
JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks

N. Benjamin Erichson1, Zhewei Yao2 and Michael W. Mahoney1

1ICSI and Department of Statistics, University of California at Berkeley, U.S.A.
2Department of Mathematics, University of California at Berkeley, U.S.A.

Keywords: Adversarial Learning, Robust Learning, Deep Neural Networks.

Abstract: It has been demonstrated that very simple attacks can fool highly-sophisticated neural network architectures.
In particular, so-called adversarial examples, constructed from perturbations of input data that are small or
imperceptible to humans but lead to different predictions, may lead to an enormous risk in certain critical
applications. In light of this, there has been a great deal of work on developing adversarial training strategies
to improve model robustness. These training strategies are very expensive, in both human and computational
time. To complement these approaches, we propose a very simple and inexpensive strategy which can be used
to “retrofit” a previously-trained network to improve its resilience to adversarial attacks. More concretely, we
propose a new activation function—the JumpReLU—which, when used in place of a ReLU in an already-
trained model, leads to a trade-off between predictive accuracy and robustness. This trade-off is controlled by
the jump size, a hyper-parameter which can be tuned during the validation stage. Our empirical results demon-
strate that this increases model robustness, protecting against adversarial attacks with substantially increased
levels of perturbations. This is accomplished simply by retrofitting existing networks with our JumpReLU
activation function, without the need for retraining the model. Additionally, we demonstrate that adversarially
trained (robust) models can greatly benefit from retrofitting.

1 INTRODUCTION

As machine learning methods become more inte-
grated into a wide range of technologies, there is a
greater demand for robustness, in addition to the usual
efficiency and high-quality prediction, in machine
learning algorithms. Deep neural networks (DNNs),
in particular, are ubiquitous in many technologies that
shape the modern world (LeCun et al., 2015; Good-
fellow et al., 2016), but it has been shown that even
the most sophisticated network architectures can eas-
ily be perturbed and fooled by simple and impercepti-
ble attacks. For instance, single pixel changes which
are undetectable to the human eye can fool DNNs
into making erroneous predictions. These adversar-
ial attacks can reveal important fragilities of modern
neural networks (Szegedy et al., 2013; Goodfellow
et al., 2014; Liu et al., 2016), and they can reveal
flaws in network training and design which pose se-
curity risks (Kurakin et al., 2016). Partly due to this,
evaluating and improving the robustness of DNNs is
an active area of research. Due to the unpredictable
and sometimes imperceptible nature of adversarial at-
tacks, however, it can be difficult to test and evaluate
network robustness comprehensively. See, e.g., Fig-
ure 1, which provides an illustration of how a rela-

tively small adversarial perturbation can lead to in-
correct classification.

Most work in this area focuses on training, e.g.,
developing adversarial training strategies to improve
model robustness. These training strategies are ex-
pensive, in both human and computational time. For
example, a single training run can be expensive, and
typically many runs are needed, as the analyst “fiddles
with” parameters and hyper-parameters.

Motivated by this observation, we propose a com-
plementary approach to improve the robustness of the
model to the risk of adversarial attacks. The rectified
linear unit (ReLU) will be our focus here since it is the

clean example adversarial perturbation adversarial example

Figure 1: Adversarial examples are constructed by perturb-
ing a clean example with a small amount of non-random
noise in order to fool a classifier. Often, an imperceptible
amount of noise is sufficient to fool a model (top row). The
JumpReLU improves the robustness, i.e., a higher level of
noise is required to fool the retrofitted model (bottom row).

Erichson, N., Yao, Z. and Mahoney, M.
JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks.
DOI: 10.5220/0009316401030114
In Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020), pages 103-114
ISBN: 978-989-758-397-1; ISSN: 2184-4313
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

103



Input Output

C
on

v. 
la

ye
r

C
on

v. 
la

ye
r

D
ro

po
ut

M
ax

 P
oo

l

ReLU ReLU

Input Output

C
on

v. 
la

ye
r

C
on

v. 
la

ye
r

D
ro

po
ut

M
ax

 P
oo

lJump 
ReLU

Jump 
ReLU

4

9

ⲕ ⲕAdversarial
example

Tuning parameter Prediction 

ⲕⲕ

Figure 2: Simplified illustration of a neural network architecture using ReLU activation functions. JumpReLU can be activated
by setting the jump size (threshold value) κ larger than zero to increase the resilience to adversarial attacks. (One could use
different values of κ for different layers, but we did not observe that to help.)

most widely-used and studied activation function in
the context of adversarial attacks (but we expect that
the same idea can be applied more generally). For net-
works trained with ReLUs, our method will replace
the ReLU with what we call a JumpReLU function, a
variant of the standard ReLU that has a jump discon-
tinuity. See Figure 2 for an illustration of the basic
method. The jump discontinuity in the JumpReLU
function has the potential to dampen the effect of ad-
versarial perturbations, and we will “retrofit” existing
ReLU-based networks by replacing the ReLU with
the JumpReLU, as a defense strategy, to reduce the
risk of adversarial attacks. The magnitude of the jump
is a parameter which controls the trade-off between
predictive accuracy and robustness, and it can be cho-
sen in the validation stage, i.e., without the need to
retrain the network. In more detail, our contributions
are the following:

• We introduce and propose the JumpReLU activa-
tion function, a novel rectified linear unit with a
small jump discontinuity, in order to improve the
robustness of trained neural networks.

• We show that the JumpReLU activation function
can be used to “retrofit” already deployed, i.e.,
pre-trained, neural networks—without the need to
perform an expensive retraining of the original
network. Our empirical results show that using the
JumpReLU in this way leads to networks that are
resilient to substantially increased levels of per-
turbations, when defending classic convolutional
networks and modern residual networks. We also
show that JumpReLU can be used to enhance ad-
versarially trained (robust) models.

• We show that the popular Deep Fool method re-
quires increased noise levels by a factor of about
3–7 to achieve nearly 100 percent fooling rates
for the retrofitted model on CIFAR10. We show

that these increased noise levels are indeed crit-
ical, i.e., the detection rate of adversarial exam-
ples is substantially increased when using an ad-
ditional add-on detector.

