
Experimental Evaluation of Forward Secure Dynamic Symmetric
Searchable Encryption using the Searchitect Framework

Ines Kramer, Silvia Schmidt, Manuel Koschuch a and Mathias Tausig
Competence Centre for IT Security, University of Applied Sciences FH Campus Wien, Vienna, Austria

Keywords: Searchable Encryption, Dynamic Symmetric Searchable Encryption, Implementation, Framework, Forward
Privacy.

Abstract: In this work we present a prototype implementation of a framework for searchable encryption (SE), “Searchi-
tect”. Our framework can be used to extend applications with search functionality over encrypted data in
a protocol agnostic approach, hopefully paving the way for a broader and easier adoption of this promising
privacy enhancing technology. Furthermore, it allows for easy comparison and evaluation of different imple-
mentations of SE schemes. We discuss dynamic searchable encryption schemes, supporting efficient updates
of an encrypted index, as well as forward secure schemes that guarantee additional security properties, which
resist file injection attacks. We evaluate the performance characteristics of two implementations of existing
forward secure schemes, DynRH and Sophos. Our results show that the DynRH implementation is outper-
forming Sophos in terms of efficiency in the execution time of the search and update protocol, but needs
more bandwidth for a search request. In addition, we augment an existing cloud-storage application with SE
functionality using our framework, showing the negligible additional effort required by the implementers to
accomplish this.

1 INTRODUCTION AND
RELATED WORK

Symmetric searchable encryption (SE) is a privacy
enhancing technology (PET) which provides a secure
search functionality on outsourced encrypted data.
The searched content stays oblivious to the server,
even if it gets compromised. The emerging need for
this kind of technology is based on the rising trend
of the usage of cloud infrastructure in industries and
home automation. Furthermore, the introduction of
the general data protection regulation (GDPR) en-
forces privacy protection.

Since the seminal work of (Song et al., 2000) a
vast number of schemes have been proposed com-
pared to the rare number of reported usable imple-
mentations. Up to our knowledge only a few research
projects on SE openly published source code such as
(Kamara and Moataz, 2017; Popa, 2014; Popa et al.,
2015; Bost, 2016a; Bost et al., 2017; Hoang et al.,
2017; Hoang et al., 2018). The comprehensive sur-
vey on SE techniques by (Bösch et al., 2014) states
that schemes differ in efficiency, performance and se-

a https://orcid.org/0000-0001-8090-3784

curity levels. It might be insufficient to compare dif-
ferent approaches just on a theoretical basis. Choos-
ing an appropriate and secure SE scheme for a use
case without a practical comparison and realistic eval-
uation may be burdensome for a software developer
without specific knowledge in this domain.

Our work tries to close this gap by providing a
server/client framework called Searchitect, which

• Allows an easy integration of a searchable encryp-
tion scheme for testing purposes,

• Offers metrics for a comparison between schemes
in performance and storage space, and

• Provides an interface for integration of SE tech-
nology in existing applications.

Further, we evaluate two proposed forward secure dy-
namic symmetric searchable encryption schemes (FS-
DSSE). We also show how to integrate SE function-
ality in an existing data storage application. Our ap-
proach (Haböck et al., 2018) is hybrid in the sense that
it does not matter how the original data is encrypted,
but it has to be possible to map to the encrypted data.
Therefore, the application can handle the data encryp-
tion and storage in its own way. The client needs to
generate a searchable data structure - known as en-

Kramer, I., Schmidt, S., Koschuch, M. and Tausig, M.
Experimental Evaluation of Forward Secure Dynamic Symmetric Searchable Encryption using the Searchitect Framework.
DOI: 10.5220/0009337000250035
In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (IoTBDS 2020), pages 25-35
ISBN: 978-989-758-426-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

25

crypted database (EDB) - with its own keys, which
are concealed from the server.

Since our primary objective are efficient search
queries we focus on symmetric searchable encryption
schemes based on an inverted index. This approach
was first proposed by (Curtmola et al., 2006), the dif-
ference between a forward and inverted plaintext in-
dex is shown in Table 1.

Table 1: Forward and inverted index.

Forward index Inverted index
{doc1:{new,test,..}} {new:{doc1,doc3}}
{doc2:{error,test,..}} {test:{doc1,doc2}}
{doc3:{new,..}} {error:{doc2}}

Inverted index based schemes provide a search
performance that is linear to the number of documents
containing the keyword, whereas forward index based
scheme such as (Goh, 2004) just achieve a search time
linear to the number of documents. Unfortunately, in-
verted encrypted indexes are more complex in han-
dling updates.

