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Abstract: Connected mobility is not only a future market, but also holds great innovation potential. The analysis of 
vehicle telematics data in the cloud enables novel data-driven services for several stakeholders, e.g. a mobile 
application for the driver to obtain his driving style. This inevitably leads to privacy concerns and the question 
why and when are users willing to share driving telematic data, which we addressed in an empirical study. 
The paper presents an implementation of a data-driven service based on vehicle telematics data and discusses 
how privacy issues can be tackled. For the data-driven service, the most interesting steps along the vehicle 
data value chain are described in detail, firstly (i) vehicle telematics data collection, secondly, (ii) the wireless 
data transfer to a cloud platform, and thirdly, (iii) pre-processing and data analysis to evaluate the drivers’ 
driving style and analyse the driving risk. Finally, (iv) a smartphone application for drivers presents driving 
style and driving risk data on the smartphone in an interactive way, so that the driver can work on improving 
both, which has a positive effect on driving and road safety.  

1 INTRODUCTION AND 
MOTIVATION 

Increasing road safety is a major worldwide 
challenge. Though road safety in the EU has 
improved in the last decades, still more than 25.000 
people have lost their lives on EU roads in 2017 
(European Commission, 2018). Harsh driving 
remains one of the major causes of accidents. A report 
from the NSTSCE (Camden et al., 2015) lists 
violating speed limits, excessive speed and lateral 
acceleration on curves, unplanned lane departures, 
frequent hard braking, close following distances, 
lateral encroachment, failure to yield at intersections, 
and general disobedience of the road rules as risky 
driving behaviour. The NSTSCE report continues that 
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a reduction in such risky driving should lead to a 
reduction in accidents and related deaths and injuries. 
Hence, making harsh and risky driving better visible 
to drivers and other stakeholders such as traffic 
planners or public authorities is a useful tool to 
develop better strategies for road safety improvement. 
In order to make it visible, vehicle telematics data of 
so-called Quantified Vehicles (Stocker et al, 2017) 
provides the baseline of data needed for the analysis. 
However, in the current age of glass people, the road 
to total monitoring, such as automated penalties, is 
not far away. Hence, privacy and trust are among 
research relevant topics in that field (Kaiser et al., 
2018) and must be achieved to get drivers to join in. 

In the following sections, the paper presents an 
empirical study on vehicle telematics data sharing 
which results into a preliminary model of the 
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willingness to share data and five privacy levels that 
users would like to have to choose from. Although 
there is empirical evidence in the literature on actors 
of a service ecosystem (e.g. Kaiser at al., 2019b) and 
the value-adding steps, descriptions of concrete 
implementations are still missing. Hence, an actual 
implementation of a vehicle telematics service is 
described afterwards, by outlining the required data 
acquisition, the data analytics process from data 
collection, the data computing in the cloud, and data 
use within an information system running on a 
smartphone developed along the steps of the so called 
Vehicle Data Value Chain (Kaiser et al., 2019a). The 
paper concludes with a discussion of the results and 
their benefits to drivers and other stakeholders and a 
brief outlook. 

2 EMPIRICAL STUDY ON 
PRIVACY IN VEHICLE DATA 
SHARING 

For a long time, the industry was told that one would 
have large data treasures lying around if one only had 
to lift them. That this is not the case is shown by many 
practical examples where it is found that large 
amounts of data are available but not the right data to 
derive profitable findings. The situation is similar 
with vehicle telematics data: Exciting applications 
require big amounts of detailed data from a range of 
vehicles and drivers. Unfortunately, after several 
scandals in recent years where data was stolen or 
misused, many users lost their basic trust and are now 
more sensitive about who they give the data to. 

To investigate background in this field, we 
conducted a literature review and came up with the 
search string „Data Sharing“ OR „Data Sharing 
Theories” AND (Automotive OR Automobile OR 
Vehicle OR Car OR “Vehicle Data”), which we 
applied to popular scientific search engines 
(SCOPUS, Google scholar, AISel) to identify 16 
relevant results with data sharing theories. As a 
summary, the majority of the 16 papers focus on 
technologies and application possibilities and give 
just little insights why someone would or would not 
share his driving data.  