• The magnitude of the jump is an additional hyper-
parameter in the JumpReLU activation function
that provides a trade-off between predictive accu-
racy and robustness. This single parameter can be
efficiently tuned during the validation stage, i.e.,
without the need for network retraining.
In summary, the JumpReLU activation function

improves the model robustness to adversarial pertur-
bations, while attaining a “good” accuracy for clean
examples. Further, the impact on the architecture is
minimal and does not effect the inference time.

2 RELATED WORK

Adversarial examples are an emerging threat for many
machine learning tasks. Szegedy et al. (Szegedy et al.,
2013) discovered that neural networks are particularly
susceptible to such adversarial examples. This can
lead to problems in safety- and security-critical ap-
plications such as medical imaging, surveillance, au-
tonomous driving, and voice command recognition.
Due to its importance, adversarial learning has be-
come an intense area of research, posing a cat-and-
mouse game between attackers and defenders.

Indeed, there is currently a lack of theory to ex-
plain why deep learning is so sensitive to this form of
attack. Early work hypothesized that the highly non-
linear characteristics of neural networks and the ten-
dency toward almost perfect interpolation of the train-
ing data are the reasons for this phenomena. Tanay
and Griffin (Tanay and Griffin, 2016) argued that the
adversarial strength is related to the level of regular-
ization and that the effect of adversarial examples can

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

104



be mitigated by using a proper level of regulariza-
tion. In contrast, Goodfellow et al. (Goodfellow et al.,
2014) impressively demonstrated that the linear struc-
ture in deep networks with respect to their inputs is
sufficient to craft adversarial examples.

Let x be an input such as an image. The problem
of crafting an adversarial example x̃

x̃ = x + ∆x (1)

requires finding an additive perturbation ∆x so that x̃
fools a specific model F under attack. The minimal
perturbation with respect to a p-norm ‖·‖p can be ob-
tained by using an optimization based strategy which
aims to minimize

∆x := argmin
∆x̂
‖∆x̂‖p s.t. F(x+∆x̂) 6= F(x), (2)

so that the example x is misclassified.
Note, the perturbation used to construct adversar-

ial examples needs to be small enough to be unnotice-
able for humans, or add-on detection algorithms. In-
tuitively, the average minimum perturbation which is
required to fool a given model yields a plausible met-
ric to characterize the robustness of a model (Papernot
et al., 2016). Hence, we can quantify the robustness
for a trained model F as

ρF := E(X ,Y )∼D

[
‖∆X‖p

‖X‖p

]
, (3)

where the input-target-pairs (X ,Y ) are drawn from
distribution D , and ∆X is the minimal perturbation
that is needed to fool the model F .

2.1 Attack Strategies

There are broadly two types of attacks: targeted and
non-targeted attacks. Targeted attacks aim to craft
adversarial examples which fool a model to predict
a specific class label. Non-targeted attacks have a
weaker objective, i.e., simply to classify an adversar-
ial example incorrectly.

Independent of the type, attack strategies can be
categorized broadly into two families of threat mod-
els. Black-box attacks aim to craft adversarial ex-
amples without any prior knowledge about the tar-
get model (Su et al., 2017; Sarkar et al., 2017; Cisse
et al., 2017; Dong et al., 2017). White-box attacks,
in contrast, require comprehensive prior knowledge
about the target model. There are several popu-
lar white-box attacks for computer vision applica-
tions (Szegedy et al., 2013; Goodfellow et al., 2014;
Liu et al., 2016; Moosavi-Dezfooli et al., 2016; Ku-
rakin et al., 2016; Poursaeed et al., 2017). Gray-box
attacks are a slightly weaker threat model in which the

adversary has only partial knowledge about the target
model.

The following (non-targeted) attack methods are
particularly relevant for our results.

• First, the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014), which
crafts adversarial perturbations ∆x by using the
sign of the gradient of the loss function L with
respect to the clean input image x. Let’s assume
that the true label of x is y. Then, the adversarial
example x̃ is constructed as

x̃ = x+ ε · sign(∇xL(F(x),y)), (4)

where ε controls the magnitude of the perturba-
tion. Here, the operator sign is an element-wise
function, extracting the sign of a real number.
Relatedly, the iterative variant IFGSM (Kurakin
et al., 2016) constructs adversarial examples using
1, ...,k steps

x̃k = clipx [x̃k−1 + ε · sign(∇L(F(x̃k−1),y))] , (5)

where clipx is an element-wise clipping function.
This approach is essentially a projected gradient
descent (PGD) method (Madry et al., 2017).

• Second, the Deep Fool (DF) method, which is
also an iterative method. (Moosavi-Dezfooli et al.,
2016). The DF method first approximates the
model under consideration as a linear decision
boundary, and then seeks the smallest perturbation
needed to push an input image over that boundary.
DF can minimize the loss function using either the
L∞ or L2 norm.

• Third, the recently introduced trust region (TR)
based attack method (Yao et al., 2018). The
TR method performs similarly to the Carlini and
Wagner (CW) (Carlini and Wagner, 2017) attack
method, but is more efficient in terms of the com-
putational resources required to construct the ad-
versarial examples.

2.2 Defense Strategies

Small perturbations are often imperceptible for both
humans and the predictive models, making the design
of counterattacks a non-trivial task. Commonly used
techniques for preventing overfitting (e.g., including
weight decay and dropout layers and then retraining)
do not robustify the model against adversarial exam-
ples. Akhtar and Mian (Akhtar and Mian, 2018) seg-
ment defense strategies into three categories.