Furthermore, we limit the scope of this work to
dynamic schemes which support efficient updates.
Due to the fact that data processed by applications
is steadily growing and outsourced to the cloud over
time, SE technology has to support addition and
preferably also modification and deletion of exist-
ing data. File injection attacks such as presented in
(Zhang et al., 2016) compromise the privacy of client
queries by injecting a small portion of new primed
documents into the encrypted database. These attacks
break the security assumptions of most known dy-
namic schemes, only forward private schemes resist
them. This property was first introduced by (Stefanov
et al., 2013) and is also known as forward secure. For-
ward security ensures that newly added data remains
hidden to the server until it gets revealed by a later
query, even if the server might have learned some se-
crets during previous queries. Therefore, the Searchi-
tect framework is shaped to integrate forward secure
dynamic symmetric searchable encryption schemes.

The remainder of this paper is now structured
as follows: Preliminary definitions of dynamic sym-
metric and forward secure searchable encryption are
given in Section 2. The Searchitect framework is de-
scribed in Section 3 and the implementation and in-
tegration of schemes is given in Section 4. Section 5
provides the experimental evaluation and results. Fi-
nally, we discuss our findings in Section 6.

2 DYNAMIC SYMMETRIC
SEARCHABLE ENCRYPTION

Dynamic searchable encryption schemes provide an
efficient and secure solution for adding and deleting
data to and from an encrypted index structure.

For the definition of the protocols of dynamic
SE schemes we follow a slightly modified approach
of (Cash et al., 2014) and (Bost, 2016b) as shown
in Figure 1 and Table 2. The database DB consists
of keyword/document-identifier pairs also called
records, which have been extracted from the docu-
ments using an indexer.

Figure 1: Protocols supported by a DSSE scheme.

The Resolve step in the Search protocol is optional
and only needed for schemes which are resource hid-
ing. They do not reveal the document identifiers to the
server, thus they need to provide a decryption step.

2.1 Forward Secure Schemes

The first forward secure scheme was presented by
Chang and Mitzenmacher in (Chang and Mitzen-
macher, 2005); it is based on a forward index. A
scheme with sub-linear search time was proposed in
(Stefanov et al., 2013) using a path ORAM (Obliv-
ious RAM) like construction, which lacks in perfor-
mance. An efficient but not forward secure construc-
tion Dyn2Lev has been proposed by Cash et al in
(Cash et al., 2014) using keyword dependent keys for
encryption. We found a forward secure implemen-
tation DynRH2Lev within the Clusion library (Ka-
mara and Moataz, 2017) published by Kamara and
Moataz, where a query contains one search token
for each keyword/document identifier pair in the re-
sult set. Sophos - published by Bost (Bost, 2016b) -
uses asymmetric trapdoor permutations to make the
update tokens unlinkable to the server. Another ap-
proach to achieve forward and backward privacy is
based on range constrained cryptographic primitives
(Bost et al., 2017). The forward secure scheme is
achieved similar to the ARQ-EQ scheme of (Pod-
dar et al., 2016). Puncturable encryption has been
designed by Green and Miers to enable forward se-

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

26

Table 2: DSSE protocol definition.

Setup (1λ,DB)→ (K,EDB)

Setup runs at the client and expects a se-
curity parameter λ along with the DB as
an input; consequently, it outputs ran-
domly generated key material K along
with the encrypted index EDB.

Search protocol between client and server

Token (w,K,σ)→ ST

Token runs at the client and takes a key-
word w, the key material K and op-
tional a client state σ as an input; con-
sequently, it outputs a search token ST .

Query (ST,EDB)→ ids/encids

Query runs at the server and takes the
search token ST and the encrypted index
EDB as an input; consequently it de-
livers all matching document-identifiers
ids or encrypted ids: encids

Resolve (encids,K) → ids The client decrypts
the encrypted identifiers using the key
material K.

Update (op,K,DB′,σ)→ EDB′

The client performs the Update proce-
dure on the input of the desired opera-
tion (add or delete), the key material K,
the new inserted database DB′, and the
client state σ. Then it sends the output
- an updated encrypted data-structure -
to the server, where it is processed and
results in an updated encrypted database
EDB′

cure asynchronous messaging (M. D. Green and I.
Miers, 2015). Using puncturable encryption a weak
form of backward security can be achieved, but the
computation effort for the pairings lacks in efficiency.
A scheme proposed by Kim et al uses a dual dic-
tionary, which has the advantages of both forward
and inverted indexes at the same time (Kim et al.,
2017). This enables efficient deletions with a continu-
ous space reclamation after each search query, but has
no backward security guarantees. The empirical eval-
uation of the search performance of this scheme com-
pared to Sophos reveals that it lacks in performance
and storage efficiency.

