
Innovative Approaches in Teaching Programming:
A Systematic Literature Review

Simone C. Santos a, Patricia Azevedo Tedesco b, Matheus Borba and Matheus Brito
Centro de informática, UFPE, Rua Jornalista Aníbal Fernandes, s/n, Cidade Universitária (Campus Recife),

CEP: 50.740-560, Recife, PE, Brazil

Keywords: Educational Innovation, Teaching Computer Programming, Systematic Literature Review.

Abstract: One of the main challenges of computing education is the teaching of computer programming. Technical
skills related to algorithm logic, programming language syntax, and computational platforms are required
to program. In addition, several non-technical skills are required, enabling the student to understand and to
interpret real problems, to work in groups and to strive for effective and efficient solutions. To meet these
challenges, innovative teaching methodologies have been applied in teaching programming, building
learning environments that are more conducive to the development of these skills. In order to understand
how these methodologies are being used, this work presents the result of a systematic literature review,
motivated by the following research question: "What are the innovative teaching and learning approaches
to programming, how are they applied and what are the main results of their application? In this study, we
considered three digital libraries and found 24 primary studies, following the Kitchenham methodology.
These studies were categorized into 6 groups and highlighted challenges related to the problems addressed,
teaching environment, content, human capital involved and assessment process. The studies also showed
evidence of success cases, as well as open paths for new research.

1 INTRODUCTION

The evolution of the area of Computing over the last
years is well-known. Computing is everywhere,
whether to make life easier for people or to make
businesses and organizations more efficient and
competitive. It is responsible for automating
processes, maximizing productivity, expanding
communication, enabling better products and
services, allowing the world to be more productive
and agile. In this light, the trend is for this area to
evolve further, requiring qualified professionals to
perform better. This entails that Computing education
follows the evolution of the area, aligning the
academy with the demands of the labor market.

When it comes to computer education, one of the
main challenges is teaching programming. This is
compounded by the need to teach programming
languages and their syntax, that allow instructional
communication with computing machines.

a https://orcid.org/0000-0002-7903-9981
b https://orcid.org/0000-0001-9450-9219

Programming is not an easy subject. According to
Lahtinen, Ala-Mutka, and Järvinen (2005), learning
programming requires correctly understanding
abstract concepts, mastering the syntax of languages
that often differ from natural language, and logical
reasoning to transform instructions into required
computer actions. Many students experience learning
problems due to the abstract nature of the subject or
lack of enough resources to ensure personal support
from teachers. With regards to group work, there are
also difficulties, many of them concerning the size of
the class versus the size of the teams, the
heterogeneity of the group members, making project
practices where everyone learns difficult.
Consequently, high drop-out rates are often recorded
in programming courses (Lahtinen, Ala-Mutka, and
Järvinen, 2005).

To overcome these challenges, the authors of this
article believe that one of the fundamental
components in improving the quality of teaching
programming is the learning methodology employed.

Santos, S., Tedesco, P., Borba, M. and Brito, M.
Innovative Approaches in Teaching Programming: A Systematic Literature Review.
DOI: 10.5220/0009190502050214
In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 1, pages 205-214
ISBN: 978-989-758-417-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

205

The use of new teaching and learning strategies can
be a way of minimizing the challenges found more
often, attracting more students to the computing area.

In Costelloe (2016), the author defines a number
of approaches for teaching programming, namely: 1)
Lectures & Labs; 2) Software Visualization; 3)
Robots; 4) Problem-Based Learning; 5) Cognitive
Apprenticeship; 6) Miscellaneous. Using these
categories as a key reference, this study defined the
central research question: "CQ - What are the
innovative teaching and learning approaches to
Programming, how are they applied and what are the
main results of their application?".

In order to investigate possible answers to this
question, the Systematic Literature Review (SLR)
method proposed by Kitchenham in (Kitcheham,
2004) was used.

This paper is divided into five sections. After this
brief introduction, Section 2 presents the main
theoretical references used to structure the research
and its analysis. Section 3 describes the application of
the SLR introduced in (Kitcheham, 2004). Section 4
presents and discusses the results found, and finally
Section 5 comments the conclusions and limitations
of this study as well as future works.

2 MAIN THEORETICAL
REFERENCES

Two main references are used to structure this study:
1) different approaches to teaching programming,
according to (Costelloe, 2016) and; 2) a PBL
(Problem Based Learning) methodology used to
organize the report of results found, according to
(Santos, Furtado, and Lins, 2014). We have chosen to
use the Costelloe reference only because it is an in-
depth and detailed study of the main categories of
innovative approaches to teaching programming, and
therefore a source of references in itself.

