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Abstract: The trend of an ever-increasing number of geographically distributed sensors producing data for a plethora of
applications, from environmental monitoring to smart cities and autonomous driving, is shifting the computing
paradigm from cloud to fog. The increase in the volume of produced data makes the processing and the
aggregation of information at a single remote data center unfeasible or too expensive, while latency-critical
applications cannot cope with the high network delays of a remote data center. Fog computing is a preferred
solution as latency-sensitive tasks can be moved closer to the sensors. Furthermore, the same fog nodes can
perform data aggregation and filtering to reduce the volume of data that is forwarded to the cloud data centers,
reducing the risk of network overload. In this paper, we focus on the problem of designing a fog infrastructure
considering both the location of how many fog nodes are required, which nodes should be considered (from a
list of potential candidates), and how to allocate data flows from sensors to fog nodes and from there to cloud
data centers. To this aim, we propose and evaluate a formal model based on a multi-objective optimization
problem. We thoroughly test our proposal for a wide range of parameters and exploiting a reference scenario
setup taken from a realistic smart city application. We compare the performance of our proposal with other
approaches to the problem available in literature, taking into account two objective functions. Our experiments
demonstrate that the proposed model is viable for the design of fog infrastructure and can outperform the
alternative models, with results that in several cases are close to an ideal solution.

1 INTRODUCTION

Fog computing is joining the traditional cloud plat-
forms as the enabling technology for a wide range
of applications (OpenFog Consortium Architecture
Working Group, 2017; Yi et al., 2015). Applications
that must cope with a large amount of data produced
by a wide set of distributed sensors are a typical sce-
nario where fog computing is a winning asset. For ex-
ample, Internet of Things frameworks, smart city sup-
port, and environmental monitoring can benefit from
the distributed nature of fog computing. Another class
of applications that can take advantage from the fog
computing paradigm is that of delay-sensitive tasks,
such as the support of autonomous driving.

Figure 1 presents a comparison of fog and cloud
infrastructures. In the cloud case (the left part of the
figure) a set of sensors (at the bottom of the figure)
sends data directly to the cloud data center (at the top
of the figure) for processing. In the fog case (on the
right part of the figure), a layer of fog nodes is placed
close the network edge (and hence to the sensors) to

Figure 1: Cloud and fog infrastructures.

host pre-processing, filtering, and aggregation tasks.

The advantage of fog computing over a tradi-
tional cloud computing approach in these scenarios
is twofold. First, in a cloud scenario the huge data
volume reaching the cloud data center increases the
risk of high network utilization and can determine
poor performance. Even in the case where the high
network load does not result in a performance degra-
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dation, high network utilization is still undesirable
due to the non-negligible economic cost related to the
cloud pricing model. The distributed nature of fog
computing and the ability of fog nodes to reduce the
data volume through pre-processing are key features
to address this issue. Second, latency-sensitive ap-
plications cannot accept a delay that may be in the or-
der of hundreds of milliseconds, due to the potentially
high round-trip-time latency with the cloud data cen-
ter. The fog layer located close to the network edge
can guarantee low latency and fast response even for
this class of applications.

The additional degree of freedom provided by
the introduction of fog nodes opens also new prob-
lems for the infrastructure design. In particular, some
studies consider a naive approach in the allocation
(i.e., mapping) of data flows to fog nodes, assum-
ing that every sensor can reach only the nearest fog
node (Deng et al., 2016; Yousefpour et al., 2017). Re-
cent studies demonstrated that an optimized assign-
ment of sensors to fog nodes can provide a major ad-
vantage in solving this problem (Canali and Lancel-
lotti, 2019a; Canali and Lancellotti, 2019b). How-
ever, even when some optimization is performed in
the sensor-to-fog mapping, no effort is devoted in un-
derstanding whether the whole fog infrastructure is
required or some fog node can be switched off to
reduce energy consumption. This problem has been
widely explored at the level of managing resources in
a cloud data center (Ardagna et al., 2018; Marotta and
Avallone, 2015), but it has been neglected in the fog
computing area.