Another line of work called TWORAM and
ODSE examines ORAM based schemes (Garg et al.,
2016; Hoang et al., 2017; Hoang et al., 2018). Hoang,
Yavuz, Durak, and Guajardo give several ORAM

and distributed PIR (Private Information Retrieval)
based approaches which achieve forward and back-
ward privacy. Instead of using a generic ORAM they
leverage specific bandwidth-efficient oblivious access
techniques such as read-only multi-server PIR for
search and write-only ORAM for updates. Their ex-
perimental evaluation shows that this overcomes the
limitations of prior ORAM schemes regarding com-
munication costs.

To our knowledge there is still a lack of schemes
providing efficient backward privacy, where the
server can not learn any information from a dele-
tion update with space reclamation on the EDB (Bost
et al., 2017).

Unfortunately, all efficient forward secure
schemes need to keep track of the state at the client.
Thus, an additional synchronization effort for the
client state is needed if an application allows the
usage of multiple devices.

2.2 Selection of SE Schemes

We used following metrics to compare above
schemes:

• Storage size at client and server

• Search & update time and communication com-
plexity

• Parallelization of computation

• Efficient deletion handling

Taking into account efficiency of performance
and storage size, we chose to compare DynRH and
Sophos within our framework.

DynRH - The dynamic construction called ΠBas in
(Cash et al., 2014) is based on a simple dictionary,
which contains label-value pairs. The label consists
of a keyed hash value derived from a keyword specific
key and a keyword counter, that stores the occurrence
of the keyword per document. Whereas the value of
a pair is calculated by the encryption of the document
identifier with another keyword dependent key. In the
forward secure version of the Clusion library (Kamara
and Moataz, 2017) the document identifiers are en-
crypted twice, deterministic and probabilistic - each
time with a different, keyword dependent key. There-
fore, this scheme is resource hiding, because plain-
text document identifiers remain hidden to the server.
The forward private search is achieved by sending one
search token for each expected match. The number of
expected matches is indicated by a keyword specific
counter stored within the client state. This forward se-
cure scheme will be called DynRH in this paper, the
pseudo-code can be found in Appendix 6.2

Experimental Evaluation of Forward Secure Dynamic Symmetric Searchable Encryption using the Searchitect Framework

27

Sophos - Bost‘s approach is based on a dictionary
- similarly to DynRH - and our version keeps track
of the keyword counters in a client state - similarly
to DynRH (Bost, 2016b). The main difference is
how the labels - also called update tokens UTi -
are derived and a Search token is issued. Sophos
achieves forward privacy by keeping the update
tokens unlinkable until a search query is issued. The
scheme makes use of an extra layer of asymmetric
encryption using trapdoor permutations π. The server
is able to process a search query using the search
token, the public key, and a keyword constrained key
to re-calculate all previous update tokens of a specific
keyword. However, the same parameters prevent the
server from predicting the next update token without
a secret key. Whereas the client is able to issue a
searchtoken STc using the number of the keyword
specific counter inverse trapdoor permutations. This
scheme is resource revealing, because the document
identifiers are encrypted just once; the encryption is
done by applying an XOR operation with the search
token. The drawbacks of this method are the com-
putational effort for the asymmetric cryptographic
primitives, and the sequential processing, which
cannot be parallelized. We slightly modified the
original scheme to increase the efficiency for batched
updates at the client as shown in Appendix 6.2.

Comparing DynRH to Sophos, we noticed that
both schemes are add-only schemes. They do not
provide an efficient deletion handling and both need
to keep track of a client state. The most remark-
able differences are data privacy, used cryptographic
primitives, and resulting performance. DynRH is re-
source hiding whereas Sophos is not. Furthermore,
the former uses symmetric encryption contrary to
the latter which uses asymmetric trapdoor permuta-
tions. Hence, DynRH requires more storage space
and bandwidth while Sophos needs more computa-
tional resources.

3 SEARCHITECT FRAMEWORK

The client-server framework provides support for
multiple users to upload and update their encrypted
index and search for a keyword in this index. Further-
more, it offers some basic user account management
and query authentication. It achieves the following
non-functional requirements:
• Secure communication - authentication and en-

cryption,
• Openness - easy integration of new schemes, no

dependency on programming language,

• Easy to deploy and test,

• Dynamically updated documentation of the web-
service API.

3.1 Client-side Searchitect Framework

The client Searchitect API is exposed to the primary
application that enables it to perform all Searchitect
related queries through this interface. The client li-
brary contains all generic classes such as the indexer,
which is used to extract keyword/document-identifier
pairs from documents resulting in a plain-text inverted
index. Each SE scheme is integrated by its own client
plugin. Hence, each plugin has to implement the same
interface to the client library.

Figure 2: Client-side Searchitect framework, source:
(Haböck et al., 2018).