2.1 The State of the Art of Teaching
Programming

The benefits brought about by recent advances in
research and experience in teaching multilevel
programming show different gains from each
approach used, as well as various uses and impacts of
such approaches. Thus, research has been done to
improve teaching and learning programming. As a
result, Costelloe (2016) presents several approaches
developed, stemming from the technology-driven that
involves the use of visual software, design and

robotics tools to education driven by paradigms such
as PBL and cognitive learning.

According to Costelloe (2016), these approaches
are categorized into six groups: 1) Lectures and labs;
2) Software visualization; 3) Use of robots; 4)
Problem based learning; 5) Cognitive apprenticeship
and; 6) Miscellaneous approaches.

The traditional approach of Lectures and labs
adopts a behavioral theory of learning. The main
applied behavioral theory is operant conditioning,
where the student learns as a result of reinforcement,
whether positive or negative. The students can be
motivated by the teacher's humor, drama, enthusiasm
and knowledge and understanding they acquire.

Software visualization is the practice of mapping
abstract ideas represented in code by visual
representations that make the operation of the system
easier for the observer (Ayrapetov and Graham,
2002). In other words, software visualization is used
to assist the programmer/user of a program to
understand the artifact being observed. In Costelloe
(2016), the author categorizes software visualization
as follows: Programs View, focusing on the graphical
representation of a running program and its data;
Algorithm Animation, testing instructional use and
showing the fundamental operations of an algorithm;
Visual programming, with visual components to
build a program; Demonstration programming, using
Artificial Intelligence programming languages; and
Computational Visualization, viewing statistics, for
example, access points in the code in terms of
counting errors, viewing statistics, for example,
access points in the code in terms of counting errors.

Research shows that active learning, that is,
learning promoted by interaction with the
environment, as opposed to lectures, is more effective
in developing the student's ability to acquire
knowledge (Linder et al., 2001). Linder argues that
active learning can be facilitated by the use of mobile
robots in a collaborative environment. The main
benefits of the use of Robots are (Costelloe, 2016): it
promotes active learning, involving the student and
promoting enthusiasm and fostering the learning
processes; it promotes collaboration and the robot
becomes a participant in this collaboration; it
provides experience with real machines; it promotes
creativity; students can generate hypotheses and test
them by getting feedback immediately; it fosters good
design and planning; it promotes leadership from
practice, which promotes autonomous learning.

The Problem-Based Learning approach (PBL)
concerns a constructivist view of learning, in which
students adjust to existing belief constructs.
According to Costelloe (2016), the main benefits of

CSEDU 2020 - 12th International Conference on Computer Supported Education

206

using PBL are: to promote lifelong learning
techniques, forcing the student to reflect about their
learning process and to re-evaluate, through the
maintenance of journals and learning portfolios; to
promote understanding through collaborative work;
to foster learning that driven by problems, rather than
contents, and to be an approach that reflects real-life
problems, preparing students for the job. In such an
approach, problems can range from structured to
poorly structured to meet the needs of beginners and
advanced students. PBL promotes creativity in
obtaining solutions to problems; promotes
independent learning and compels students to take on
responsibility for their work; promotes positive
feelings about the course; and students learn other
skills not specific to course, oral, writing of reports,
demonstration, and critical thinking.

Cognitive apprenticeship is a model of
collaborative teaching where the emphasis is on
supporting the construction of knowledge
(Enkenberg, 2001). According to Enkenberg,
cognitive apprenticeship applies several strategies of
teaching and learning: Modeling, that is, the
demonstration of thought processing; Explanation,
because activities happen as they do; Scaffolding, that
entails supporting students to handle the task at hand,
and gradual withdrawal of teacher from the process;
Reflection, Self-assessment and Self-analysis;
Articulation, which entails reflection results placed in
verbal form; Exploration, where students are
encouraged to form hypotheses, test them and find
new ideas. Similar to PBL, the basic principles of
cognitive apprenticeship relate to constructivism, to
the student constructing their own knowledge, aided
by a specialist initially and gradually becoming an
independent learner, the aspect of collaboration and
the development of metacognitive skills to reflect
about their work.
Finally, these approaches can be combined in order to
help them adapt to specific learning contexts and
obtain diverse benefits from each one. This
combination is pointed out as a "miscellaneous
approach".

2.2 Methodological Elements

This study has used the PBL methodology elements
as a theoretical background for analysing the results
of the SLR. In Santos, Furtado, and Lins (2014), the
authors propose a methodology for the
implementation of PBL in Computing based on 5
manageable elements: 1) Problem, reflecting realism
and complexity similar to real contexts; 2)
Environment, related to the definition of an authentic

learning environment that reflects the actual context
of the professional market; 3) Human Capital, with
evidence to the roles and responsibilities of the
pedagogical team in the planning; 4) Content, as an
essential part to support the theoretical basis of the
problem solving process; and 5) Processes, for the
adequacy of learning objectives and assessment
processes inherent to the learning format in PBL. We
will use these elements as reference in the analysis
described in Section IV, particularly in the results of
question RQ4.