In this paper, we explicitly address these issues
in the area of fog computing (unlike studies such
as (Cardellini et al., 2017) that focuses on generic
distributed stream processing systems). We intro-
duce a performance model for fog computing that
considers both network delays and processing time
at the level of fog nodes. Furthermore, we propose
an optimization model, based on a facility location-
allocation problem, aiming to locate fog nodes and
allocate sensors to fog nodes. This class of prob-
lems have been studied in the area of operational
research (Celik Turkoglu and Erol Genevois, 2019;
Cooper, 1963; Eiselt and Laporte, 1995). In particu-
lar, studies concerning the application of such mod-
els in urban scenarios (Farahani et al., 2019; Silva
and Fonseca, 2019) and with variable number of
nodes (Kramer et al., 2019) have been proposed re-
cently. However, our proposal is characterized by the
presence of two objective: minimize the number of
used fog nodes while guaranteeing the respect of a
service level agreement on response time; and min-
imize the response time for the given number of se-

lected fog nodes. Furthermore, our model capture the
nature of the underlying problem, that is character-
ized by non-linear functions in the description of the
response time. to the best of our knowledge the pro-
posal in this paper is the first attempt to model this
dual-objective problem in the area of fog computing.

The experiments are based on a real, geo-
referenced scenario. We consider the design of a
smart-city infrastructure in Modena, Italy, and com-
pare the proposed model with a simplified model pro-
posed in (Canali and Lancellotti, 2019a; Canali and
Lancellotti, 2019b). All these comparisons use a lin-
ear ideal model as a lower bound for the performance.
The results demonstrate that the proposed model is
a viable alternative for the design of fog infrastruc-
ture and it can outperform the alternative in terms of
ensuring adequate performance while minimizing the
infrastructure cost. Furthermore, in most cases, the
performance of our solution are close to the ideal so-
lution, especially in the most critical cases when the
system load is high.

The remainder of the paper is organized as fol-
lows. Section 2 presents the theoretical modeling for
the considered problem. Section 3 presents the exper-
imental setup and the considered scenarios, and pro-
vides a thorough evaluation of the proposed model
against the alternatives. Finally, Section 4 presents
some concluding remarks and outlines some future
work direction.

2 PROBLEM DEFINITION

In the proposed model, we assume a stationary sce-
nario where a set S of similar sensors are distributed
over an area. Sensors produce data at a steady rate,
with a frequency that we denote as λi for the generic
sensor i. The fog layer is composed by a set F of
nodes that receive data from the sensors and perform
operations on such data. Examples of these oper-
ations include filtering and/or aggregation, or some
form of analysis to identify anomalies or problems as
fast as possible. The rate at which the fog node j pro-
cesses data is µ j (hence 1/µ j is the average process-
ing time for a data unit). We also consider that each
fog node j is characterized by a fixed cost c j if the
node is turned on (i.e., a fog is located at position j).
We consider a set of cloud data centers C that collect
data from the fog nodes. The model considers also
the presence of network delays from sensors to fog
nodes and from fog nodes to cloud data centers. In
particular, we define as δi j the delay from sensor i to
fog node j, while δ jk is the delay from fog node j to
cloud data center k.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

254



Table 1: Notation and parameters for the proposed model.

Model parameters

S Set of sensors
F Set of fog nodes
C Set of cloud data centers
λi Outgoing data rate from sensor i
λ j Incoming data rate at fog node j
1/µ j Processing time at fog node j
δi j Communication latency between sensor i and fog j
δ jk Communication latency between fog j and cloud k
c j Cost for locating a fog node at position j (or for keeping the fog node turned on)

Model indices

i Index for a sensor
j Index for a fog node
k Index for a cloud data center

Decision variables

E j Location of fog node j
xi j Allocation of sensor i to fog j
y jk Allocation of fog node j to cloud k

For the model, we use three families of binary de-
cision variables. Two families are used to allocate
sensors to fog nodes and fog nodes to cloud data cen-
ter, that is, xi j and y jk model if sensor i sends data to
fog node j and if fog node j sends data to cloud data
center k, respectively. The last family is E j and it de-
fines if a fog node is located at position j, that is, if
such fog node is turned on and can be used to process
data from sensors.

We summarize the main symbols used throughout
the model in Table 1.

2.1 Sensor Allocation Problem

The problem of sensor mapping (i.e., allocation) re-
lies on the definition of the performance metrics that
are considered in the optimization problem. The sen-
sor mapping problem was introduced in (Canali and
Lancellotti, 2019a; Canali and Lancellotti, 2019b). In
this subsection, we present a revised version of the
model. As a minimal metric for the model we focus
on the average response time, defined in Eq. (1), that
is composed of three components: the network delay
due to the sensor to fog latency in Eq. (2), the network
delay due to the fog to cloud latency in Eq. (3), and
the processing time on the fog nodes in Eq. (4).