3.2 Server-side Searchitect Framework

The server offers a web-service based on a micro-
services architecture, which consists of a gateway and
several SE backend modules. The external API ex-
posed to the client is provided by a gateway, which
accomplishes basic user-management tasks and query
authentication. For these tasks the gateway holds
a database with user accounts containing randomly
generated identifiers of the EDBs and the related
backend module. This enables the gateway to autho-
rize access and forward the queries of SE protocols to
the specific SE backend module. Each backend mod-
ule will handle the storage of the EDB in its own fla-
vor.

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

28

Figure 3: Server-side Searchitect framework, modified
source: (Haböck et al., 2018).

4 IMPLEMENTATION AND
INTEGRATION

Currently, all code is written in Java 10. However, the
communication interfaces between client and server
accept JSON formatted data through RESTful APIs;
this offers interoperability and loosely coupled sys-
tems. Client queries are secured by TLS 1.2 in or-
der to guarantee privacy. At the moment we use a
username-password authentication and JSON web to-
kens (JWT) for the authorization of all subsequent
client requests.

4.1 Client-side Implementation

The client has to process the biggest part of the work-
load. The indexer of the Clusion library supports
keyword extraction from different file formats using
specific libraries such as Apache PDFBox or Apache
POI. This multi threaded process is using the Apache
Lucene library and does some basic filtering of stop
words. We had to adapt the indexing code to fit the
specific application data to our test sets. A difference
to the Clusion version is that our map to a document
identifier should not be bigger than 20 bytes. We used
a shortened path to the document. Each SE scheme
has a separate client plugin that needs to implement
the same interface method signatures in order to get
integrated into the client library.

4.2 Server-side Implementation

Server-side code is built on the Spring Boot (version
2.06) template, which facilitates dependency man-
agement, configuration, and deployment using the
embedded application server Apache Tomcat. For
continuous compilation and building of all server
instances we use Docker (Docker-compose version
1.18.0).

4.2.1 Searchitect Gateway

The gateway consists of three main controllers for:

• Authentication which issues a JWT authorization
token

• User account management

• Repository controller which forwards the SE
client queries.

Currently both, user management and access control
database, are stored in memory using an H2 database.
We added some security related classes to the Spring
Security library that manage authentication without
any external identity provider.

4.2.2 SE Backend Module

A Java dictionary object in memory was used for the
first implementation of the SE backend module. Con-
sequently, the search time performance slowed down.
Therefore, we considered a fast key-value store as
data structure which is able to persist the EDBs in
the backend-module similar to (Bost, 2016a). The
open source library RocksDB is designed for efficient
random access in memory and SSD I/O operations
(Team, 2018). RocksJava offers a Java API in an extra
Java package. We use the HashSkipListMemTable,
because the Java API does not provide an implemen-
tation of a Cuckoo hash table as for C++, which
is optimized for point lookup. The HashSkipList-
MemTable contains a fixed-sized array of buckets and
each bucket points to a skiplist, the default value is
1,000,000 buckets.

4.3 Integration of SE Schemes

We integrated two schemes, i.e. DynRH and Sophos.
The original design is extensible with a new scheme
by adding code for the client-plugin, a backendmod-
ule and their common classes. Further the new back-
endmodule name and port need to be added to the ap-
plication properties of the gateway.

4.3.1 DynRH

The Clusion library uses cryptographic primitives of
the Bouncy Castle library. AES 128 in CTR mode
was chosen for encryption and a keyed SHA256 hash
for the pseudo-random function (PRF). All keys are
derived from the keyword using the PRF. The doc-
ument identifiers are encrypted twice, one time with
deterministic encryption using a synthetic initializa-
tion vector (SIV) and another time with a random IV
in the probabilistic encryption. We slightly modified

Experimental Evaluation of Forward Secure Dynamic Symmetric Searchable Encryption using the Searchitect Framework

29

Table 3: Difference between DynRH and Sophos implementations.

Dynamic Variants DynRH Sophos
Storage RocksDB + Client state
Resource Hiding Revealing
Id Encryption 2 x AES CTR XOR HK(STi)
Label Derivation Keyed hash Trapdoor permutation
Label/Value Sizes 24/52 byte 44/32 byte
FS-Search Bandwidth Calculation effort

the implementation of the Clusion library and limited
the size of a document identifier to 20 bytes in order
to reduce the storage space, which resulted in 36 bytes
encrypted values.