3 RESEARCH METHOD

According to Kitchenham (2004), Systematic
Literature Reviews (SLR) is a method designed to
identify, evaluate and interpret all available research
relevant to a particular research question, area, topic,
or a phenomenon of interest. We guided our
investigation on SLR by the procedures also defined
by Kitchenham. The common reasons for
undertaking a systematic literature review are to
summarise the existing evidence concerning a topic
of interest and to identify any gaps in current research
in order to suggest areas for further investigation.

The individual studies that contribute to a
systematic review are called primary studies; the
systematic review by itself is a form of a secondary
study. The systematic review conducted in this study
was divided into three phases, based on Kitchenham's
guide, namely: Planning the review; Conducting the
review and Reporting the review.

The planning and conducting phases have several
smaller phases, while reporting is a single phase. The
Planning stage can be divided into two main parts.
These can be further detailed as: the Objective of the
systematic review; Development of a review protocol,
that includes the definition of the research questions
(question types; question structure).

The Conducting phase can be divided into five
main parts. Within each one we have more specific
phases, which are: Identification of Research; Study
Selection; Study Quality Assessment; Data
Extraction; Data Synthesis.

This systematic review should answer the
following central question: "CQ - What are the
innovative teaching and learning approaches to
Programming, how are they applied and what are the
main results of this application?". More specifically,
this review focuses on the following issues:
▪ RQ1: What is the teaching context (educational

stage)?

Innovative Approaches in Teaching Programming: A Systematic Literature Review

207

▪ RQ2: What are the innovative approaches of
the studies?

▪ RQ3: What are the main results found from
these approaches?

▪ RQ4: What are the main challenges or
difficulties found in general way?

The initial research studies were conducted using

digital libraries: IEEExplore Digital Library, ACM
Digital Library, and Science Direct. The selection of
these sources was based on the credibility and
relevance of articles indexed in the area of Computer
Science. After selecting our electronic databases, the
search string was created and refined until it was
established and could be used on all bases. By
combining keywords and synonyms the search string
was constructed, as shown:

("teaching" OR "learning") AND ("programming" OR
"programming languages") AND ("innovative" OR
"innovation") AND ("case study" OR "case studies"

OR "lessons learned" OR "experience report")

The research strategy carried out considered

papers published between the years of 2012 and the
first half of 2018 and resulted in a total of 606 papers:
ACM - 65 papers; IEEE - 2 papers; Science Direct -
535 papers;

We established a filter with exclusion criteria. If
the paper fit into at least one, it would be eliminated.
The following exclusion criteria were used:
▪ Exclude artifacts according to the analysis of

titles and abstracts;
▪ Non-English articles;
▪ Articles with paid content;
▪ Duplicate, repeated articles;
▪ Articles not available for download or viewing.

With regards to the last exclusion criterium, we
excluded articles not available for download or
viewing at our institution. In the digital libraries
considered, those often mean articles published in
conference proceedings in recent years. After the
application of this filter, 35 primary studies remained.

Then quality criteria were established; artifacts
that did not refer to the study area or did not present
good content completeness or clarity, or that did not
answer the questions elaborated would be eliminated.
The following are the quality criteria used:
▪ Relevance to the study area/central theme.
▪ Completeness and clarity of contents.
▪ If the study answered the questions.

3.1 Selecting Primary Studies

The initial analysis was based on the introductions
and conclusions of the papers. After the application
of this second filter, 24 papers were obtained. Using
the same quality criteria, we have analyzed the
artifacts by reading them in full: as a result, 20 papers
remained. These papers were the selected works for
extracting the answers and consolidating the results.
The distribution between the databases is found
below:
▪ ACM - 14 papers;
▪ IEEE - 0 papers;
▪ Science Direct: 6 papers.

After the automatic search, a manual search of

papers was performed at conferences that were held
in the second half of 2018. The papers selected went
through all the pre-established steps and we had 4
more papers, all of them were presented in the FIE
2018 (htt://www.fie.org). The total number of papers
selected for analysis is shown in Table 1.

Table 1: Primary studies.

