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Abstract: We developed a web-based software tool, Pathway Integration and Analysis of Cancer Networks (PIACAN), 
to identify key cancer genes, pathways and sub-pathways that are implicated in more than one type of cancer.  
PIACAN is the result of merging biological pathways associated with 15 different human cancer types mined 
from the Kyoto Encyclopaedia of Genes and Genomes (KEGG). The Cytoscape software was used to port the 
mined information for pathway merging and subsequent analysis. Web-determined visualization of the 
merged networks was achieved by programming using the JavaScript library Data-Drive-Documents (D3).  
The results of PIACAN allow us a mechanistic glimpse into the potential development of secondary cancers 
spreading to distant tissues, following the primary tumour-localization in a specific tissue, via traversal of the 
blood-brain barrier.  Given the similarities in biological networks between different cancers, PIACAN allows 
us a glimpse into the similarities in cancer development in remote tissues.  PIACAN is a free, public, web-
accessible resource (https://adrquint.github.io/integrated-cancer-networks/), where users can identify how and 
where biological pathways and/or sub-pathways, depending on the cancer type. A video-demonstration of the 
preliminary work can be found at: https://www.youtube.com/watch?v=tOJ-EOY33fU. PIACAN is also 
developed as a knowledge- dissemination tool. In its current iteration, for each gene in the pathway, the system 
links to cancer gene information in KEGG, GeneCards, Gene Ontology, NCBI AceView, and Ensembl.

1 INTRODUCTION 

Cancer is the second leading cause of death in the 
United States (US) accounting for approximately, a 
million and a half diagnoses and six hundred thousand 
deaths per year (Siegel, Miller, Fedewa, et al., 2017). 
Targeting the local cancer tissue for one or more of 
several specialized treatment modalities is crucial for 
the remission of the cancer and an increase in patient 
survival rate. If diagnosed early, survival-rates are 
highest because the cancer cells are localized to a 
specific tissue or organ (ACS, 2016). Breast cancer, 
which is a leading cause of death in women, has a 99-
percent five-year survival rate when treatment begins 
during the (tumour) localized stage. If left untreated, 
and if distant tumour-formations occur, survival-rates 
decrease to 26-percent (Wingo, Cardinez, Landis, et 
al., 2003). Efforts to cure cancer have been underway 
and have evolved over several decades. Though 
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survival rates have increased as treatment modalities 
have improved, the overall morbidities associated with 
cancer have not significantly decreased (Murphy, 
Kocanel, Xu and Heron, 2015). 

In the primary stages of cancer (stages I-II), 
granular tumours are often small. It is recommended 
that tumours discovered at initial stages be surgically 
removed to deter the progression of the cancerous 
tissue onto adjacent tissue. A serious health concern 
is the metastasis of the cancer tissue, otherwise 
characterized by Stage IV cancer. At this stage, the 
cancer begins its progression to tissue that surrounds 
the primary tumour (ACS, 2015). In an ideal world, 
treatment would begin as soon as the patient began to 
exhibit symptoms. Diagnosis and disease progression 
is difficult to pinpoint however, due to the unknown 
progression patterns exhibited by certain cancers. 
(Nichols, Richmond & Daniels, 2017) Further 
treatment complications occur when the cancer 
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progresses into the meninges of the brain in the form 
of brain tumours. At this phase, the cancer has free 
access to cross the blood-brain barrier (BBB) (Fidler 
& Ellism 1994). Consequently, the survival rate at 
this stage decreases dramatically due to the inability 
for modern drug treatments to effectively penetrate 
the BBB (Nieder, Spanne, Mehta, et al., 2011; 
Marchesi, 2013). 