The first category includes strategies which rely
on specialized add-on (external) models which are
used to defend the actual network (Akhtar et al.,

JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks

105



2017; Lee et al., 2017; Shen et al., 2017; Xu et al.,
2017). The second category includes defense strate-
gies which modify the network architecture in order to
increase the robustness (Gu and Rigazio, 2014; Ross
and Doshi-Velez, 2017; Papernot et al., 2016; Nayebi
and Ganguli, 2017; Guo et al., 2017). Closely related
to our work, Zantedeschi et al. (Zantedeschi et al.,
2017) recently proposed a bounded ReLU activation
function as an efficient defense against adversarial at-
tacks. Their motivation is to dampen large signals to
prevent accumulation of the adversarial perturbation
over layers as a signal propagates forward, using the
function. The third category aims to modify the in-
put data for the training and validation stage in order
to improve the robustness of the model (Miyato et al.,
2016; Guo et al., 2017; Bhagoji et al., 2018; Luo et al.,
2015; Liao et al., 2017).

A drawback of most state-of-the-art defense
strategies is that they involve modifying the network
architecture. Such strategies require that the new net-
work is re-trained or that new specialized models are
trained from scratch. This retraining is expensive in
both human and computation time. Further, special-
ized external models can require considerable effort
to be deployed and often increase the need of compu-
tational resources and inference time.

3 JumpReLU

The rectified linear unit (ReLU) and its variants have
arguably emerged as the most popular activation func-
tions for applications in the realm of computer vi-
sion. The ReLU activation function has beneficial
numerical properties, and also has sparsity promot-
ing properties (Glorot et al., 2011). Indeed, sparsity
is a widely used concept in statistics and signal pro-
cessing (Hastie et al., 2015). For a given input x and
an arbitrary function f : R −→ R , the ReLU function
can be defined as the positive part of the filter output
z = f (x) as

R(z) := max(z,0), (6)

illustrated in Figure 3a. The ReLU function is also
known as the ramp function which has several other
interesting definitions. For instance, we can define the
ReLU function as

R(z) := zH(z), (7)

where H is the discrete Heaviside unit step function

H(z) :=

{
0 if z≤ 0,
1 if z > 0.

(8)

Alternatively, the logistic function can be used for
smooth approximation of the Heaviside step function

H(z) :≈ 1
1+ exp(−2βz)

. (9)

This smooth approximation resembles the Swish ac-
tivation function (Ramachandran et al., 2017), which
is defined as

S(z) := z
1

1+ exp(−2βz)
. (10)

z

R(z)

(a) ReLU and Swish (dashed).

κ

z

J(z)

(b) JumpReLU activation function.

1

κ

z

∂J(z)

(c) Subgradient of JumpReLU is shifted by κ.

Figure 3: The ReLU is the most widely studied activation
function in context of adversarial attacks, shown in (a). In
addition its smooth approximation (Swish) is shown, with
β = 0.5. The JumpReLU activation (b) introduces robust-
ness and an additional amount of sparsity, controlled via the
jump size (threshold value) κ. In other words, JumpReLU
suppresses small positive signals. The corresponding subd-
ifferential ∂J(z) as a function of z is shown in (c).

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

106



The ReLU activation function works extremely
well in practice. However, a fixed threshold value 0
seems arbitrary. Looking to biophysical systems can
inspire more biologically plausible as well as more
robust neural networks and activation functions (Glo-
rot et al., 2011; Nayebi and Ganguli, 2017). In par-
ticular, the brain utilizes nonlinear activation func-
tions to filter out noise sources in the neural response.
Biophysical properties inherent to each neuron de-
termines a threshold for eliciting an action poten-
tial (Amit, 1989). This allows the neuron to collect
and transmit relevant information. Indeed, threshold-
ing filters out noise sources in the neural response.
This allows the neuron to collect and transmit rele-
vant information. Thus, it seems reasonable to crop
activation functions so that they turn on only for in-
puts greater than or equal to the threshold value κ. In
this case, sub-threshold signals are suppressed, while
significant signals are allowed to pass.

We introduce the JumpReLU function which sup-
presses signals of small magnitude and negative sign

J(z) := zH(z−κ) =

{
0 if z≤ κ

z if z > κ,
(11)

illustrated in Figure 3b. This activation function intro-
duces a jump discontinuity, yielding piece-wise con-
tinuous functions. While this idea can likely be trans-
ferred to other activations, we restrict our focus to the
family of discrete ReLU activation functions.

Glorot et al. (Glorot et al., 2011) note that too
much sparsity can negatively affect the predictive ac-
curacy. Indeed, this might be an issue during the train-
ing stage, however, a fine-tuned threshold value κ can
improve the robustness of the model during the vali-
dation stage by introducing an extra amount of spar-
sity. The tuning parameter κ can be used to control the
trade-off between predictive accuracy and robustness
of the model. Importantly, JumpReLU can be used to
retrofit previously trained networks in order to miti-
gate the risk to be fooled by adversarial examples.

Note that the threshold value κ can be tuned
cheaply during the validation stage once the network
is trained, i.e., without the need for expensive retrain-
ing of the model.

4 EXPERIMENTS

We first outline the setup which we use to evaluate the
performance of the proposed JumpReLU activation
function. We restrict our evaluation to MNIST and
CIFAR10, since these are the two standard datasets
which are most widely used in the literature to study
adversarial attacks.

• The MNIST dataset (LeCun et al., 1998) provides
28× 28 gray-scale image patches for 10 classes
(digits), comprising 60,000 instances for training,
and 10,000 examples for validation. For our ex-
periments we use a LeNet5 like architecture with
an additional dropout layer.

• The CIFAR10 dataset (Krizhevsky and Hinton,
2009) provides 32× 32 RGB image patches for
10 classes, comprising 50,000 instances for train-
ing, and 10,000 examples for validation. For our
CIFAR10 experiments we use a simple AlexLike
architecture proposed by (Carlini and Wagner,
2017); a wide ResNet architecture (Zagoruyko
and Komodakis, 2016) of depth 30 and with width
factor 4; and a MobileNetV2 architecture which is
using inverted residuals (Sandler et al., 2018).
We aim to match the experimental setup for cre-

ating adversarial examples as closely as possible to
prior work. Thus, we follow the setup proposed by
Madry et al. (Madry et al., 2017) and Buckman et
al. (Buckman et al., 2018). For all MNIST experi-
ments we use ε = 0.01 and 40 attack iterations; for
experiments on CIFAR10 we use the same ε, and 7
steps for PGD and Deep Fool attacks. For the TR at-
tack method we use 1000 steps. Note, these values
are chosen by following the assumption that an at-
tacker aims to construct adversarial examples which
have imperceptible perturbations. Further, we assume
that the attacker has only a limited budget of compu-
tational resources at disposal.