TR = TnetSF +TnetFC +Tproc (1)

TnetSF =
1

∑i∈S λi
∑
i∈S

∑
j∈F

λixi jδi j (2)

TnetFC =
1

∑ j∈F λ j
∑
j∈F

∑
k∈C

λ jy jkδ jk (3)

Tproc =
1

∑ j∈F λ j
∑
j∈F

λ j
1

µ j−λ j
(4)

It is worth mentioning that in two delay compo-
nents, TnetSF in (2) and TnetSF in (3), the average de-
lay of each sensor and fog node is weighted by the
amount of traffic experiencing that delay, which is λi
for TnetSF and λ j in TnetFC. The incoming data rate on
each fog node λ j can be defined as the sum of the data
rates of the sensors allocated to that node:

λ j = ∑
i∈S

xi jλi, ∀ j ∈ F (5)

The processing time Tproc can be modeled using
the queuing theory. An estimation of this component
of the response time, consistent with other results in
literature (Ardagna et al., 2018; Canali and Lancel-
lotti, 2019a; Canali and Lancellotti, 2019b) is used in
Eq. (4).

The mathematical model for the sensor allocation
problem uses the definition of TR in (1) as the objec-
tive function. As we are not taking into account the
problem of locating fog nodes, in this part of the prob-
lem definition, we do not consider the decision vari-
able E j, so we use just xi, j and y j,k. Then, we consider
a set of constraints defined as follows:
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λ j < µ j, ∀ j ∈ F (6)

∑
j∈F

xi j = 1, ∀i ∈ S (7)

∑
k∈C

y jk = 1, ∀ j ∈ F (8)

In particular, constraints (6) ensure that no over-
load occurs on each fog node, that is the incoming
data flow must not exceed the processing rate. Con-
straints (7) guarantee for each sensor that exactly one
fog node processes its data, while constraints (8) en-
sure for each fog node that exactly one cloud data cen-
ter receives its processed data.

2.2 Fog Nodes Location Problem

We introduce an additional problem to the sensor al-
location problem, which is the location of a subset of
fog nodes. For that, we add an additional variable
E j for each location j where a fog node is powered
on. For a node that is powered down, no process-
ing must occur. This means that constraints (6) must
be re-defined with an additional constraint, such that
when E j is equal to zero, we have λ j also equal to
zero, resulting in the new constrains:

λ j < E jµ j ∀ j ∈ F (9)

The optimization problem considers two criteria:

• Minimize the cost associated with the number of
fog nodes turned on. Recalling the cost c j associ-
ated to using a fog node in location j, this objec-
tive is:

C = ∑
j∈F

c jE j (10)

• Minimize the delay in sensor to fog to cloud tran-
sit of data. To this aim we can use the cost func-
tion introduced as TR in (1).

It follows that the overall model for the fog node
location-allocation problem is defined as:

Minimize:

C = ∑
j∈F

c jE j (11)

TR = TnetSF +TnetFC +Tproc (12)
Subject to:

TR ≤ TSLA (13)
λ j < E jµ j, ∀ j ∈ F (14)

∑
j∈F

xi j = 1, ∀i ∈ S , (15)

∑
k∈C

y jk = E j, ∀ j ∈ F (16)

E j ∈ {0,1}, ∀ j ∈ F (17)
xi j ∈ {0,1}, ∀i ∈ S , j ∈ F (18)
y jk ∈ {0,1}, ∀ j ∈ F ,k ∈ C (19)

The two objective functions (11) and (12) are re-
lated to the minimization of costs and latency in the
network. Constraints (14) represent the no-overload
condition. Constraints (15) and (16) are the revised
version of the constraints (7) and (8) introduced in
Section 2.1 where we now consider the variable E j.
Constraints (17), (18) and (19) describe the domain
of the decision variables.

One important set of constraints to discuss in this
formulation is (13), which introduce a limit such that
the average response time does not exceed a Service
Level Agreement (SLA). The maximum response time
is typically defined as a multiple of the average re-
sponse time 1/µ (Ardagna et al., 2018). Besides that,
we introduce an additional term due to the network
delays in a distributed architecture (that we consider
non-negligible) related to the sensor to fog and fog to
cloud network delays. In particular, to this aim we
consider this network delay contribution depending
on the average network delays that we define as δ. We
formalize the value of the SLA limit in (20), where K
is a constant defined in accordance with the network
requirements.