ID Title, Author
PS1 Perspectives on active learning and

collaboration: JavaWIDE in the classroom
(Jenkins et al., 2012)

PS2 CS1001.py: a topic-based introduction to
computer science (Chor, et al., 2012)

PS3 Course development through student-faculty
collaboration: a case study (Ustek et al, 2014)

PS4 Smartphones, Studio-Based Learning, and
Scaffolding: Helping Novices Learn to
Program (Reardon and Tangney, 2014)

PS5 Teaching Software Engineering with LEGO
Serious Play (Kurkovsky, 2015)

PS6 Teaching Java Programming on Smartphone-
pedagogy and Innovation; Proposal of its
Ontology Oriented Implementation (John
and Rani, 2015)

PS7 Using Project-Based-Learning in a mobile
application development course—An
experience report (Francese et al., 2015)

PS8 Learning Basic Programming Concepts by
Creating Games with Scratch Programming
Environment (Ouahbi et al., 2015)

PS9 Combining mastery learning with project-
based learning in a first programming course:
an experience report (Jazayeri, 2015)

PS10 Building Casual Game SDKS for Teaching
CS1/2: A Case Study (Sung et al., 2016)

PS11 Using Interactive Exercise in Mobile Devices
to Support Evidence-based Teaching and
Learning (Fuad et al., 2016)

CSEDU 2020 - 12th International Conference on Computer Supported Education

208

Table 1: Primary studies (cont.).

ID Title, Author
PS12 Applying Validated Pedagogy to MOOCs:

An Introductory Programming Course with
Media Computation (Falkner et al., 2016)

PS13 Teaching DevOps and Cloud Computing
using a Cognitive Apprenticeship and Story-
Telling Approach, Christensen, 2016.

PS14 Visual programming languages integrated
across the curriculum in elementary school:
A two-year case study using “Scratch” in five
schools, Sáez-López et al., 2016.

PS15 Teaching real-time programming using
mobile robots*, Rodríguez et al., 2016.

PS16 Computing Curriculum in Middle Schools:
An Experience Report, Sabbagh et al., 2017.

PS17 Computing for Medicine: An Experience
Report (Campbell et al., 2017)

PS18 Teaching concurrent and parallel
programming by patterns: An interactive ICT
approach (Capel et al., 2017)

PS19 K-12 Teachers Experiences with Computing:
A Case Study (Cooper et al., 2017)

PS20 Practical Robotics in Computer Science
Using the LEGO NXT: An Experience
Report (Estrada, 2017)

PS21 Applying PBL in Teaching Programming: an
Experience Report (Santos et al., 2018)

PS22 Improving Student’s Learning and
Cooperation Skills Using Coding Dojos (In
the Wild!) (Matheus et al., 2018)

PS23 Student Experiences with Collaborative
Problem-Based Learning (CPBL) in a
Second-Year Undergraduate Engineering
Course (Fang, 2018)

PS24 Inclusive Model for the Development and
Evaluation of Accessible Learning Objects
for graduation in Computing: A Case Study
(Mourão and Netto, 2018)

Figure 1 shows the evolution of the studies over
the last seven years (2012-2018). The curve of the
graph of Figure 1 shows a growing trend in recent
years, considering that the automatic search of RSL
did not include the year 2018 in full.

Figure 1: Temporal distribution of primary studies.

3.2 Limitations and Threats to Validity

This study has some limitations, which exist in any
qualitative research. Considering the literature
review, qualitative findings are highly based on
context, and case-dependent. To avoid bias, well-
established research methods with the support of data
extraction artifacts based on a spreadsheet and tags
definition were adopted, besides the direct
participation of two specialists with vast experience
in teaching computing together two undergraduate
students in computer science.

4 RESULTS

The next subsections comment on the research
questions.

4.1 Teaching Context

Out of the 24 studies, the most found context was
undergraduate teaching (16 out of the 24 studies).
Two studies talk about multiprogram teaching, which
evidences the need for programing skills; three talk
about middle to high school programming and two
studies talk about teaching programming for other
courses, such as medicine, administration and
economy. The following quotes evidence some of
these results:
"This study relates a multi-program (high school
summer enrichment courses, and at two- and four-
year colleges), teaching Java Programming; in GA,
USA”. PS1
"This study relates a high school program that
considers teaching; Basic programming concepts;
the study took place at the Abdellah University,
Morocco.” PS8
"This study reports a computing course in the context
of a Medical Doctor Program at the University of
Toronto.” PS 17

Figure 2 shows a summary of the educational
levels considered in the studies and their respective
concentrations.

Innovative Approaches in Teaching Programming: A Systematic Literature Review

209

Figure 2: Educational levels considered in the studies.

We can see that the greatest concentration of studies
is in adult education, particularly in the undergraduate
stage.

4.2 Proposal of Studies

Considering the categories proposed in Costelloe
(2016), the primary studies have shown evidence of
the adoption of four categories: cognitive
apprenticeship, PBL, robots, and approaches that
involved a combination of these proposals, defined as
“miscellaneous”. Figure 3 shows an overview of this
adoption, with a greater number of evidences to the
cognitive apprenticeship and PBL categories.