In a next step, models and theories widely used for 
technology acceptance were investigated by the 
authors. However, neither the Technology Acceptance 
Model (e.g. TAM3) (Venkatesh and Bala, 2008), nor 
the three theories Unified Theory of Acceptance and 
Use of Technology (e.g. UTAUT2) (Venkatesh et al., 
2012), the Theory of Reasoned Action (TRA) (Fishbein 

and Ajzen, 1975), or the Theory of Planned Behavior 
(TPB) (Ajzen, 1991) seem to fit ideally. In contrast, Ju 
and Mou (2018) show in their research model 
hypotheses that the willingness to disclose personal 
information depends not only on Controls, e.g. age or 
gender, which influence willingness, but also on the 
Costs and Rewards for disclosing privacy, an 
interesting approach.  

Based on the literature analysis, two of the authors 
compared their practical knowledge with the above-
mentioned models and theories, and finally derived 
their own model, which is described in the following.  

2.1 A Data Sharing Willingness Model 

The authors found out, that the willingness to share 
vehicle data depends on the intended usage, which in 
turn depends on a mix of Benefits and Efforts, as 
visualized in Figure 1. Per intended usage, different 
benefits have a positive effect and can range from 
self-awareness, optimization, rewards, image, 
comfort to predictive maintenance and thus tempt a 
potential user to consider sharing vehicle telematics 
data for the intended usage. In contrast, per intended 
usage, different efforts have a negative effect, e.g. 
costs (acquisition), the technical effort for 
installation, ongoing expenses (operation, mobile 
phone costs), irritation through advertising/spam and 
lower privacy speak against a use.  

 

Figure 1: A preliminary model of the willingness to share 
data, e.g. vehicle telematics data. 

On this basis, we conducted an empirical online 
survey, which was distributed to members of the 
Faculty of Computer Science at the University of 
Rostock and to researchers at Virtual Vehicle 
Research GmbH. With the 42 survey participants, we 
tried to find out whether someone would pass on their 
vehicle telematics data, for which application cases 
they would do so, and whether they would change this 
situationally, for example to block data transfer in 
certain periods of time. For the situational adaptation 
of the data transfer, it was particularly interesting for 
us how many levels there should be here. Levels can 
range from, e.g. a binary level system that is either on 
or off, up to a fine-granular system with several levels 
which offer anonymization options and forwarding 
for selected service providers/services only. 

Willingness to
share data
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Figure 2: Empirical result: privacy levels for vehicle data sharing. 

2.2 Empirical Results 

Although the average of the 42 study participants 
proposed to provide four privacy levels (average 3.97, 
standard deviation 1.15) and described them, the two 
researchers who analyzed the results and synthesized 
the individual statements into the model shown in 
Figure 2 detected five privacy levels, as only five 
levels include all viewpoints mentioned, namely 
contractual services vs. open services, anonymized 
data vs. not-anonymized data, private usage vs. public 
usage. However, if it has to be four levels, then the 
privacy levels Private Usage and Anonymized Usage 
can be merged, as this aspect has the lowest priority. 
The individual levels are described in the following. 

Level No Usage does not allow any collection or 
sharing of vehicle telematics data, and thus prevents 
any services. 

Level Private Usage uses collected vehicle 
telematics data locally in the vehicle to create e.g. 
statistics on driving behavior, which only the 
driver/owner can see in order to interpret and 
optimize oneself. However, no data is shared with any 
third parties, thus no services, other than installed 
services in the vehicle, can be used. 

Level Anonymized Usage includes the services 
installed in the vehicle, and additionally sends small 
amounts, e.g. statistics or histograms, of anonymized 
data to chosen third-party services. The driver can not 

be identified, due to anonymization, e.g. location data 
is not shared.  