4.3.2 Sophos

The Secure Computation API (SCAPI) is an open
source library for secure two-party and multiparty
computation (Ejgenberg et al., 2012). It also pro-
vides RSA trapdoor permutations, which we extended
to support fast multiple inversions using the Chinese
remainder theorem. For the PRF we make use of
SHA256 and Blake2 of the Bouncy Castle library.
Further, we fixed the maximal length of a document
identifier and subsequently implemented a 24 bytes
fixed length XOR operation. Our implementation of
the Sophos scheme is entirely deterministic, because
our design does not use any randomness (except once
in the key derivation); i.e. the same key material
and plaintext index (DB) result into exactly the same
EDB.

Both backendmodules use RocksDB as persistent
database. At the client we have the same size of client
state, if both schemes process the same numbers of
keywords. The main difference between the two im-
plemented schemes lies in the encryption of docu-
ment identifiers, the derivation of the labels, and how
the forward secure search (FS-Search) is achieved as
shown in Table 3.

Our implementation of the framework
is open source and publicly available at
https://gitlab.com/Searchitect.

4.4 Application Integration

Further we integrated the prototype of our client li-
brary into a secure cloud synchronization application
as a proof of concept. This integration didn’t require
any fundamental changes of the underlying applica-
tion and basically boiled down to merely extending
the user interface with the search functionality as well
as finding appropriate injection points for triggering

the update process. The prototype still lacks in han-
dling multiple EDB repositories and efficient and se-
cure key management while it enables an encrypted
search over one vault.

5 EXPERIMENTAL EVALUATION
AND RESULTS

Our tests focus on the feasibility of the searchable en-
cryption technology in a working application. There-
fore, all measurements except the EDB storage size
are taken at the client machine. The communica-
tion between client and gateway is transport encrypted
with TLS 1.2. Search and Update requests are sent
to the gateway and after an authorization check for-
warded to the appropriate backend module instance.
For our experiments we used for the server an In-
tel Xeon E5-2620 with 8 cores, 64 GB RAM, and
an SSD SATA3 running a Docker container in a vir-
tual machine on Ubuntu 18.04 with 16 GB memory.
The client hardware environment was a DELL Lati-
tude E470 with an Intel(R) Core(TM) I5-6300U CPU
running with 16 GB RAM and an ATA LITEON CV3-
8D512 SSD hard drive running Ubuntu 18.04 (64 bit).

5.1 Testset Generation and Tests

We examined two main test cases, one with synthetic
generated data and another with realistic data.
Synthetic - The synthetic generated testset includes
100 plaintext update indexes, where each update in-
dex contains the same 100 keywords with 100 newly
inserted random order document maps. The test iter-
ates over all 100 updates, the time used to process one
update is measured at the client. After each update
all 100 keywords are searched and an average search
time is calculated and stored in a report.
Realistic - For the realistic testset we extracted the
biggest archive from the publicly available ENRON
email dataset (William W. Cohen, 2012) and grouped
it into 282 updates each containing 100 documents.

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

30

0 5000 10000 15000 20000 250000e
+

00
2e

+
06

4e
+

06

Number of documents

N
um

be
r

of
 r

ec
or

ds

Figure 4: Growth of the database records with incremental
updates containing 100 email documents.

In order to create the plain text inverted index, we
needed to adapt the indexer of the client library to map
document identifiers of the size of 20 bytes and filter
out email tags of the keywords. The growth of the
records in the DB with incremental updates is shown
in Figure 4.

The mean time used for the index extraction pro-
cess for an update of 100 documents was 106.74 ms.
It took on average 0.0055 ms per record, but this value
is strongly dependent on the data and occurrence of
the keywords in the texts. After each index extrac-
tion of an update, an additional wordlist containing
keywords with a small, medium, and big result set
in the updated database has been created. The test
loops over all updates and the update related wordlist
is searched after each update and the running times
are saved in a report.

5.2 Performance Evaluation

A record of the EDB consists of a label and encrypted
document identifier. Table 4 gives an overview of our
testing results for the EDB storage space and the run-
ning time for the update and search protocol on a per
record base. The measured running time at the client
includes also an averaged time for authentication and
network traffic communication overhead.

5.2.1 Storage Size of the EDB

We logged the storage space usage of the EDB with
incremental updates at the server. Although there
is no difference between the 76 byte sized records
for both schemes, RocksDB occupies in case of the
DynRH implementation 5.99 % more space than in
case of Sophos as shown in Figure 5. The size in
bytes for one record differs between the synthetic and

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

0
10

0
20

0
30

0
40

0

Number of records

S
to

ra
ge

 s
pa

ce
 u

sa
ge

 [M
B

] DynRH
Sophos

Figure 5: Storage space usage of RocksDB with continuous
updates tested with the realistic test set.

realistic test set. This may be caused by the database
management of RocksDB.