We also evaluate the effectiveness of the
JumpReLU for adversarially trained networks. Train-
ing the model with adversarial examples drastically
increases the robustness with respect to the specific
attack method used to generate the adversarial train-
ing examples (Goodfellow et al., 2014). Here, we use
the FGSM method to craft examples for adversarial
training with ε = 0.3 for MNIST, and ε = 0.03 for CI-
FAR10. Unlike Madry et al. (Madry et al., 2017), we
perform robust training with mixed batches composed
of both clean and adversarial examples. This leads to
an improved accuracy on clean examples, while being
slightly less robust. The specific ratio of the numbers
of clean to adversarial examples can be seen as a tun-
ing parameter, which may depend on the application.

4.1 Results

In the following, we compare the performance of
JumpReLU to the standard ReLU activation function
for both gray-box and white-box attack scenarios. For
each scenario, we consider three different iterative at-
tack methods: the Projected Gradient Descent (PGD)
method, the Deep Fool (DF) method using both the

JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks

107



L2 (denoted as DF2) and L∞ norm (denoted as DF∞)
as well as the Trust Region (TR) attack method. Here,
we use the TR method as a surrogate for the more
popular Carlini and Wagner (CW) (Carlini and Wag-
ner, 2017) attack method. This is because the CW
method requires enormous amounts of computational
resources to to construct adversarial examples, and re-
cent work has shown that the TR method performs
similarly with much less computational cost (Yao
et al., 2018). For instance, it takes about one hour
to construct 300 adversarial examples for CIFAR10
using the CW method, despite using a state-of-the-
art GPU and the implementation provided by (Rauber
et al., 2017).

4.1.1 Gray-box Attack Scenario

We start our evaluation by considering the gray-box
attack scenario. In this “vanilla” flavored setting, we
assume that the adversary has only partial knowledge
about the model. Here, the adversary has full access
to the ReLU network to construct adversarial exam-
ples, but it has no information about the JumpReLU
setting during inference time.

Table 1 shows a summary of results for MNIST
and CIFAR10 using different network architectures.
The ReLU network is used as a source network to
craft adversarial examples which are then used to at-
tack the JumpReLU network. We present results for
models trained on clean data only (base) and adver-
sarially trained models (robust).

The results presented in Table 1 show that the pos-
itive benefits of JumpReLU are pronounced across
the different datasets and architectures, while the loss
of accuracy on clean examples is moderate. Clearly,
more complex residual networks appear to be more
vulnerable than the simpler AlexLike network. Still,
JumpReLU is able to increase the robustness with re-
spect to Deep Fool attacks.

Surprisingly, the JumpReLU is also able to sub-
stantially improve the resilience of robustly trained
models. Indeed, this demonstrates the flexibility of
our approach and shows that retrofitting is not limited
to weak models only. Further, we see that the adver-
sarially trained models are more robust with respect
to the specific attack method used for training, while
still being vulnerable to other attack methods. In con-
trast, our defense strategy based on the JumpReLU is
agnostic to specific attack methods, i.e., we improve
the robustness with respect to all attacks considered
here. Note we could further increase the jump value
for the robust models, in order to increase the robust-
ness to the Deep Fool and TR attack method. How-
ever, this comes with the price of sacrificing slightly
more accuracy on clean data.

Table 1: Summary of results for gray-box attacks. The num-
bers indicate the accuracy, i.e., the percentage of correctly
classified instances (higher numbers indicate better robust-
ness). The ReLU network (indicated by a ‘*’) is used as the
source model to generate adversarial examples. The best
performance in each category is highlighted in bold letters.
Robust adversarial trained models are highlighted in gray.

Model Accuracy PGD DF∞ DF2 TR

ReLU (Base)* 99.55% 66.69% 0.0% 0.0% 0.0%
JumpReLU 99.53% 91.65% 81.39% 58.93% 58.90

ReLU (Robust)* 99.50% 91.39% 0.0% 0.0% 0.0%
JumpReLU 99.47% 97.07% 70.84% 45.17% 53.24%

Results for LeNet like network (MNIST); κ = 1.0.

Model Accuracy PGD DF∞ DF2 TR

ReLU (Base)* 89.46% 6.38% 0.0% 0.0% 0.0%
JumpReLU 87.52% 45.75% 61.82% 60.55% 53.08%

ReLU (Robust)* 87.93% 51.88% 0.0% 0.0% 0.0%
JumpReLU 86.19% 67.65% 52.28% 46.9% 51.52%

Results for AlexLike network (CIFAR10); κ = 0.4.

Model Accuracy PGD DF∞ DF2 TR

ReLU (Base)* 94.31% 0.0% 0.0% 0.0% 0.0%
JumpReLU 92.58% 0.39% 37.33% 40.21% 45.90%

ReLU (Robust)* 93.72% 60.43 0.0% 0.0% 0.0%
JumpReLU 93.01% 70.25% 28.62% 26.11% 35.33%

Results for Wide ResNet (CIFAR10); κ = 0.07.

Model Accuracy PGD DF∞ DF2

ReLU (Base)* 92.07% 0.0% 0.0% 0.0% 0.0%
JumpReLU 90.43% 0.54% 40.69% 41.61% 43.18%

ReLU (Robust)* 91.69% 53.98 0.0% 0.0% 0.0%
JumpReLU 90.12% 66.37% 37.31% 35.45% 40.4%

Results for MobileNetV2 (CIFAR10); κ = 0.06.

4.1.2 White-box Attack Scenario

We next consider the more challenging white-box at-
tack scenario. Here, the adversary has full knowledge
about the model, and it can access their gradients.