Level Limited Usage is intended to optimize 
traffic for everybody, thus road specific data like 
traffic jams, potholes, accidents, slipping wheels, etc., 
is shared with other drivers on this road through a 
service. Hence, also a bigger amount of vehicle 
telematics data is shared, but still not all of them. and 
again, anonymized for third-party services. 

Level Public Usage does not restrict data transfer 
– all data will be shared using a proper sampling rate 
per signal (perhaps on demand). Third parties will be 
able to use this data without anonymization, e.g. to 
enable the comparison between friends or services 
which analyze regional differences in driving 
behavior. 

The survey participants also were asked to state, 
how interested they are in sharing their data for a 
particular domain, ranging from 1 (not likely) to 5 
(very likely). In general, the survey participants’ 
willingness to share their vehicle telematics data for 
each domain (c.f. Table 1) were lower than in their 
interest. To summarize, the majority would provide 
data for traffic improvement and emergency services, 
while all the other mentioned domains would have to 
offer an individual added value (benefit) so that users 
give their data for it. 

Vehicle 
Telematics Data

Public Usage
(unrestricted data 

transfer)

Open Individual S. 
(driving style analysis) 
and Public Services
(road statistics)

Limited Usage
(position data included, 

restricted sharing)

Contractual Services 
(driving style tutoring)

Anonymized
Usage

(e.g. no position data)

Statistical Services 
(comparison of braking

/ accelerating
behaviourwith others)

Private Usage
(data not sharedwith
any third parties)

Statistical Services 
(vehicle usage, typical
braking / accelerating

behaviour)

No Usage
(no data sharingat all)

No Services

Data Input Privacy Level Service (example)
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Table 1: How willing are survey participants to share their 
data for a given set of domains. 

Domain 
Average  
(1 to 5) 

Standard 
deviation 

Community games 1.64 1.06 
Automobile club 1.86 1.18 

Pay as you drive insurance 2.02 1.33 
Weather detection 2.98 1.56 

Services for drivers 2.74 1.43 
Vehicle improvement 2.86 1.41 

Public governance 2.86 1.39 
Research (novel services) 3.29 1.49 

Traffic improvement 3.67 1.44 
Emergency services 4.00 1.40 

 
Since different privacy levels lead to an increased 

effort for the service development if one offers a 
reduced solution for the privacy levels Private Usage, 
Anonymized Usage and Limited Usage, 
functionalities for setting privacy levels are difficult 
to find or not implemented at all in reality, although 
the customers would approve of this.  

Hence, in the following sections, we show how 
selected steps of an actual implementation approach 
of a vehicle telematics service for the driver can be 
done, and thereby reflect where and how privacy 
levels have to be taken into account. 

3 VEHICLE TELEMATICS 
SERVICE IMPLEMENTATION 

In order to develop a smartphone application prototype 
which informs the driver about his recent driving style, 
several steps along a vehicle data value chain are 
involved and thus explained in the following 
subsections, to provide an overview of complexity and 
dependencies. According to (Kaiser et al., 2019a), the 
value chain consists of the steps Data Generation, 
Data Acquisition, Data Pre-Processing, Data 
Analysis, Data Storage and Data Usage. 

In the following implementation example, the 
Vehicle Data Logger (Data Acquisition) collects data 
generated by vehicle sensors from the vehicle’s bus 
system via the OBD interface and additional data 
generated from sensors at the logging device (Data 
Generation). A Cloud Platform receives the data and 
acts as temporary raw data storage and platform for 
data pre-processing and analysis (Data Pre-
Processing and Data Analysis), e.g. use of an 
algorithm to detect harsh brake events. The 
processing results are then stored permanently (Data 
Storage) and provided to end users in a proper form 
(Data Usage), e.g. using a smartphone application. 

Privacy should play a role in data acquisition, so 
that only authorized data is collected. Per privacy 
level, different services are made possible with the 
data, meaning that individual data pre-processing and 
data analysis processes are needed per privacy level.  

