3 minutes after the 

last scale-up event to allow for the metrics to stabilize.  
Scale-down is based on waiting for 5 minutes from 
the last rescaling in order to deal with temporary CPU 
fluctuations that may occur during starting and 
stopping containers. The default relative metrics 
tolerance was set to 10%, which meant that any 
scaling would only be made if the average current pod 
utilization divided by the target CPU utilisation 
dropped below 0.9 or increases above 1.1. This 
autoscaling algorithm ensures that the HPA increases 
the number of pods rapidly when user load is detected 
whilst allowing for non-urgent decreasing of the 
number of pods. These auto-scaling settings avoid 
thrashing, i.e. preventing rapid execution of 
conflicting decisions if the load is unstable.   

To examine the application performance in a 
Kubernetes cluster by observing the status of the 
containers, pods, services, together with the 
characteristics of the overall Cloud-based cluster 
(Song, Zhang, & Hong, 2018), a metrics server was 
installed. We use Prometheus to visualize the real 
time monitoring status of the cluster (Mittermeier, 
2018). Prometheus supports customized queries. As 
one example, Figure 6 is a time-series view of the 
cluster, showing CPU usage for each pod.  

To explore walkability auto-scaling, as with the 
Docker Swarm case study we used different 
computation loads on the walkability system 
including 100, 500 and 1000 points. We set the 
configurations in HPA file for each deployment. 
Kubernetes can auto-scale replicas according to the 
HPA requirements. In this work we assign 
minReplicas=1 and maxReplicas=5 for each HPA file. 
The scaling time was measured for each deployment 
under different computation load scenarios as shown 
in Figure 7.  
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Figure 6: Prometheus Monitoring. 

 

 

 
Figure 7: Scaling Time for 100, 500 and 1000 Points. 

The results show that when we increased the 
workload by increasing the number of input data 
points, the HPA was able to successfully auto-scale 
the number of pods. However, in the experiments we 
found that Kubernetes auto-scaling could not speed up 
computation significantly - it took 367 seconds to 
finish the computation of 1000 points, since there 
were overheads in creating pods and allocating 
resources, which incurs additional time. Despite this, 
there are several advantages for Kubernetes 
autoscaling with regards to the walkability 
environment:  

• Auto-scaling helps to ensure the application 
always has sufficient capacity to handle the 
computational demand and thus provide better 
availability.  

• Compared to Docker Swarm, Kubernetes was 
able to auto-scale according to dynamically 
changing computation needs, i.e. there was no 
need to modify the number of replicas in the 
YAML file each time. Rather it was only 
necessary to define an appropriate number of 
maxReplica, and Kubernetes would perform 
the auto-scaling automatically.   

• Auto-scaling can also dynamically increase 
and decrease capacity as needed, and thereby 
help to reduce Cloud costs as much as possible, 
as well as the associated administrative 
demands (Singh & Singh, 2016).   

4 WALKABILITY CASE STUDY  

In order to examine the performance of the modified 
application for larger scale urban research challenges, 
we selected 3000 bus stops in the Melbourne area to 
measure their walkability scores. Thus, we aimed to 
explore whether people would use public transport 
more if it was located in more walkable locations. It 
is noted that the AURIN platform has access to many 
data sets including bus stops and average commuting 
times, as well as the road network data and land use 
models that underpin the walkability analysis 
scenarios. The experiments were realised on the 
Cloud resources introduced previously. The 
walkability score was calculated using a Walking 
Distance of 800m and Buffer Size of 50m.   

It is noted that when the same experiment was 
conducted on the original AURIN (sequential) 
walkability application, it led to memory overflow 
issues since the calculations of 3000 points and 
individuals walking for 800m on the road network 
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exceeded the capacity of the single (albeit large) 
virtual machine.  

4.1 Docker SWARM Benchmarking  

When we performed the experiment across the 
Docker Swarm cluster on the NeCTAR Research 
Cloud, the total running time was drastically reduced 
by assigning more containers for the services as 
shown in Figure 8. For example, when we assigned 8 
containers for Generate Neighbourhood Polygon and 
Generate Connectivity Index services, the running 
time was decreased to 1/7 of the initial combination 
[1,1,1,1,1,1], which was a satisfying result. The 
overheads of the Docker Swarm cluster still exist 
however, these were outweighed by the speedup 
brought about by the container-based approach. The 
requirements for memory during the calculations 
were largely amortized by having multiple nodes and 
parallelising the number of containers on different 
nodes. This avoided the memory overflow issues of 
the original sequential application. Thus, the approach 
allows not just to perform faster walkability analyses, 
but to support walkability scenarios that were hitherto 
not possible with the existing AURIN walkability 
environment.  