Table 2 summarizes the results for the differ-
ent datasets and architectures under consideration.
Again, we see some considerable improvements for
the retrofitted models—especially, the retrofitted ro-
bustly trained wide ResNet and MobileNetV2 ex-
cel. The performance of JumpReLU is even compet-
itive in comparison to more sophisticated techniques
such as one-hot and thermometer encoding (the au-
thors provide only scores for the FGSM and PGD
attack method) (Buckman et al., 2018). This is de-
spite the fact that JumpReLU does not require that
the model is re-trained from scratch. We can simply
select a suitable jump value κ during the validation
stage. The choice of the jump value depends thereby
on the desired trade-off between accuracy and robust-
ness, i.e., large jump values improve the robustness,

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

108



while decreasing the accuracy on clean examples. We
also considered comparing with the bounded ReLU
method (Zantedeschi et al., 2017), but our preliminary
results showed a poor performance.

The adversarially trained (robust) models provide
a good defense against the PGD attack. However,
Deep Fool is able to fool all instances in the test set
using only 7 iterations, and TR using 1000 iterations.
On first glance, this performance seems to be unde-
sirable. We can see, however, that Deep Fool re-
quires substantially increased average minimum per-
turbations in order to achieve such a high fool rate.
The numbers in parentheses in Table 2 indicate the

Table 2: Summary of results for white-box attacks. The
numbers indicate the accuracy, i.e., the percentage of cor-
rectly classified instances (higher numbers indicate better
robustness). The Deep Fool method is able to fool all in-
stances using only 7 iterations, hence we show here the
average minimum perturbations in parentheses. The best
performance in each category is highlighted in bold letters.
Robust adversarial trained models are highlighted in gray.

Model Accuracy PGD DF∞ DF2 TR

ReLU (Base) 99.55% 66.69% (17.9%) (21.8% ) (18.9%)
JumpReLU 99.53% 83.21% (34.1%) (44.9% ) (25.0%)

ReLU (Robust) 99.50% 91.39% (28.4% ) (31.4% ) (24.7%)
JumpReLU 99.47% 94.36% (46.6%) (53.3%) (32.8%)

Madry 98.80% 93.20% - - -
Vanilla 99.03% 91.36% - - -
One-hot 99.01% 93.77% - - -
Thermo 99.23% 93.70% - - -

Results for LeNet like network (MNIST); κ = 1.0.

Model Accuracy PGD DF∞ DF2 TR

ReLU (Base) 89.46% 6.38% (1.2%) (1.5%) (1.3%)
JumpReLU 87.52% 18.56% (9.80%) (10.6%) (1.7%)

ReLU (Robust) 87.93% 51.88% (3.6%) (4.2%) (3.6%)
JumpReLU 86.19% 56.70% (13.2%) (14.1%) (4.3%)

Results for AlexLike network (CIFAR10); κ = 0.4.

Model Accuracy PGD DF∞ DF2 TR

ReLU (Base) 94.31% 0.37% (1.4%) (1.8%) (1.3%)
JumpReLU 92.58% 0.95% (14.3%) (18.5%) (1.9%)

ReLU (Robust) 93.72% 60.43% (6.4%) (7.5%) (4.8%)
JumpReLU 93.01% 67.89% (44.4%) (43.8%) (6.1%)

Madry 87.3% 50.0% - - -
Vanilla 87.16% 34.71% - - -
One-hot 92.19% 58.96% - - -
Thermo 92.32% 65.67% - - -

Results for WideResNet (CIFAR10); κ = 0.07.

Model Accuracy PGD DF∞ DF2 TR

ReLU (Base) 92.07% 0.74% (0.7%) (0.9%) (0.7%)
JumpReLU 91.10% 0.92% (5.3%) (6.8%) (1.0%)

ReLU (Robust) 91.69% 53.98% (4.7%) (5.3%) (4.1%)
JumpReLU 90.12% 59.66% (62.6%) (51.4%) (4.9%)

Results for MobileNetV2 (CIFAR10); κ = 0.06.

average minimum perturbations which are needed to
achieve a nearly 100 percent fooling rate. These num-
bers provide a measure for the empirical robustness of
the model, which we compute by using the following
plug-in estimator

ρ̃F :=
1
n

n

∑
i

‖xi− x̃i‖p

‖xi‖p
, (12)

with x̃i = xi + ∆xi. Here, we compute the relative
rather than absolute perturbations. The relative mea-
sure provides a more intuitive interpretation, i.e., the
numbers reflecting the average percentage of changed
information in the adversarial examples.

The numbers show that the retrofitted models fea-
ture an improved robustness, while maintaining a
‘good’ predictive accuracy for clean examples. For
MNIST, the noise levels need to be increased by a fac-
tor of about 2 in order to achieve a 100 percent fooling
rate. Here, we set the JumpReLU threshold value to
κ = 1.0. For CIFAR10, we achieve a stellar perfor-
mance of resilience to the Deep Fool attacks, i.e., the
noise levels are required to be increased by a factor of
3 to 7 to achieve a successful attack.

Clearly, we can see that the TR method is a
stronger attack than Deep Fool. However, we are still
able to achieve an improved resilience to this attack.

4.1.3 Performance Trade-offs

As mentioned, the JumpReLU activation function
provides a trade-off between robustness and classifi-
cation accuracy. The user can control this trade-off in
a post-training stage by tuning the threshold value κ,
where κ = 0 resembles the ReLU activation function.

Figure 4 contextualizes this trade-off for the
LeNet Like network (MNIST) and the AlexLike net-
work (CIFAR10). We see that the threshold value κ is
positively correlated to the level of perturbation which
is required in order to achieve a 100 percent fooling
rate. Choosing larger threshold values increase the ro-
bustness of the model, while sacrificing only a slight
amount of predictive accuracy.

Larger thresholds only marginally affect the ac-
curacy of the LeNet like network on clean examples,
while the the AlexLike network (CIFAR10) is more
sensitive. Thus, the decision of a ‘good’ jump value
is application dependent.

4.1.4 Visual Results

The interested reader may ask whether the increased
adversarial perturbations are of any practical signifi-
cance. To address this question, we show some visual
results which illustrate the magnitude of the effect.

JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks

109



0.00 0.25 0.50 0.75 1.00 1.25 1.50
Jump ReLU threshold value

0.9925

0.9930

0.9935

0.9940

0.9945

0.9950

A
v
e
ra

g
e
 a

cc
u
ra

cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Le
v
e
l 
o
f 

p
e
rt

u
rb

a
ti

o
n

DeepFool

DeepFool2

clean

(a) LeNet like network (MNIST)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Jump ReLU threshold value

0.86

0.87

0.88

0.89

Av
er

ag
e 

ac
cu

ra
cy

0.02
0.04
0.06
0.08
0.10
0.12
0.14

Le
ve

l o
f p

er
tu

rb
at

io
n

(b) AlexLike network (CIFAR10)

Figure 4: JumpReLU performance trade-offs for MNIST
and CIFAR10. The left axis shows the average predic-
tive accuracy for clean examples for varying values of the
JumpReLU threshold. The right axis shows the minimum
level of perturbation required to construct adversarial ex-
amples which achieve a nearly 100% fooling rate.

Recall the aim of the adversary is to construct unob-
trusive adversarial examples.

Figure 5 shows both clean and adversarial exam-
ples for the MNIST dataset, which are crafted by the
Deep Fool algorithm. Clearly, the adversarial exam-
ples which are needed to fool the retrofitted LeNet
like network are visually distinct from those examples
which are sufficient to fool the unprotected model.
We also show the corresponding perturbation pat-
terns, i.e., the absolute pixel-wise difference between
the clean and adversarial examples, to better contex-
tualize the difference. Note that we use a “reds” color
scheme here: white indicates no perturbations, light
red indicates very small perturbations, dark red indi-
cates large perturbations.

Next, Figure 6 shows visual results for the CI-
FAR10 dataset. It is well known that models for this
dataset are highly vulnerable, i.e., very small pertur-
bations ∆x are already sufficient for a successful at-
tack. Indeed, the minimal perturbations which are
needed to fool the unprotected network (here we show
results for the AlexLike network) are nearly imper-
ceptible by visual inspection. In contrast, the crafted
adversarial examples to attack the retrofitted model
show distinct perturbation patterns, and one can rec-
ognize that the examples were altered.

In summary, the visual results put the previously
presented relative noise levels into perspective, and

(a) Clean examples which are used for training.

(b) Adversarial examples to fool a standard model.

(c) Perturbation patterns to fool a standard model.

(d) Adversarial examples to fool the retrofitted model.

(e) Perturbation patterns to fool the retrofitted model.

Figure 5: Visual results for MNIST to verify the effect of the
JumpReLU defense strategy against the DF∞ attack. No-
ticeable higher levels of perturbations are required to suc-
cessfully attack the retrofitted network. Subfigures (c) and
(e) show the corresponding perturbation patterns.

(a) Clean

(b) Adversarial examples to fool a standard model.

(c) Perturbation patterns to fool a standard model.

(d) Adversarial examples to fool the retrofitted model.

(e) Perturbation patterns to fool the retrofitted model.

Figure 6: Visual results for CIFAR10. The DF2 attack re-
quires noticeable higher levels of perturbations in order to
successfully attack the retrofitted network.

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

110



Table 3: AUC scores as measure of the discrimination
power between clean and adversarial examples using LID
characteristics. Here we compare ReLU and JumpReLU.

Model PGD DF∞ DF2 TR

LID + ReLU 72.54 73.41 72.93 72.47
LID + JumpReLU 74.25 78.24 75.84 74.71

they show that average minimum perturbations of
about 5% to 10% are lucid. Thus, it can be con-
cluded that the JumpReLU is an effective strategy for
improving the model robustness.

4.1.5 Detection with LID

As a proof-of-concept, we demonstrate that the in-
creased minimum perturbations, which are required
to attack the retrofitted model can help to improve the
discrimination power of add-on adversarial detectors.

We follow the work by Ma et al. (Ma et al., 2018),
who use the idea of Local Intrinsic Dimensionality
(LID) to characterize adversarial subspaces. The idea
is that clean and adversarial examples show distinct
patterns so that the LID characteristics allow to dis-
criminate between such examples.

Intuitively, adversarial examples which show in-
creased perturbation patterns should feature more ex-
treme LID characteristics. Hence, a potential applica-
tion of the JumpReLU is to combine it with an LID
based detector. Table 3 shows the area under a re-
ceiver operating characteristic curve (AUC) as a mea-
sure for the discriminate power between clean and ad-
versarial examples. Indeed, the results show that the
combination with JumpReLU improves the detection
performance for CIFAR10.

5 CONCLUSION

We have proposed a new activation function—the
JumpReLU function—which, when used in place of
a ReLU in an already pre-trained model, leads to a
trade-off between predictive accuracy and robustness.
This trade-off is controlled by a parameter, the jump
size, which can be tuned during the validation stage.
That is, no additional training of the pre-trained model
is needed when the JumpReLU function is used. (Of
course, if one wanted to perform additional expensive
training, then one could do so.) Our experimental
results show that this simple and inexpensive strat-
egy improves the resilience to adversarial attacks of
previously-trained networks.

Limitations of our approach are standard for
current adversarial defense methods, in that stand-
alone methods do not guarantee a holistic protec-

tion and that sufficiently high levels of perturbation
will be able to break the defense. That being said,
JumpReLU can easily be used as a stand-alone ap-
proach to “retrofit” previously-trained networks, im-
proving their robustness, and it can also be used to
support other more complex defense strategies.

ACKNOWLEDGEMENT

NBE and MWM would like to acknowledge support
from DARPA and the Air Force Research Laboratory
under agreement number FA8750-17-2-0122. The
U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views
and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either
expressed or implied, of DARPA and the Air Force
Research Laboratory or the U.S. Government.

REFERENCES

Akhtar, N., Liu, J., and Mian, A. (2017). Defense against
universal adversarial perturbations. arXiv preprint
arXiv:1711.05929.

Akhtar, N. and Mian, A. (2018). Threat of adversarial at-
tacks on deep learning in computer vision: A survey.
arXiv preprint arXiv:1801.00553.