In our service, the driver wants to learn about his 
driving style, e.g. get a score per trip which indicates 
if it was good (100), bad (0) or somewhere in-
between, and wants to be able to check where events 
like harsh braking or harsh accelerating have been 
detected. While event detection and route recording 
can be done locally in the vehicle with a low privacy 
level, at least privacy level Anonymized Usage is 
needed to calculate the driving score, as in this case 
the amount of events are compared with the data from 
other drivers. 

3.1 Vehicle Data Logger 

The first building block of this service is a data 
acquisition system, called vehicle data logger, which 
acts as gateway device to collect vehicle telematics 
data. Our vehicle data logger is based on a 
BeagleBoard single platine computer featuring an 
additional, sensor “cape” stacked onto it with GPS, 
rotation and acceleration sensors. The time-series data 
captured by the logger is stored on a MariaDB database 
on the logger. As soon as a connection is established 
via the mobile network, the logger can send captured 
data to the cloud platform. A rotary switch on the 
hardware device can be used to set the privacy level. 
To reduce the workload of mobile network connections 
and to increase the throughput, SenML data format is 
used for transmitting the data. SenML is a 
compromised data format especially developed for IoT 
device data. A TPM module is added via another 
stackable “cape” to provide encryption possibilities. A 
configuration file on the SD card can be used to 
configure database name, username, password, which 
sensors are recorded and the online API the data is sent 
to. A more detailed specification of the logger is 
provided in Papatheocharous et al. (2018) or Lechner 
et al. (2019).  

3.2 Cloud Platform 

The data logger described in the previous sub-section 
sends data to a defined channel of a message broker, 
in this case a MQTT (Message Queuing Telemetry 
Transport) Broker. One of the MQTT listeners is 
triggered, parses and formats the data if needed and 
forwards it to a cloud platform hosted by the company 
RISE. The cloud platform aims to support the 
exchange of data between devices and accommodate 
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the deployment of cloud computing services. 
Connection between the cloud platform and devices 
occurs either directly or through a gateway. Any 
authorized smart device with connectivity can go 
through a gateway (a device or software designed for 
the purpose) to exchange data with the cloud 
platform. Devices may also choose to bypass the 
gateway and exchange data with the cloud platform 
directly. The data exchange can be carried out 
through MQTT or HTTP connections. 

The cloud platform offers telemetry ingestion 
(accepts data), stream processing (data flows are 
processed and converted to unified formats), storage 
(data is stored in one or several databases), analytics 
(data is statistically and semantically analyzed to 
extract information), machine learning (data is 
processed with machine learning algorithms to 
extract knowledge and intelligence),  visualization 
(data is depicted in meaningful charts and graphs to 
extract summarized information, generalizations, 
locate anomalies, etc.), lifecycle management 
(consists of supporting functions for the management 
of devices, such as software updates or 
(re)configuration), state (consists of storing the state 
of devices at all given times), and, finally, apps 
(consist of extended applications and services that can 
extend the platform, and offer some additional 
functionality or end-user value). 

3.3 Cloud Computing Services 

Different types of cloud computing services can be 
deployed on the cloud platform. Foremost the 
solution provisions for edge and cloud computing 
services for safe and secure connected mobility 
applications. The services accommodate data 
ingestion, storage, processing and management. 

Data ingestion is made primarily through an 
MQTT broker, formatted as SenML JSON (Jennings 
et al., 2018). Use of the broker and the publish-
subscribe pattern (Birman and Joseph, 1987) makes it 
possible for remote and external trusted partners to 
receive raw data, if necessary. Additionally, to 
increase trust in privacy, users should be able to listen 
to the defined channel (decrypted for them) to be able 
to check which data is sent. 

Data is stored through deployed databases, after 
any required preprocessing is carried out. Timescale 
(a module of PostgreSQL) for time-series data is 
used. Access to the databases is encrypted with 
Transport Layer Security (TLS) and certificates from 
Let's Encrypt. Let's Encrypt (Internet Security 
Research Group (ISRG), 2019) is a certificate 

authority that provides free certificates for TLS 
encryption via an automated process. 