5.2.2 Update Time

The measured time for an update in the synthetic test-
set stayed nearly constant over time, except for two
spikes in the 37th and 73rd update in DynRH and 36th
and 72nd in Sophos which needed between 700 and
1500 ms longer. We can trace back this behavior to
the use of the HashSkipListMemTable implementa-
tion of RocksDB. The performance difference of the
accumulated update running time between DynRH
and Sophos for the realistic testset is shown in Fig-
ure 6.

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

0
20

00
40

00
60

00
80

00
10

00
0

Number of records

U
pd

at
e

tim
e

[s
]

DynRH
Sophos

Figure 6: Accumulated difference in running time for in-
cremental updates of DynRH implementation compared to
Sophos one tested with the realistic test set.

An average update processed by the Sophos im-
plementation takes about 41 times longer than with
DynRH. This lack of performance in the Sophos im-

Experimental Evaluation of Forward Secure Dynamic Symmetric Searchable Encryption using the Searchitect Framework

31

Table 4: Test results presented in storage size, update time and search time calculated as mean value over all measurements
on a per record base.

Synthetic Realistic
DynRH Sophos DynRH Sophos

Storage size/record [bytes] 85.45 78.61 79.58 75.08
Update time/record [ms] 0.03838 1.34523 0.04458 1.83433
Search time/record [ns] 1.10473 1.60002 21.13343 29.17961

plementation is caused by the expensive secret key
computations of the asymmetric trapdoor permuta-
tion.

5.2.3 Search Time

In the synthetic test we compared the average search
speed of the same 100 keywords after each update,
the result is shown in Figure 7. We discovered the

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00
20

00

Number of matched documents

S
ea

rc
h

tim
e

[m
s]

DynRH
Sophos

Figure 7: Running time of search queries with continuous
increasing result matches tested with the synthetic gener-
ated test set.

two update time spikes. The restructuring of the
HashSkipListMemTable in these updates improved
the search performance. Tested with the synthetic
testset the search protocol in the DynRH implemen-
tation is 30.96% faster than the Sophos one.
Realistic Testset: The running time for 13,305 search
queries in relation to the number of matching docu-
ment identifiers is shown in Figure 8. Just a few key-
words are contained in each update and the restructur-
ing of the database management of RocksDB is obvi-
ous. We took an average over all search queries of the
realistic testset and compared the DynRH implemen-
tation to Sophos. DynRH is 27.57% more efficient
than Sophos tested with the realistic dataset.

Further, we extracted test results for search
queries with one matched document and had a look
if the search time stays constant over time with an in-

0 5000 10000 15000 20000 25000

0
20

00
40

00
60

00

Number of matched documents

S
ea

rc
h

tim
e

[m
s]

DynRH
Sophos

Figure 8: Running time of DynRH and Sophos search
queries with continuous increasing result matches tested
with the realistic test set.

creasing encrypted database. This extraction is shown
in Figure 9, the search time in both schemes keeps
relatively constant. Remarkably, there seems to be an
optimal size for search queries in the middle.

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

30
40

50
60

70

Number of records

S
ea

rc
h

tim
e

[m
s]

DynRH
Sophos

Figure 9: Running time of DynRH and Sophos search
queries with continuous increasing result matches tested
with the realistic test set.

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

32

5.3 Comparison of the Results

There are several points which make it difficult to
compare our outcomes to other reported test results
such as in (Bost, 2016b; Kim et al., 2017; Cash et al.,
2014).

• The used coding language differs - we used Java,
which lacks in performance compared to C++.

• Our tests focus on feasibility in the usage of SE
technologies in an application, whereas others fo-
cus on performance of the raw algorithms without
communication overhead of authentication and/or
transport encryption.

• The testing environment of this work differs com-
pared to (Cash et al., 2014).

6 CONCLUSION

The Searchitect framework presents our approach to
integrate searchable encryption technology in real
world applications. Further, it provides a stable envi-
ronment to compare implementations of different SE
schemes. We examined the performance difference
of two integrated forward secure implementations of
the DynRH scheme and Sophos. Due to the lack of
efficient backward secure schemes, both are add-only
schemes. Forward secure schemes can be extended
by a basic deletion handling by using the first byte in-
dicating if the document identifier is added or deleted.
If the performance of the client is a key factor the
DynRH implementation is preferred over the Sophos
one. The search queries of DynRH will cost signifi-
cantly more bandwidth. A work around could be us-
ing the keyword counters in the client state to predict
the significance of the keyword in advance to avoid
costly requests.

For our future evaluations we plan to replace the
HashSkipListMemTable with a Cuckoo hash table to
determine its influence on the system performance. In
addition we want to examine the impact of switching
to a native C(++) implementation as well as add new
backward secure schemes (i.e. schemes supporting
document deletion with space reclamation).