Amit, D. J. (1989). Modeling Brain Function: The World
of Attractor Neural Networks. Cambridge University
Press.

Bhagoji, A. N., Cullina, D., Sitawarin, C., and Mittal, P.
(2018). Enhancing robustness of machine learning
systems via data transformations. In Information Sci-
ences and Systems (CISS), 2018 52nd Annual Confer-
ence on, pages 1–5. IEEE.

Buckman, J., Roy, A., Raffel, C., and Goodfellow, I. (2018).
Thermometer encoding: One hot way to resist ad-
versarial examples. In International Conference on
Learning Representations.

Carlini, N. and Wagner, D. (2017). Towards evaluating the
robustness of neural networks. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 39–57.
IEEE.

Cisse, M., Adi, Y., Neverova, N., and Keshet, J. (2017).
Houdini: Fooling deep structured prediction models.
arXiv preprint arXiv:1707.05373.

Dong, Y., Liao, F., Pang, T., Su, H., Hu, X., Li, J., and Zhu,
J. (2017). Boosting adversarial attacks with momen-
tum. arXiv preprint arXiv:1710.06081.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse
rectifier neural networks. In Proceedings of the four-
teenth international conference on artificial intelli-
gence and statistics, pages 315–323.

JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks

111



Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. The MIT Press.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Ex-
plaining and harnessing adversarial examples. CoRR,
abs/1412.6572.

Gu, S. and Rigazio, L. (2014). Towards deep neural network
architectures robust to adversarial examples. arXiv
preprint arXiv:1412.5068.

Guo, C., Rana, M., Cisse, M., and van der Maaten, L.
(2017). Countering adversarial images using input
transformations. arXiv preprint arXiv:1711.00117.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Sta-
tistical learning with sparsity: the lasso and general-
izations. CRC press.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple
layers of features from tiny images. Technical report,
Citeseer.

Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adver-
sarial examples in the physical world. arXiv preprint
arXiv:1607.02533.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Lee, H., Han, S., and Lee, J. (2017). Generative adversarial
trainer: Defense to adversarial perturbations with gan.
arXiv preprint arXiv:1705.03387.

Liao, F., Liang, M., Dong, Y., Pang, T., Zhu, J., and Hu,
X. (2017). Defense against adversarial attacks us-
ing high-level representation guided denoiser. arXiv
preprint arXiv:1712.02976.

Liu, Y., Chen, X., Liu, C., and Song, D. (2016). Delving
into transferable adversarial examples and black-box
attacks. arXiv preprint arXiv:1611.02770.

Luo, Y., Boix, X., Roig, G., Poggio, T., and Zhao, Q.
(2015). Foveation-based mechanisms alleviate adver-
sarial examples. arXiv preprint arXiv:1511.06292.

Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S.,
Schoenebeck, G., Song, D., Houle, M. E., and Bai-
ley, J. (2018). Characterizing adversarial subspaces
using local intrinsic dimensionality. arXiv preprint
arXiv:1801.02613.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. (2017). Towards deep learning mod-
els resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083.

Miyato, T., Dai, A. M., and Goodfellow, I. (2016). Adver-
sarial training methods for semi-supervised text clas-
sification. arXiv preprint arXiv:1605.07725.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P.
(2016). Deepfool: a simple and accurate method to
fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 2574–2582.

Nayebi, A. and Ganguli, S. (2017). Biologically inspired
protection of deep networks from adversarial attacks.
arXiv preprint arXiv:1703.09202.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A.
(2016). Distillation as a defense to adversarial pertur-
bations against deep neural networks. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 582–
597. IEEE.

Poursaeed, O., Katsman, I., Gao, B., and Belongie, S.
(2017). Generative adversarial perturbations. arXiv
preprint arXiv:1712.02328.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017).
Searching for activation functions. arXiv preprint
arXiv:1710.05941.

Rauber, J., Brendel, W., and Bethge, M. (2017). Fool-
box v0. 8.0: A python toolbox to benchmark the ro-
bustness of machine learning models. arXiv preprint
arXiv:1707.04131.

Ross, A. S. and Doshi-Velez, F. (2017). Improving the ad-
versarial robustness and interpretability of deep neural
networks by regularizing their input gradients. arXiv
preprint arXiv:1711.09404.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 4510–4520.

Sarkar, S., Bansal, A., Mahbub, U., and Chellappa, R.
(2017). Upset and angri: Breaking high performance
image classifiers. arXiv preprint arXiv:1707.01159.

Shen, S., Jin, G., Gao, K., and Zhang, Y. (2017). APW-
GAN: Adversarial perturbation elimination with
GAN. arXiv preprint arXiv:1707.05474.

Su, J., Vargas, D. V., and Kouichi, S. (2017). One pixel at-
tack for fooling deep neural networks. arXiv preprint
arXiv:1710.08864.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. (2013). In-
triguing properties of neural networks. arXiv preprint
arXiv:1312.6199.

Tanay, T. and Griffin, L. (2016). A boundary tilting
persepective on the phenomenon of adversarial exam-
ples. arXiv preprint arXiv:1608.07690.

Xu, W., Evans, D., and Qi, Y. (2017). Feature squeez-
ing: Detecting adversarial examples in deep neural
networks. arXiv preprint arXiv:1704.01155.

Yao, Z., Gholami, A., Xu, P., Keutzer, K., and Mahoney,
M. (2018). Trust region based adversarial attack on
neural networks. arXiv preprint arXiv:1812.06371.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual
networks. arXiv preprint arXiv:1605.07146.

Zantedeschi, V., Nicolae, M.-I., and Rawat, A. (2017). Effi-
cient defenses against adversarial attacks. In Proceed-
ings of the 10th ACM Workshop on Artificial Intelli-
gence and Security, pages 39–49. ACM.

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

112



APPENDIX

A Second Look to the Gray-box Attack

We present an extended set of results for the gray-
box attack scenario. Specifically, we study the situa-
tion where the adversary has full access to a retrofitted
model (which has a fixed jump value) in order to con-
struct adversarial examples, but the adversary has no
information about the jump value of the target net-
work during inference time.