Management is accomplished through the use of 
several Docker (Merkel, 2014) tools, i.e., Engine, 
Compose, Swarm, Machine, and Machinery (Frécon, 
2018). They offer efficient system architecture 
deployments for any type of cloud provider and 
provision for the daily operations of a number of 
containers and solutions necessary for the 
applications, such as data backup, restore and 
application supervision. 

3.4 Processing of Data 

Docker containers were set up in this prototype to 
process the data. Pre-processing and data analysis are 
dependent on the privacy level chosen, as each 
service has specific requirements for sampling rate or 
the need of position data. However, in this case, to 
inform the driver about his recent driving style, the 
two pre-processing steps (i) resampling and (ii) 
coordination system alignment of vehicle and logging 
device start the processing, before algorithms detect 
four event types (harsh brakes, harsh accelerations, 
standstills and potholes) in the data. Later, they are 
used to calculate an indicator how safe a driver’s trip 
was, compared to other trips in the database.  

Hence, the initial phase in the pre-processing of 
data is the resampling of the raw data, namely the 
measurement signals (e.g. acceleration, speed, GPS, 
etc.) which were recorded with individual sample 
rates on the data logging device. In data analytics this 
step is a challenge, as some measurement signals are 
recorded at irregular time intervals. For example, to 
receive data collected from the vehicles OBD 
interface, the Vehicle Data Logger is posting a 
request to the OBD interface. As the OBD device has 
low priority, while all other ECUs in the vehicle have 
a higher priority, it might happen that time intervals 
between two values for one signal type increase up to 
seconds. For each signal the recorded values must be 
interpolated/extrapolated using polynomial functions 
(e.g. natural splines), so there are no discontinuities in 
curves, and they are smooth. Hence, in this case a 
resampling of the signal values at the regular time 
interval of 10 Hz (1/10 sec) provides the data for the 
further analysis. 

The next pre-processing step is to align the 
coordinate system of sensor with coordinate system 
of the vehicle. It is usually unknown, how the Vehicle 
Data Logger was exactly mounted in the vehicle. 
Hence this is an important step to e.g. detect forward 
driving as forward driving if the logging device was 
mounted in the wrong direction, but also a few 
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degrees shift would already make an impact in 
detecting i.e. hard accelerations and hard brakes. For 
solving this data analytics task, the following 
assumptions are adopted: the position of sensor is 
fixed during the trip and on average the vehicle Z-
direction coincides with gravity vector, due to the fact 
that the vehicle drives horizontally. Then the 
following steps can be taken: identify Z-direction of 
the vehicle as direction of gravity, identify periods of 
deceleration and acceleration in the measurement 
using OBD data, identify driving direction as vector 
between the mean values for acceleration and 
deceleration, orthogonalize the driving direction and 
gravity vectors, compute vector in lateral direction as 
cross product of driving direction and gravity, 
compute rotation matrix from the driving direction, 
gravity and lateral direction vectors and finally rotate 
accelerometer and gyroscope measurements. 

From the pre-processed measurement data, four 
different event types are extracted: brake, 
acceleration, standstill and pothole. Categorizing 
brake and accelerate events is based on the vehicle 
speed in combination with acceleration and 
deceleration values. Figure 4 shows a detected harsh 
acceleration event, where the driver accelerated from 
22.28 km/h to 37.28 km/h within five seconds. 
Identifying a pothole event is based on detecting 
acceleration in Z direction and rotation around Y-axis 
(pitch). For example, both signals indicate short peaks 
at the beginning and the end of a pothole. 

The safe driving score is based on statistical 
ranks. For each trip and each event type, event-rate 
per time unit is calculated (e.g. a trip has 0.1 hard 
brakes per hour). The trip-event-score is also 
calculated as the percentage of trips with the lower 
event-rate, for the current event-type. The score for 
one trip, trip-score, is calculated as the mean of all 
trip-event-scores for that trip. Finally, the driver-
score is the latest value of the exponentially smoothed 
time series of trip-scores for that driver. The values 
for driver-score and trip-score are scaled from 0 to 
100. Hence, a safe driving driver-score of 97 would 
mean, that this driver is currently better than 97% of 
all drivers in the database. A low safe driving score 
indicates a risky driver. 