REFERENCES

Bösch, C., Hartel, P., Jonker, W., and Peter, A. (2014).
A Survey of Provably Secure Searchable Encryption.
ACM Computing Surveys, 47(2):1–51.

Bost, R. (2016a). OpenSSE schemes. https://gitlab.com/
sse/sophos. [accessed on 2018-04-15].

Bost, R. (2016b). Sophos - Forward Secure Searchable En-
cryption. Published: Cryptology ePrint Archive, Re-
port 2016/728.

Bost, R., Minaud, B., and Ohrimenko, O. (2017). For-
ward and Backward Private Searchable Encryption
from Constrained Cryptographic Primitives. Pub-
lished: Cryptology ePrint Archive, Report 2017/805.

Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., and
Steiner, M. (2014). Dynamic searchable encryption in
very-large databases: Data structures and implemen-
tation. In In Network and Distributed System Security
Symposium (NDSS14).

Chang, Y.-c. and Mitzenmacher, M. (2005). Privacy
Preserving Keyword Searches on Remote Encrypted
Data. In ACNS 2005, volume 3531 of LNCS, pages
442–455. Springer Berlin Heidelberg.

Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R.
(2006). Searchable Symmetric Encryption: Improved
Definitions and Efficient Constructions. In Computer
and Communication Security CCS‘06, pages 79–88.
ACM.

Ejgenberg, Y., Farbstein, M., Levy, M., and Lindell, Y.
(2012). Scapi: The secure computation application
programming interface. https://cyber.biu.ac.il/scapi/.

Garg, S., Mohassel, P., and Papamanthou, C. (2016).
TWORAM: Efficient Oblivious RAM in Two Rounds
with Applications to Searchable Encryption. In Rob-
shaw, M. and Katz, J., editors, Advances in Cryptology
– CRYPTO 2016: 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III, pages 563–592.
Springer Berlin Heidelberg, Berlin, Heidelberg. DOI:
10.1007/978-3-662-53015-3 20.

Goh, E.-J. (2004). Secure Indexes. IACR Cryptology ePrint
Archive, 2003:216:1–18.

Haböck, U., Koschuch, M., Kramer, I., Schmidt, S., and
Tausig, M. (2018). Searchitect - a developer frame-
work for hybrid searchable encryption (position pa-
per).

Hoang, T., Yavuz, A. A., Durak, B. F., and Guajardo, J.
(2017). Oblivious Dynamic Searchable Encryption
via Distributed PIR and ORAM. Published: Cryp-
tology ePrint Archive, Report 2017/1158.

Hoang, T., Yavuz, A. A., Durak, F. B., and Guajardo, J.
(2018). Oblivious Dynamic Searchable Encryption on
Distributed Cloud Systems. In Kerschbaum, F. and
Paraboschi, S., editors, Data and Applications Secu-
rity and Privacy XXXII, Lecture Notes in Computer
Science, pages 113–130. Springer International Pub-
lishing.

Kamara, S. and Moataz, T. (2017). Encrypted sys-
tems lab: The clusion library. https://github.com/
encryptedsystems/Clusion. [accessed on 2017-09-05].

Kim, K. S., Kim, M., Lee, D., Park, J. H., and Kim,
W.-H. (2017). Forward Secure Dynamic Searchable
Symmetric Encryption with Efficient Updates. In
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages
1449–1463, Dallas, Texas, USA. ACM.

Experimental Evaluation of Forward Secure Dynamic Symmetric Searchable Encryption using the Searchitect Framework

33

M. D. Green and I. Miers (2015). Forward Secure Asyn-
chronous Messaging from Puncturable Encryption. In
2015 IEEE Symposium on Security and Privacy, pages
305–320.

Poddar, R., Boelter, T., and Popa, R. A. (2016). Arx:
A Strongly Encrypted Database System. Published:
Cryptology ePrint Archive, Report 2016/591.

Popa, R. A. (2014). Cryptdb. ”https://css.csail.mit.edu/
cryptdb/”. [accessed on 2017-09-09].

Popa, R. A., Stark, E., Helfer, J., Valdez, S., Zeldovich, N.,
Kaashoek, M. F., and Balakrishnan, H. (2015). My-
lar. https://github.com/strikeout/mylar. [accessed on
2017-09-09].

Song, D. X., Wagner, D., and Perrig, A. (2000). Practical
techniques for searches on encrypted data. In S&P
2000, pages 44–55. IEEE.

Stefanov, E., Papamanthou, C., Shi, E., and Encryption,
S. (2013). Practical Dynamic Searchable Encryption
with Small Leakage.

Team, F. D. E. (2013-2018). Rocksdb. https://rocksdb.org/.
[accessed on 2017-07-07].

William W. Cohen, MLD, C. (2012). Enron email dataset,
may 7, 2015 version of dataset. https://www.cs.cmu.
edu/∼./enron/.