TSLA =
K
µ
+2δ (20)

3 EXPERIMENTAL RESULTS

The performance of the proposed model is assessed
through a realistic fog computing scenario, where
geographically distributed sensors send data to fog
nodes. Throughout this section, we start by describ-
ing the experimental setup used in the performance
evaluation and then we compare the performance of
the considered alternatives.

3.1 Experimental Setup

The scenario is based on a smart city project for the
city of Modena in Italy, which has a population of
around 180.000 inhabitants aiming to correlate air
quality and car traffic as in (Po et al., 2019). The
application considers a set of 89 sensors located in
the main streets of the city. These sensors are wire-
less devices that collect information related to car and
pedestrian traffic (that comprise reading from prox-
imity sensors and, possibly, low-resolution images)
and send these data to fog nodes. For the sake of the
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model, the location of the sensors is obtained by geo-
referencing the selected streets. The fog nodes pre-
process the received data by filtering the proximity
sensor readings and, if available, analyze images from
the camera to detect cars and pedestrians. The pre-
processed data are then sent to a cloud data center lo-
cated on the municipality premises. For the fog nodes
locations, we select a set of six government buildings,
while the location of the municipality cloud data cen-
ter is known. To summarize, the scenario is composed
of 89 sensors, 6 fog nodes and 1 data center.

We assume to have sensors with long-range wire-
less connectivity, such as LoRA WAN1 or IEEE
802.11ah/802.11af (Khorov et al., 2015). Hence, ev-
ery sensor can connect with every fog node. Due
to the growing delay and decreasing bandwidth lim-
itations as the distance from a sensor to the fog
node increases, we assume that the network delay de-
pends on the physical distance between two nodes as
in (Canali and Lancellotti, 2019a; Canali and Lancel-
lotti, 2019b).

Regarding the parameters for the models, even if
the model itself support the description of a highly
heterogeneous architecture, we focus on an homoge-
neous scenario. Hence, the cost c j of locating a fog
node at position j is equal to 1, for all j ∈ F . This
means that, from an operating cost point of view, the
fog nodes are similar and the objective function will
strive to reduce the overall number of nodes used.
In the performance evaluation, we describe each sce-
nario using the following main parameters:

• λ is the data rate of each sensor;

• ρ is the average utilization of the system, defined
as ∑i∈S λi

∑ j∈F µ j
;

• δµ is the ratio between the average network de-
lay δ and the average service time of a request
that we denote as 1/µ. This parameter determine
the CPU-bound or network-bound nature of a sce-
nario.

Based on preliminary evaluation of the smart city
sensing application for traffic monitoring used in the
experiments, we consider that each sensor can provide
a reading every 10 seconds. Hence the data rate λi =
0.1, ∀i ∈ S . For the parameter ρ, we consider a wide
range of values, namely ρ ∈ {0.1,0.2,0.5,0.8,0.9}.
For each value of ρ, considering sensors and fog
nodes homogeneous and knowing the value of λi, we
derive the value of µ j = µ, which is assumed the same
for each j ∈ F .

We consider values for the parameter δµ rang-
ing multiple orders of magnitude, that is δµ ∈

1https://lora-alliance.org/

{0.01,0.1,1,10}. This parameter allows us to ex-
plore scenarios that can be CPU-bound (e.g., when
δµ = 0.01) where computing time is much higher
than transmission time up to cases that are network-
bound (e.g., when δµ = 10). We derive the average
network delay from the δµ parameter and the previ-
ously computed parameter µ j. It is worth mention-
ing that, even if in our analysis we may end up with
very high network delays, these scenarios can be still
considered realistic if we consider that the network
contribution may involve the transfer of images over
low-bandwidth links. In the definition of the SLA in
Eq. (20), the constant K is set to 10, which is a com-
mon value in the literature (Ardagna et al., 2018).