Figure 3: Proposal categories identified in the studies.

Table 2 summarizes the proposal of each category,
identifying its respective studies.

With regards to languages and approaches, most
studies use Java or Python, or, alternatively a visual
programming approach. Some deal with game-based
learning and some deal with project-based learning.
Most studies deal with collaborative programming
learning. Out of the 24 studies considered, three used
app development as the main proposal; three used
robot programming as their main approach,
particularly with the Lego NXT robot kit. With
respect to individual and collaborative learning, we
list below some evidences of these results:

Table 2: Primary studies per categories.

Category Proposal Studies
Lectures& Labs No evidence. _
Software
Visualization

No evidence.
_

Robots

Use of the LEGO
technology (serious
play, Mindstorms,
NXT).

PS5, PS9,
PS15, PS20

PBL

Project-based
practices, in order to
develop games,
mobile apps, systems
prototypes, and so on.

PS6, PS7,
PS8, PS14,
PS21, PS23,
PS24

Cognitive
Apprenticeship

Collaborative
learning, technology
support (such as
games, 3D virtual
environment), and
scaffolding used to
understand and
discuss programming
concepts.

PS1, PS2,
PS10, PS12,
PS13, PS16,
PS18

Miscellaneous

All of them combining
PBL and Cognitive
Apprenticeship, and
two of them also
including robots (PS3
and PS9).

PS3, PS4,
PS9, PS11,
PS17, PS22

"How smartphones, studio-based learning, and
extensive scaffolding were used in combination in the
teaching of a freshman Introduction to Programming
course, beginning with the visual programming
environment Scratch and culminating with Java
development for Android smartphones.” PS4
"This paper discusses the use of the LEGO
MINDSTORMS NXT mobile robots for teaching real-
time programming to bachelor’s students. The stable
real-time control of a segway-like robot with a PID
controller is used as case study to demonstrate the
teaching methodology. Ada was used as real-time
programming language.” PS15

4.3 Main Results

This study used the elements of the PBL methodology
as a theoretical basis for the analysis of the results
found from the use of innovative approaches in
programming teaching. Among the results found, we
highlight the 9 categories as shown in Table 3.

CSEDU 2020 - 12th International Conference on Computer Supported Education

210

Table 3: Main results from innovative approaches.

Main Results Description Primary Studies

Technical
Skills

Syntax, semantic, core
concepts, computational
thinking, specific
technologies

PS3, PS6, PS9,
PS11, PS14,
PS15, PS16,
PS18, PS20

Soft Skills

Teamwork, oral
communication,
creativity, critical
thinking, problem
solving, management
skills (time, product
quality, requirements),
self-directed

PS3, PS5, PS7,
PS8, PS16,
PS21, PS24

Collaboration
/Cooperation

Collaborative learning,
Peer review

PS3, PS4, PS6,
PS23

Student
satisfaction

Motivation,
engagement, effective
learning, better student
performance, student
confidence, improved
retention

PS1, PS3, PS4,
PS5, PS7, PS8,
PS9, PS10,
PS11, PS12,
PS13, PS14,
PS15, PS16,
PS17, PS18,
PS20, PS21,
PS23, PS24

Real
experiences

Real practices, create
application, thoughts of
entrepreneurship,
sharing experience with
software professionals

PS6, PS14,
PS20, PS22,
PS23, PS24

Content
sharing

Software code, artifacts,
apps, exercises

PS1, PS10,
PS11, PS13

Assessment
Monitoring of the
student progress,
continuous feedback

PS1, PS7,
PS11, PS21

Ample
curriculum

Curriculum with ample
vision of the CS area

PS2

Teaching
training

Professional
development to in-
service K-12 teachers

PS19

The most discussed results highlighted the

motivation and engagement of students through the
use of innovative teaching approaches and strategies
and intense collaborative work, always with great
enthusiasm and recommendation of continuity of the
respective proposals. The following evidences
illustrate some of these results:
"The resulting course meets goals and objectives,
provides wonderful motivation, and highlights
creativity and intellectual challenge within computer
science as well as syntax, semantics, and core
technical skills.” PS3
"In this pedagogical design, students interact and
create their own content related to curricular areas
with several advantages, such as motivation, fun,
commitment, and enthusiasm, showing improvements
related to computational thinking and computational
practices.” PS14

"This approach has been very efficient and our
application and had a significant engagement of the
participants in the course, considering the results
obtained and the satisfaction of students in learning
programming.” PS21