Zhang, Y., Katz, J., and Papamanthou, C. (2016). All
Your Queries Are Belong to Us: The Power of File-
Injection Attacks on Searchable Encryption. IACR
Cryptology ePrint Archive, 2016:172.

APPENDIX

6.1 Implemented DynRH Scheme

Algorithm 1 shows a version of the ΠBas scheme of
(Cash et al., 2014) found in the Clusion library (Ka-
mara and Moataz, 2017). For brevity we omitted the
Setup algorithm, where we used a modified version
of DynRH2Lev of the Clusion library. F represents a
pseudo random function (PRF) and Enc stands for a
symmetric encryption scheme.

6.2 Implemented Sophos Scheme

Our implementation presents a slightly modified ver-
sion of Sophos scheme (Bost, 2016b) supporting
batched updates, this is shown in Algorithm 2.
F,H1,H2 are PRF and the trapdoor permutation is
symbolized by π, where π−c is the cth iteration of the
inversion of the trapdoor function.

Algorithm 1 : DynRH Source: derived from (Cash et al.,
2014; Kamara and Moataz, 2017) and modified.

UPDATE(id,DB,K,σ): . Runs at client
K+← F(K,3)
for w ∈ DB do

K+
1 ← F(K+,1 ‖ w);K+

2 ← F(K+,2 ‖ w);
K3← F(K,4 ‖ w);SIV ← F(K,5); . Derive

K3 and (SIV)
encid← Enc(K3,SIV, id,size); . Deterministic

e.
c← Get(σ,w); . Get client keyword counter
if c =⊥ then c← 0
for id ∈ DB(w) do

l← F(K+
1 ,c);d←Enc(K+

2 ,encid); .
Probabilistic encryption

c = c+1; . Increment counter
Add(l,d) to List L

Replace(σ(w,c)) . Update client state
send L to the server
SEARCH(K,w):
procedure TOKEN(K,w,σ) . Runs at client

K+← F(K,3);K+
1 ← F(K+,1 ‖ w);

K+
2 ← F(K+,2 ‖ w);

c← Get(σ,w)
for i = 0 to c do

STi← Get(γ+,F(K+
1 , i));

Send (K+
2 ,ST1, ...STc) to server

procedure QUERY((K+
2 ,ST1, ...STc,γ

+)) . Runs at
server

for STi ∈ ST1, ...,STc do
d← Get(γ+,STi);encid← Dec(K+

2 ,d)
add encid’s to List encidList

procedure RESOLVE(encidList,w,K) . Runs at
client

K3← F(K,4 ‖ w);SIV ← F(K,5);
for encid ∈ encidList do

id← Dec(K3,SIV, id); Add id to idList .
Decrypt the ids

return idList

IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security

34

Algorithm 2: Sophos forward secure scheme - modified im-
plemented version. Source: derived from (Bost, 2016b).

SETUP(): . Runs at client

Ks
%←{0,1}λ;

(sk, pk)← KeyGen(1)λ;
σ,γ← empty map
return ((γ, pk),(Ks,sk),σ)

UPDATE({add,DB,σ}): . Runs at client
for w ∈ DB do

K1← F(Ks,1 ‖ w); K2← F(Ks,2 ‖ w); .
Derive keys

ST0←Map(K2); . Map K2 to a group element
c←Get(σ,w) . Derive counter c from state
if c =⊥ then c← 0;STc← ST0

Add(σ,(w,c))
else

STc← π−c(sk,ST0); . Get search token STc
by multiple trapdoor inversion

for id ∈ DB(w) do
STc← π−1(sk,STc);c← c+1; . Derive

next STc and increment counter c
UTc← H1(K1,STc)
d← id⊕H2(K1,STc) . XOR encryption
Add(UTc,d) to List L . Insert in random

order
Replace(σ,(w,c))

Send L to the server . Server adds L to γ

SEARCH(K,σ,w):
procedure TOKEN(Ks,σ,w) . Runs at client

K1← F(Ks,w);K2← F(Ks,2 ‖ w)
c←Get(σ,w); . c = |DB(w)|
if c =⊥ then

return 0
ST0←Map(K2)STc← π−c(sk,ST0); .

Calculate search token
send (K1,STc,c) to the server.

procedure QUERY(K1,STc,c,γ) . Runs at server
for i = 0 to c do

UTi← H1(K1,STi);d←Get(γ,UTi);
id← d⊕H2(K1,STi)
Add id to idList
STi−1← π(pk,STi); i = i+1; . Calculate

trapdoor function
Send idList to Client

Experimental Evaluation of Forward Secure Dynamic Symmetric Searchable Encryption using the Searchitect Framework

35