 

Figure 8: Running Time for 3000 points Case Study. 

4.2 Kubernetes Benchmarking  

For the Kubernetes based scenario, the maxReplica 
number for each HPA file was set to 8. The total 
running time was 853s, which was slower than 
Docker Swarm (536s). We also measured the scaling 
time during the computation process. We found that 
polygon_hpa scaled to the maxReplica number, which 
indicated that generating polygons was the most 
computationally consuming part of the walkability 
tool as shown in Figure 9.  

 

Figure 9: Scaling Time for 3000 points Case Study. 

4.3 Result Visualisation and Analysis  

To illustrate the potential of this work we show how 
larger style case studies can be achieved. Specifically, 
the Sum_Zscore of each region around an input data 
set (point) is visualised in Figure 10. The bigger and 
redder the centroid is, the more walkable the area is. 
It is interesting to see that the most walkable regions 
are located in the Melbourne Central Business District 
(CBD). This has many intersections and hence this is 
not surprising. It can also be seen that some outer 
suburbs have bus stops that are also more walkable 
than others. As mentioned before, the walkability 
workflow also generates three other geoJSON output 
files for the Connectivity_Zscore, Density_Zscore and 
LUM_Zscore for each region of interest.   

 

Figure 10: Sum_Zscore Visualisation. 

As shown in Figure 11, we can clearly see that 
connectivity is higher in the CBD and some northern 
suburbs around Melbourne. The density of people in 
the CBD is much higher than other areas. However, 
the land use mix (LUM) index is distributed evenly on 
the map without a clear trend, reflecting that land use 
for each region is similarly diverse. 
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Figure 11: Connectivity_Zscore (top), Density_Zscore 
(middle) and LUM_Zscore (bottom). 

5 RELATED WORK  

The idea of containers is not new. Indeed, they can be 
traced back to 1992 (Pike, Presotto, Thompson, 
Trickey, & Winterbottom, 1993). However, they have 
gradually gained momentum and especially with the 
growth and adoption of the Cloud for many diverse 
research and business communities. Dockerized 
applications, Infrastructure-as-Code (IaC), DevOps 
are now terms frequently used in modern many 
mainstream Cloud deployments. The advantages of 
containers in comparison to traditional IaaS platforms 
are that they are lightweight, portable and have 
minimal overheads compared to other more 
heavyweight Cloud solutions (Bernstein, 2014). 
Furthermore, container technologies are well aligned 
with IaaS solutions and can leverage the investments 
that have already been made. They can also be used to 
develop and deploy large-scale applications that 

typify many big data processing and scientific 
computing requirements.   

An early study of container management is 
presented in (He, et al., 2012). The authors compared 
VM-based and container-based resource management 
with specific focus on the basic capabilities and 
resource-efficiency. The results showed that 
container-based solutions outperform VM-based 
approaches in terms of efficiency and have minimal 
impact on key Cloud capabilities. In (Casalicchio, 
2016), the authors provide a general formulation of 
elastic provisioning for the deployment of VMs and 
containers. They identified that containers were 
adequate to manage diverse large-scale system 
demands, however they identified that container 
orchestration tools like Docker Swarm and 
Kubernetes are essential for large scale container 
management, and especially their need to work in 
inter-cloud scenarios.  

A performance comparison of leading micro 
hosting virtualization approaches was presented with 
specific focus on Docker and Flockport with native 
platforms was explored in (Zhanibek & Sinnott, 2017). 
They identified that there were minimal overheads 
with regards to memory utilization or CPU by either 
Docker or Flockport, whilst I/O and operating system 
interactions incurred some overheads.   

Container-based auto-scaling techniques were 
also presented in (Lorido-Botran, Miguel-Alonso, & 
Lozano, 2014). The authors focused on the design of 
auto-scaling algorithms. They used Kubernetes 
Horizontal Pod Auto-scaling (HPA) to provide a 
threshold-based reactive controller that automatically 
adjusted the required resources based on (dynamic) 
application demand. This was realised through a 
control loop that scaled up/down based on observed 
CPU or memory load. 

In (Kho Lin, 2018), auto-scaling of a defence 
application for manpower planning and simulation 
across the cloud was explored with focus on the 
Kubernetes orchestration technology. In comparison 
to this work, we utilize both Docker Swarm and 
Kubernetes to auto-scale AURIN walkability tools 
and make a comparison of the performance of these 
two orchestration tools.   