Other results also highlighted student
performance, pointing to considerable improvements
in the development of both technical skills related to
the knowledge of key elements in programming
(syntax, semantics, basic and advanced concepts,
platforms) and non-technical (professional skills)
related to teamwork, communication, innovation, and
managerial skills:
"That LSP has a positive impact on student learning,
while also improving student engagement with the
course material. Formal data along with written and
informal feedback from students suggests that LSP
helped improve soft skills, such as teamwork and oral
communication.” P5
"The student performance data shows its effectiveness
in increasing student understanding of difficult
concepts and the overall perception of using the
software was very positive.” P11
“Results show that students who studied computing
through Alice ME showed an improvement in their
critical thinking and problem-solving skills.” P16

A special highlight was the construction of a
practice-based learning environment, promoting
more effective learning from real problems and
solutions, as emphasized in following study:
"Outcomes from our experience can be considered
positive: all the students delivered project artifacts on
time, with a good level of quality and completeness
with respect to the established requirements (as
gathered values for software metrics also suggest).
All the students were enthusiastic in developing apps
for smart devices;(…)” P7

In addition to these results, some studies have
highlighted the sharing of content produced by
students, such as software code, documents,
applications, and other artifacts, which are important
in the learning process. It is also important to remark
the importance of monitoring students' progress with
continuous feedback. Two studies highlighted
specific results, one aimed at proposing a broader CS
curriculum, rather than an emphasis on programming
alone; and another, focused on the training of K-12
teachers, with the aim of forming programming skills
in students before higher education.

Finally, despite considering the challenges
encountered in general, it was possible to identify
how common they are in the categories most found in
Table 2.

Innovative Approaches in Teaching Programming: A Systematic Literature Review

211

4.4 Main Challenges

Considering the positive results of innovations in
teaching programming, not all studies have explicitly
commented on the open challenges. Some studies
highlighted improvements in their learning
environments, problems related to teaching
methodology planning, and others commented on the
culture change related to collaborative work. In order
to facilitate the understanding of the mentioned
challenges, we grouped them according to the
elements of the methodology defined in (Santos,
Furtado, and Lins, 2014), commented briefly in
Section 2.2. The main challenges are shown in Table
4.

Table 4: Main challenges in adopting innovative
approaches.

Main
Challenges

Description
Primary
Studies

Problem

Timing considerations, Short
time for practices, Task
planning, Emphasize
programing process and realistic
context, Presence of computing
in medicine

PS5, PS13,
PS15, PS17,
PS22, PS23

Environment

Configuration and Installation of
programming environments,
Maintenance/Evolution of
specialized labs, Cost of
technologies, Scaling up the
course,

PS1, PS3,
PS4, PS18,
PS20

Content

Lack time to learning specific
topics deeply, Didactic materials
elaboration/ preparation,
Complete pattern libraries using
Java, C ++ and C # languages,
Need to specifically scaffold the
integration of concepts

PS2, PS3,
PS12, PS15,
PS21

Human
Capital

Better to strong students than to
weak students, Adopting
faculty's experience and
expertise in application
domains, culture of sharing and
reflective practices, Competition
between students impacting
participation, Team building,
Some students prefer to study
alone

PS7, PS9,
PS10, PS16,
PS21, PS22,
PS23

Assessment
Process

More rigorous evaluation tools,
Accompaniment of the learning
methodology

PS16, PS21

Regarding the Problem element, some studies
have highlighted the need for special care with the
definition of time to perform tasks, which depending
on its complexity, can overwhelm the student, as in
the quote below:
"Timing considerations are extremely important
when planning an LSP activity that is supposed to fit

a single class period. All LSP case studies described
here were designed for 75-minute blocks.” PS5

 Still on this element, the importance of problems
arising from a real context, with the possibility of
practical application, as shown in the quote below:
 "As DevOps is highly skills-oriented and has strong
requirements on bringing up complex deployment
architectures fast, we have argued in favor of
teaching methods that emphasize programming
process and realistic context as well as using
performant virtualization environments.” PS13

Regarding the Environment, a special highlight is
the need for configuration and installation of
programming environments, maintenance and/or
evolution of specialized labs, and the cost of
technologies, such as robot development kits, as
highlighted in "we are looking at possibilities for
scaling up the course. The current set of robot kits
limits our enrollment to 66 students, adding NXT is
slightly complicated by the fact that the NXT v2.0 has
now been discontinued." PS20

This evolution of environments is also related to
two challenges highlighted: high costs and difficulty
in scaling up the course.