The evaluation of the proposed model considers a
wide range of different scenarios related to the previ-
ously introduced parameters. Each scenario is named
according to a format ins-ρ-δµ (e.g., the instance ins-
0.1-0.01 indicates that the scenario has ρ = 0.1 and
δµ = 0.01). In the experiments, we compare the fol-
lowing models:

• Simplified model (SM): is the simplified version
of the problem described in Section 2.1 and pre-
sented for the first time in (Canali and Lancellotti,
2019a) in which all fog nodes are assumed on, that
is E j = 1,∀ j ∈ F . Although this could represent
a situation where the energy consumption may
be high, the infrastructure provides better perfor-
mance from a response time point of view (for the
objective function (12));

• Proposed model (PR): is the model introduced in
this study and described in Section 2.2;

• Continuous model (CN): consists of the proposed
model in which all variables (i.e., E j, xi j, and y jk)
are assumed continuous, ranging in the interval
[0,1]. The result of this model is clearly an infea-
sible solution, but can be used as a lower bound
for all the other models.

The main metric used in the comparison is the cost
related to the number of fog nodes located (i.e., turned
on in the network), which corresponds to (11). The
second metric is related to the actual average response
time and corresponds to (12). As a baseline for the
performance evaluation, we compare each alternative
model with the continuous model. Throughout the
performance analysis, we evaluate the performance
with respect to the continuous model using a devia-
tion measure for each objective function Ob j1 in (11)
and Ob j2 in (12). The deviation function is defined
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Table 2: Results of the model and alternatives.

Continuous Simplified Proposed

Instance Obj-1 Obj-2 Iter. Obj-1 Obj-2 Iter. Obj-1 Obj-2

ins-0.1-0.01 0.6 0.08 65083 6 0.08 702 1 0.24
ins-0.1-0.1 0.6 0.13 75637 6 0.12 742 1 0.85
ins-0.1-1 0.6 0.80 93112 6 0.49 721 1 6.97
ins-0.1-10 0.6 5.23 99601 6 4.25 46757 6 4.25

ins-0.2-0.01 1.2 0.18 71518 6 0.18 80532 2 0.38
ins-0.2-0.1 1.2 0.32 60473 6 0.27 73102 2 0.74
ins-0.2-1 1.2 1.34 69463 6 1.02 72194 2 4.15
ins-0.2-10 1.2 9.69 96283 6 8.54 37529 6 8.54

ins-0.5-0.01 3.0 0.75 110875 6 0.71 32670 4 1.40
ins-0.5-0.1 3.0 1.09 70181 6 1.00 25875 4 1.86
ins-0.5-1 3.0 4.60 41097 6 3.16 17130 4 4.42
ins-0.5-10 3.0 36.43 58968 6 22.24 21714 6 22.24

ins-0.8-0.01 4.8 3.29 108225 6 2.78 40842 5 16.23
ins-0.8-0.1 4.8 33.39 112087 6 3.30 30397 5 16.74
ins-0.8-1 4.8 14.40 90756 6 8.31 32277 5 21.80
ins-0.8-10 4.8 56.62 95538 6 51.13 26977 6 51.13

ins-0.9-0.01 5.4 19.79 97888 6 6.39 22285 6 6.39
ins-0.9-0.1 5.4 15.68 123337 6 6.97 26125 6 6.97
ins-0.9-1 5.4 37.00 121558 6 12.82 25999 6 12.82
ins-0.9-10 5.4 69.00 45547 6 71.05 37716 6 71.05

as:

ε(Ob jM
1 ) =

Ob jM
1 −Ob jCN

1

Ob jCN
1

(21)

ε(Ob jM
2 ) =

Ob jM
2 −Ob jCN

2

Ob jCN
2

(22)

where Ob jM
1 and Ob jM

2 are the values of the objective
functions for the model M ∈ {SM,PR}, and Ob jCN

1
and Ob jCN

2 are the values of the objective functions
for the continuous model (CN). For the numeric re-
sults of the models we rely on LocalSolver2 version
9.0, with a time limit of 300 seconds (5 minutes) as
stopping criterion. LocalSolver is a general mathe-
matical programming solver that hybridizes local and
direct search, constraint propagation and inference,
linear and mixed-integer programming, and nonlinear
programming methods. It can handle multi-objective
problems, where the objectives are optimized in the
order of their declaration in the model.

3.2 Performance Evaluation

To provide a complete evaluation of the models, we
present the numerical values of the solutions (together
with the number of iterations required by LocalSolver
to reach the value) in Table 2. Moreover, we focus

2http://www.localsolver.com

the analysis on the deviation metric previously intro-
duced to compare the pros and cons of each consid-
ered model.