Walkability is a well explored topic that impacts 
on many urban environments. For example, in 
(Boulangé, 2016), the author designs an advanced 
walkability analytic tool to help with community 
planning. This tool utilises the association between 
built environment attributes and walking behaviours. 
In (Woo, Yu, & Lee, 2019), the authors point out that 
the walkability is also influenced by the spatial 
attributes of subsidized households. In this work, 
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AURIN Walkability Analytics System adopted the 
walkability measurements from Frank et al as 
mentioned before (Walkability Tools, 2019).  

In (Sinnott & Voorsluys, 2015) the authors 
focused on scaling a walkability application on the 
Cloud, however this was based on IaaS-based 
approaches that do not tackle the real-time and 
dynamic fluctuations that arise with many students in 
a class running walkability analytics in real time.  

More details on the AURIN platform including the 
data sets and tools that are available are presented in 
(Sinnott, et al., 2016). The security-oriented solutions 
that AURIN offers to access more sensitive data sets 
– including the use of walkability analytics 
capabilities are presented in (Sinnott, Chhetri, Gong, 
Macaulay, & Voorsluys, 2015).  

6 CONCLUSIONS AND FUTURE 
WORK  

The need to scale applications on the Cloud is 
important for many areas of research. Docker is the 
leading container-based solution that offers many 
advantages to scaling compared to more traditional 
IaaS solutions. Docker Swarm and Kubernetes 
provide container orchestration frameworks. Both 
technologies provide support for multi-layer 
application deployment over distributed nodes 
(Kratzke, 2014). In terms of configuration setup, 
Docker Swarm supports YAML while Kubernetes 
supports both YAML and JSON. Docker Swarm and 
Kubernetes have similar architectural patterns that 
follow master-worker semantics.  

However, there are many differences between 
Docker SWARM and Kubernetes. Firstly, they have 
different deployment units (Preuveneers, Lagaisse, 
Truyen, Landuyt, & Joosen, 2019). Docker Swarm 
encapsulates a task into a container, which is the 
smallest unit for deployment. Several containers can 
run the same task. However, in Kubernetes, pods are 
the smallest running units. One pod can include one 
container or several containers, depending on the 
application requirements. Secondly, Kubernetes 
provides more advanced scaling modes. Both 
frameworks support scaling of applications, however, 
Docker Swarm achieves this by defining the number 
of container replicas in the docker-compose.yml file 
whilst Kubernetes supports auto-scaling functionality 
directly whereby it can adjust the number of pods 
according to the performance of CPU or memory 
resources. This is a more realistic approach for 
dynamic Cloud applications. Thirdly, when it comes 

to volume sharing, data can be shared persistently 
among containers on the same host machine in 
Docker Swarm Cluster, whereas in Kubernetes, 
containers are also allowed to share data volumes 
non-persistently within the same pod ("Docker 
Swarm vs. Kubernetes: Comparison of the Two 
Giants in Container Orchestration", 2019).  

In the case study presented related to the 
walkability tool, both Docker Swarm and Kubernetes 
were implemented successfully.  The performance of 
both technologies can be clearly observed. Docker 
Swarm had less overhead and the maximum speed up 
could be achieved from multiple trials. Kubernetes 
had more overheads but could auto-scale the 
containers over the cluster intelligently according to 
the actual (dynamic) requirements of the application. 
Both solutions greatly enhanced the performance of 
the original sequential walkability application of 
AURIN. Kubernetes provides richer functionality 
than Docker Swarm, however this comes at the cost 
of complexity.  

In this paper, we have achieved auto-scaling for 
the walkability environment using a 16-node cluster 
using Kubernetes a Horizontal Pod Auto-scaler 
(HPA). Kubernetes auto-scaling can happen at two 
levels: pod level and cluster/node level. In the former, 
the pod level scaling is controlled by HPA and VPA 
controllers. In the latter, the cluster level scaling is 
controlled by a cluster auto-scaler that allows to scale 
an existing cluster by adding new nodes and 
allocating pending pods to the new node (Mittermeier, 
2018). In the future, we aim to combine and compare 
pod level and cluster level auto-scaling to 
dynamically adjust cluster sizes according to the 
actual computation load. In this model, we envisage 
that the HPA updates pod replicas based on CPU 
utilization. The cluster auto-scaler checks whether 
there are any pods in a pending state, e.g. due to a lack 
of Cloud resource. If so, one or more additional nodes 
for pending pods would be provisioned by the cluster 
auto-scaler. When a node is granted, e.g. by a cloud 
provider such as Amazon, Microsoft Azure or Google 
Cloud, the node is joined to the cluster and is then 
ready to serve pods. The pending pods can then be 
scheduled to the new node whereupon the Kubernetes 
scheduler can allocate pending pods to the new node. 
By combining these two auto-scalers, Cloud scaling 
can become smarter and help to improve the 
management of resources required for application 
operation and deployment.  
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