Regarding the Content element, some studies
have highlighted the need to develop better and more
complete teaching materials, including the need for
strategies that can promote the integration of contents
in an easier way for students. Study (Falkner et al.,
2016) highlights this need:
"These results support a hypothesis of the need to
specifically scaffold the integration of concepts,
beyond their mastery as individual concepts.” PS12

Challenges related to the Human aspect are also
commented on. In (Jazayeri, 2015) the study
emphasizes that the approach favors students who are
stronger over the weaker ones:
"Our combined approach helped the strong students
more than the Finaweak students.” PS9

Although some studies have shown concern about
the formation of teams aiming at collaborative work
(Santos et al., 2018), other studies point to
characteristics that hinder collaboration, such as
competitiveness, making it difficult to share artifacts,
and preference for individualized study:
"students 1) are stuck on a problem due to not
understanding it, 2) lack support from other students
(in terms of efforts and expertise), 3) have not enough
time to solve problems, and 4) prefer to study alone.”
PS23

From the point of view of teachers, the study
performed by Sung, Nash, and Pace (2016)
emphasizes the importance of adopting the

CSEDU 2020 - 12th International Conference on Computer Supported Education

212

experience and knowledge of faculty in application
domains.

Lastly, but by no means least, as far as the
assessment process is concerned, although it is a
critical subject in any discussion on education, few
studies have highlighted it as being a challenge. One
study highlighted the importance of a more rigorous
student follow-up process (Sabbagh et al., 2017); and
another study highlighted the need for management
of learning methodology, always aiming for
improvements (Santos et al., 2018).

5 CONCLUSIONS

The evolution of computing in all areas of daily life,
over the last decades is very well documented. This
entails that the teaching of computing also evolves,
and is kept synchronized with the needs of the market.
However, teaching and learning Programming, one of
the core subjects in computing are not easy tasks
(Lahtinen, Ala-Mutka, and Järvinen, 2005). The
authors of this study argue that one key aspect to be
considered is the teaching methodology used. In this
light, this study has set out to investigate what are the
innovative teaching and learning aspects found in the
literature.

To this end, we have carried out a SLR that aimed
at finding out what are the innovative teaching and
learning methods found in the literature, identifying
the educational context, the results and challenges of
their application. The review was executed in three
Computer Science Digital libraries.

Twenty-four primary studies were found in the
literature. Out of those, eighteen reported
investigations concerning undergraduate
programming learning, in response to RQ1. As far as
languages are concerned, most studies deal with Java
or Python. There is also a trend to use apps, robots
programming, and most experiences also are situated,
using either Project-based learning or Problem-based
Learning (RQ2). It is also reported that the intensive
use of collaborative learning, together with the
continuous monitoring of the students’ progress
fostered motivation and engagement and eagerness to
take projects further (RQ3).

Some of the challenges (RQ4) found involve
structuring and scaling up courses, which is related to
better structuring the learning environments
available; lack of time to learn some concepts more
deeply; time demanded in planning the course and
developing appropriate pedagogical materials. In this
respect we have also found reports of difficulties to
integrate teaching and learning resources that are

available on the web. There are also challenges
related to human capital and teamwork. Challenges
related to human capital encompass finding ways to
cater for both the stronger and weaker students; it also
shows the need to integrating the faculty’s expertise
in real world domains in the classroom, promoting
reflective and collaborative practices. There is also a
need for more evaluation tools and monitoring of the
learning methodologies used.

Finally, the authors believe that the categories
presented in this paper present a good starting point
for researchers in the area. In the near future, the
authors intend to focus on the developing and
assessing new methodologies, and that better
assessment of the application of teaching
methodologies is needed.

Starting with studies that combine approaches
such as PBL and cognitive apprenticeship, one of the
research proposals is to define a teaching
methodology to Python programming for high school
students, a gap that was identified. Each year, our
institution promotes this training based on the PBL
approach, during student vacations. The aim is to
motivate students with the area of computing, from
the development of programming skills. To this end,
we will be analyzing the studies focusing on how to
plan and manage all elements of innovative approach
(problem, environment, content, human capital, and
evaluation process).

ACKNOWLEDGEMENTS

The results presented here were developed as part of
joint research groups: N.E.X.T (iNnovative
Educational eXperience in Technology) research
group, with a focus on Computing Education
Research (CER); "PET Informática", a tutorial
education program created by Brazilian government
with the aim of developing standards of quality and
academic excellence, highlighting the articulation of
teaching, research and extension; and i-team. All of
these groups work at “Universidade Federal de
Pernambuco”, Brazil. Many thanks for all involved in
this study.

REFERENCES

Al Sabbagh, S., H. Gedawy, H. Alshikhabobakr, S. Razak,
2017. “Computing Curriculum in Middle Schools: An
Experience Report”.

Ayrapetov, D., S. Graham, 2002. “Program Visualisation:
Cognitive Issues and Technological Implementations”.

Innovative Approaches in Teaching Programming: A Systematic Literature Review

213

Campbell, J., M. Craig, M. Law, 2017. “Computing for
Medicine: An Experience Report”.