Here, the adversarial examples are crafted by
using the projected gradient descent (PGD) attack

0.0 0.4 0.6 0.8 1.0
Threshold value of target model

0.
0

0.
4

0.
6

0.
8

1.
0

Th
re

sh
ol

d 
va

lu
e 

of
 so

ur
ce

 m
od

el

0 37.3 61.5 75.3 83.8

83.8 0 15.1 33.2 51.1

87 89.8 1.15 20.7 35.5

91.2 93.9 93.7 1.81 22.5

93.2 94.6 95 94.1 3.09

(a) Transferability for MNIST.

0.0 0.1 0.2 0.3 0.4
Threshold value of target model

0.
0

0.
1

0.
2

0.
3

0.
4

Th
re

sh
ol

d 
va

lu
e 

of
 so

ur
ce

 m
od

el

0 0.67 3.75 11.2 23.4

11.1 0.02 2.47 9.19 19.6

36.1 29.3 0.02 5.17 16.7

59.4 56.1 42.7 0.02 12.4

68.5 67.6 63.2 50.6 0.06

(b) Transferability for CIFAR10.

Figure 7: Gray-box attack matrix for different jump values.
Each cell (i, j) indicates the predictive accuracy of a model
retrofitted with the jump value j (target), which is being at-
tack by using adversarial examples generated by a model
with jump value i (source). Higher cell values indicate bet-
ter robustness.

method. Figure 7 shows the efficiency of a non-
targeted attack on networks using different jump val-
ues. Note, we run the attack with a large number of
iterations, enough so that the crafted adversarial ex-
amples achieve a nearly 100 percent fool rate for the
source model.

We see that the attack is unidirectional, i.e., ad-
versarial examples crafted by using source models
which have a low jump value can be used to attack
models which have a higher jump value. However,
retrofitted models which have a low jump value are
resilient to adversarial examples generated by source
models which have a large jump value. Thus, one
could robustify the network by using a large jump size
κ for evaluating the gradient, while using a smaller
jump size for inference. Of course, this is a some-
what pathological setup, yet these results reveal some
interesting behavioral properties of the JumpReLU.

Additional Results to Characterize the
Performance Trade-offs

The JumpReLU activation function poses a trade-
off between robustness and classification accuracy.
Here we provide additional results for both the wide
ResNet and MobileNetV2 architectures. Recall, the
user can control this trade-off in a post-training stage
by tuning the threshold value κ, where κ = 0 resem-
bles the ReLU activation function.

Figure 8 shows the performance trade-offs for the
two different architectures. We can see, that the ad-
versarial examples (crafted by using the Deep Fool
method) require increased levels of perturbations in
order to successfully attack the retrofitted models
which have higher jump values. Of course, the user
needs to decide how much accuracy on clean data he
is willing to sacrifice in order to buy more robustness.
However, this sacrifice is standard to most robustifi-
cation strategies. For instance, for adversarial train-
ing one must choose the ratio between clean and ad-
versarial examples used for training, where a higher
ratio of adversarial examples improves the robustness
while decreasing the predictive accuracy.

Accuracy vs Number of Iterations

Iterative attack methods can be computational de-
manding if a large number of iterations is required
to craft strong adversarial examples. Of course, it is
an easy task to break any defense with unlimited time
and computational resources. However, it is the aim
of an attacker to design efficient attack strategies (i.e.,
fast generation of examples which have minimal per-
turbations), while the defender aims to make models

JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks

113



0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Jump ReLU threshold value

0.920

0.925

0.930

0.935

0.940

A
v
e
ra

g
e
 a

cc
u
ra

cy

0.05

0.10

0.15

0.20

Le
v
e
l 
o
f 

p
e
rt

u
rb

a
ti

o
n

DeepFool

DeepFool2

clean

(a) Wide ResNet (CIFAR10)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Jump ReLU threshold value

0.88

0.89

0.90

0.91

0.92

Av
er

ag
e 

ac
cu

ra
cy

0.000
0.025
0.050
0.075
0.100
0.125
0.150

Le
ve

l o
f p

er
tu

rb
at

io
n

(b) MobileNetV2 (CIFAR10)

Figure 8: JumpReLU performance trade-offs for MNIST
and CIFAR10. The left axis shows the average predic-
tive accuracy for clean examples for varying values of the
JumpReLU threshold. The right axis shows the minimum
level of perturbation required to construct adversarial ex-
amples which achieve a nearly 100% fooling rate.

more robust to these attacks (i.e., force the attacker to
increase the average minimal perturbations which are
needed to fool the model).

Figure 9 contextualizes the accuracy vs the num-
ber of iterations for the PGD attack. Attacking the
retrofitted model requires a larger number of itera-
tions in order to achieve the same fool rate as for
the unprotected network. This is important, because
a large number of iterations requires more compu-
tational resources as well as increases the computa-
tional time. To put the numbers into perspective, it
takes about 4 minutes to run 7 iterations to attack the
unprotected wide ResNet. In contrast, it takes about 5
minutes to run 7 steps to attack the retrofitted model.

0 20 40 60 80 100 120
Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

jump size 0.0
jump size 0.5
jump size 1.0
jump size 1.5

(a) LeNet like network (MNIST).

0 5 10 15 20 25 30 35 40
Number of iterations

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

jump size 0.0
jump size 0.2
jump size 0.4
jump size 0.6

(b) AlexLike (CIFAR10).

0 5 10 15 20 25 30
Number of iterations

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

jump size 0.0
jump size 0.04
jump size 0.07
jump size 0.08

(c) Robust Wide ResNet (CIFAR10).

0 5 10 15 20 25 30
Number of iterations

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

jump size 0.0
jump size 0.04
jump size 0.06
jump size 0.07

(d) Robust MobileNetV2 (CIFAR10).

Figure 9: Strength of the PGD attack for increasing num-
bers of iterations. The PGD method requires a large num-
ber of iterations to craft strong adversarial examples. The
JumpReLU increases the model robustness, i.e., the fooling
rate is reduced for a fixed number of iterations.

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

114