The results of data processing can be obtained on 
trip level (trip meta-data like start time and end time, 
trip specific events with GPS location and meta-data, 
and a safe driving trip-score), or on driver level 
(overall safe driving driver-score, summed up 
statistics like kilometers driven or events for a 
requested time-period like last month). A PostgREST 
API takes data requests of authenticated users, and 

provides the data, e.g. for the smartphone application 
described in the following sub-section. 

3.5 Smartphone Application 

The Android Offline Trip Analyser (OTA) mobile 
application, will present to the users the information 
produced in the trips they conducted. The application 
collects the trip and event information from the 
PostgREST API. The purpose of the application is to 
present the user detailed information per trip with a 
focus on safe driving relevant events. 

Once a user is logged into the application, the user 
can switch between four menu items Home, History, 
Cars and Profile (c.f. Figure 3, on the bottom). 

The Home page, visualized in Figure 3, visualizes 
a general summary and a summary of the events that 
have occurred during a selected time period, 
configurable with the filter on the right top, e.g. last 
day, last week, a specific selected timeframe or always. 

 

Figure 3: Smartphone App for drivers: Home. 

On the History page, users will find the history of 
their trips along with brief details, e.g. starting 
position, ending position, trip-score and privacy level 
per trip, sorted from the most recent to the oldest. 
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Clicking a trip, if applicable, a sub-page on details of 
the individual trip is shown, including graph 
visualizations of the course of vehicle speed, RPM, 
etc., and an event overview of the trip per event type. 
The application user can also switch to a sub-page 
visualizing a map of the individual trip (c.f. Figure 4), 
to see the trip route on a map. Markers represent the 
detected events at the event location and allow 
interactive analysis of the events, as a tooltip pops up 
on click providing detailed information, e.g. duration, 
start- and end-speed of the acceleration event in 
Figure 4. Hence, the user can zoom and navigate 
through the map and click markers. Furthermore, 
below the map, four tables (one per event type:  brake, 
acceleration, standstill, pothole) list all event 
occurrences of the specific event type in this trip, to 
provide another viewpoint on the data. 

The SCOTT OTA aims to make it easier for the 
drivers to keep detailed control of trips, learn from it 
in order to improve their driving behavior. The safe 
driving score per trip gives a quick indicator and an 
objective evaluation of the driving style, while it is 
possible to analyze every event in detail as well if 
needed. 

 

Figure 4: Smartphone App for drivers: Trip Map. 

4 CONCLUSION AND OUTLOOK 

In this paper, we investigate the potentials and issues 
of vehicle telematics data sharing. Hence, we show a 
preliminary model of the willingness to share vehicle 
data, before we conduct an empirical study on the 
topic of privacy. Furthermore, we show how an actual 
implementation of a vehicle telematics service can 
look like, and where privacy has to be taken into 
account. 

The results clearly show the single development 
steps along the vehicle data value chain, namely data 
collection, data computing in the cloud, and data use 
within an information system running on a 
smartphone, to provide a safe and secure connected 
mobility smartphone application for drivers based on 
vehicle data. Furthermore, for every step a privacy-
preserving way of a vehicle telematics service is 
discussed. 

While the potential of data-driven connected 
mobility services as well as the potential of driver 
statistic services is already proven by literature 
(Kaiser et al., 2018) and a bunch of start-ups 
operating in this field (Kaiser et al., 2017), this paper 
misses a structured literature analysis for that topic, 
which is a clear limitation. Furthermore, the presented 
results, the data collection, the computing in the cloud 
and the secure connected mobility smartphone 
application need to be evaluated for scalability, to 
prove if hundreds of users can use it simultaneously.  

As an outlook, the mentioned privacy issues to be 
tackled, which are now discussed in each 
implementation step, will be implemented to evaluate 
this as well. 
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