Capel, M., A. Tomeu, A. Salguero, “Teaching concurrent
and parallel programming by patterns: An interactive
ICT approach”, 2017.

Christensen, H. B., 2016. “Teaching DevOps and Cloud
Computing using a Cognitive Apprenticeship and
Story-Telling Approach”.

Cooper, S., S. Rodger, K. Isbister, M. Schep, R. Stalvey, L.
Perez, 2017. “K-12 Teachers Experiences with
Computing: A Case Study”.

Costelloe, E., 2016. “Teaching Programming: The State of
the Art. The Center for Research in IT in Education”.

Enkenberg, J. , 2001. “Instructional design and emerging
teaching models in higher education”.

Estrada, Francisco J., 2017. “Practical Robotics in
Computer Science Using the LEGO NXT: An
Experience Report”.

Falkner, K., N. Falkner, C. Szabo, R. Vivian, 2016.
“Applying Validated Pedagogy to MOOCs: An
Introductory Programming Course with Media
Computation”.

Fang, N., 2018. “Student Experiences with Collaborative
Problem-Based Learning (CPBL) in a Second-Year
Undergraduate Engineering Course”.

Francese, R., C. Gravino, M. Risi, G. Scanniello, G.
Tortora., 2015. “Using Project-Based-Learning in a
mobile application development course—An
experience report”.

Fuad, M. Muztaba, D. Deb, J. Etim, C. Gloster, 2016.
“Using Interactive Exercise in Mobile Devices to
Support Evidence-based Teaching and Learning”.

Hod, B. Chor R. et al., 2012. “CS1001.py: a topic-based
introduction to computer science”.

Jazayeri, Mehdi, 2015. “Combining mastery learning with
project-based learning in a first programming course:
an experience report”.

Jenkins, J., E. Brannock, T. Cooper, S. Dekhane, M. Hall,
M. Nguyen, 2012. “Perspectives on active learning and
collaboration: JavaWIDE in the classroom”.

John, Mr. Santhosh, Dr. Mary Shanthi Rani, 2015.
“Teaching Java Programming on Smartphone-
pedagogy and Innovation; Proposal of its Ontology
Oriented Implementation”.

Kitcheham, B., 2004. “Procedures for Performing
Systematic Reviews”.

Kurkovsky, S., 2015. “Teaching Software Engineering with
LEGO Serious Play”.

Lahtinen, E., K. Ala-Mutka, H. Järvinen, 2005. “A Study of
the Difficulties of Novice Programmers.

Linder, S. Paul, B. Edward Nestrick, S. Mulders, C. Leah
Lavelle, 2001. “Facilitating Active learning with
inexpensive Mobile Robots”.

Manuel, J., Sáez-López, M. Román-González, E. Vázquez-
Cano, 2016. “Visual programming languages integrated
across the curriculum in elementary school: A two year
case study using ‘Scratch’ in five schools”.

Mourão, Andreza Bastos, José Francisco Magalhães Netto,
2018. “Inclusive Model for the Development and

Evaluation of Accessible Learning Objects for
graduation in Computing: A Case Study”.

Oliveira, C. Matheus Campos de, E. Canedo, H. Faria, L.
Henrique Vieira Amaral, R. Bonifacio, 2018.
“Improving Student’s Learning and Cooperation Skills
Using Coding Dojos (In the Wild!)”.

Ouahbi, I., F. Kaddari, H. Darhmaoui, A. Elachqar, S.
Lahmine, 2015. “Learning Basic Programming
Concepts by Creating Games with Scratch
Programming Environment”.

Reardon, S., Brendan Tangney, 2014. “Smartphones,
Studio-Based Learning, and Scaffolding: Helping
Novices Learn to Program”.

Rodríguez, C., J. Luis Guzmán, M. Berenguel, 2016.
“Teaching real-time programming using mobile
robots”.

Santos, S. C., E. Santana, L. Santana, P. Rossi, L.
Cardoso, U. Fernandes, C. Carvalho, and P. Tôrres.
2018. “Applying PBL in Teaching Programming: an
Experience Report”, FIE, San Jose, USA.

Santos, S. C., Furtado F., Lins W, 2014. “xPBL: a
Methodology for Managing PBL when Teaching
Computing”, FIE, Madrid, Spain.

Sung, K., R. Nash, J. Pace, 2016. “Building Casual Game
SDKS for Teaching CS1/2: A Case Study”.

Ustek, D., E. Opavsky, H. Walker, D. Cowden, 2014.
“Course development through student-faculty
collaboration: a case study”.

CSEDU 2020 - 12th International Conference on Computer Supported Education

214