Figure 2 shows the deviation as heat maps for the
two objective functions of the simplified model. We
observe for this model that all scenarios have a feasi-
ble solution, confirming the benefit from introducing
a mathematical model in the data flow mapping (pre-
liminary experiments carried out with the model used
in (Deng et al., 2016) where the sensors-to-fog map-
ping is based only on the geographic distance were
unable to guarantee feasible solution for high values
of ρ). We observe that, for the first objective function,
the deviation is driven just by parameter ρ, which de-
termines the number of fog nodes used by the con-
tinuous model. Indeed, the simplified model uses all
the available fog nodes, while, especially when ρ is
low, the processing of sensors data may require just
a fraction of the infrastructure computational power,
thus motivating the high value of the deviation.

Focusing, instead, on the second objective func-
tion in Figure 2b, we observe that a higher number
of fog nodes can provide a major reduction in the
response time, as testified by the large presence of
blue hues in the figure. A deviation close to -100%
means that the simplified model halves the average
response time. Indeed, in this case we have an abun-
dance of computational power due to the use of all
the fog nodes, while the continuous model uses just
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Figure 2: Performance of the Simplified model.

the minimum amount of resources to satisfy the SLA
constraint.

The performance of the proposed model are
shown in Figure 3. Unlike the previously consid-
ered model, this approach explicitly aims to reduce
the number of fog nodes used. The impact of this
choice is evident in Figure 3a, where we observe a
non-purely vertical pattern in the deviation. Further-
more, we observe that the deviation is, in most of the
cases, much lower compared to the other model – in-
deed the number of fog nodes is is the ceiling value
compared to the value of the CN model. There are a
few noteworthy exceptions, mainly in the case where
the parameter δµ is high. Under these circumstances,
the SLA constraint (13) requires more fog nodes be-
cause using a network link with above than average
delay is likely to result in a SLA violation. Due to the
Boolean nature of the variable E j, a fog node is either
used or not, so the objective function Ob jPR

1 reaches
a high value even when ρ is low. The CN model in-
stead allows the use of just a small fraction of every
fog node. This means that the model can use all the
available fog nodes turning them on just for the frac-
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Figure 3: Performance of the proposed model.

tion of their capacity required to satisfy the incoming
load.

Considering the impact of the second objective
function in Figure 3b, we observe that the proposed
model is typically able to achieve performance com-
parable with the continuous model. In some cases
the proposed model outperforms even the continuous
model. To better understand the reasons for this vari-
able performance, we focus on two extreme cases.
For ρ = 0.1 and δµ = 1, the proposed model provides
very poor performance compared to the continuous
alternative. To understand this high response time we
must consider that both the proposed and the contin-
uous models use the same number of fog nodes (just
one). Furthermore, we must factor in the significant
impact of network delays (that are not negligible com-
pared to the service time). In this scenario, not being
able to use a fraction of the computational power of
every fog node results in a high impact of the network
delays because we need to make every communica-
tion converge on just one fog node. An opposite case
is when we have a high load and low contribution of
network delays (e.g., ρ = 0.9 and δµ = 0.01). In this
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case, having more fog nodes powered on than what is
strictly necessary (because E j = 1 for all fog nodes)
results in a lower processing time. At the same time,
the low impact of network delays makes the problem
of achieving a good load balancing quite straightfor-
ward because the penalty for reaching a fog node far
away is almost negligible.

4 CONCLUSIONS

In this paper, we focused on a facility location-
allocation problem related to the management of a fog
infrastructure, with special attention to the mapping
of data flows from the sensors to the fog nodes and
from the fog nodes to the cloud data centers. Then,
we propose a mathematical model that starts with a
list of potential fog nodes and selects a minimal sub-
set of them to guarantee the satisfaction of a Service
Level Agreement.

We test the proposed model against alternative
models from the scientific literature. The experiments
are based on a realistic situation from a project for a
smart city application. We consider a wide range of
scenarios characterized by different load levels and by
different ratios between the service time (that is the
processing time for a set of data from a sensor) and
network delay. The results demonstrate that the pro-
posed model can outperform existing alternatives in
the literature. We also consider an ideal but unreal-
istic model and demonstrate that the proposed model
can, in several cases, achieve a result that is compara-
ble with this ideal solution.

This paper is a step in a wider research line on fog
infrastructure design. We plan to extend our proposal
including quickly and effectively heuristic algorithms
that can be used to solve our problem, and to intro-
duce dynamic scenarios where the load can change
through time.
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