Ongoing research suggests that signalling 
pathways associated with cancer progression are 
interconnected (Andrew, 2008).  Autophagy, which is 
the programmed degradation of a cell and its proteins, 
is initiated at the preliminary stages of cancer. It is 
believed that certain chemical triggers resulting from 
adjacent chemical signalling reactions activate this 
process of degradation. These adjacent pathways 
have been theorized to be part of p53 signalling and 
the mTOR sub-network. More importantly, one 
observes connections in certain cancer networks, 
which contain in them sub-networks or through 
specific nodes in the networks, progress to adjacent 
networks. Studies suggest that the p53 signalling 
pathway transcends through the mTOR sub-network 
via the gene AMPK; it then exits the mTOR sub-
network via the gene FIP200, thereby resulting in the 
activation of autophagy-related processes of (Ganley, 
Lam, Wang, et al., 2009). The importance of targeting 
certain signalling pathways for inhibition is further 
complicated by the realization that if a part of a 
pathway is altered this could lead to unwanted effects 
downstream (Liu, Mou, Yu, et al., 2011).  

In recent years, the development of bioinformatics 
tools has allowed for the visualization of signalling 
pathways via web resources. One such comprehensive 
resource is the Kyoto Encyclopaedia of Genes and 
Genomes (KEGG), created and constantly updated 
since 2000 (Kanehisa & Goto, 2000). This resource 
and others like it have propelled the study of genomic 
pathways and their overall transcriptional effects 
within different organisms (Arlt, Casper, Glover, et al., 
2003). In this study, we focused on libraries that 
represent research related to cancer pathways and their 
genomic interactions within humans.  

In studying the pathways and genomic products 
that are associated each independent cancer, different 
notions of treatment can be considered (Krogan, 
Lippman, Agard, et al., 2015). The segregation and 
independent study of the most common genes found 
in distinct cancers has led to the development of 
diagnostic testing that is specialized in detecting the 
abnormal transcription of one gene in a series of 
pathways involved in one type of signalling.  

The merging of different signalling pathways to 
assess functional relatedness has allowed for the 

analysis of once thought to be independent signalling 
events. In merging pathway networks, one can begin 
to track the differential centres found in the merged 
networks. Key results of this process are the advances 
in the research of personalized (now called) precision 
medicine (Iyengar, Zhao, Chung, et al., 2012). Thus, 
pharmacological applications can be specialized to 
target the multiple genomic and epigenomic 
signatures for a patient by targeting common centres 
for pathways that are activated in a downstream or 
upstream process. In this form of treatment plan, a 
patient is treated not by their overall symptoms for a 
disease but by their own distinct genomic markers 
exhibited during disease progression.  

The study of cancer pathway networks has 
revealed that many of the genes and gene products 
involved in each cancer are not unique to just one 
cancer in general but are in fact in multiple cancer 
pathways (Edelman, Guinney, Chi, et al., 2008) 
Although previous research suggests that the 
correlation between one specific cancer and the 
development of a subsequent different cancers are 
strong (Khatri, Sirota, Butte, et al., 2012), research 
conducted to substantiate thise has been insufficient, 
especially, in a way that allows one to visualize these 
interactions. 

Our systematic approach could lead to an 
innovative targeting of cancers at key locations before 
they metastasize and form secondary cancers. Our 
research focuses on better understanding these 
cancer-related gene interconnections by utilizing 
available bioinformatics tools and online genomic 
libraries to visually link networks at common gene 
points—referred to as nodes—and document the 
overlaps in the pathway-networks for 15 typically 
identified cancers in humans. 

2 MATERIALS AND METHODS 

PIACAN—a meta-network system that allows users 
to visualize commonalities in cancer-related 
biological pathways is the first of its kind.  We 
anticipate that users: clinicians, biomedical 
researchers and students will be able to easily access 
through this resources, knowledge related to the 
literature, clinical trials, drug-gene interactions, Big 
Data and genomic data-driven mapping onto cancer 
pathways. Novel discoveries and testable hypothesis 
will be possible from the identification commonality 
in genes and sub pathways among different cancer-
types. 
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2.1 Data Processing 

All the preliminary computational work and data 
analysis conducted in this study was performed on an 
Apple MacBook Pro (late 2013 model) running 
MacOS version 10.12.3. The information used to 
populate the studied cancer networks was obtained 
from the KEGG online library via customized Python 
script (section 2.2). The script was created using 
Python version 2.7.11 and was executed in Python’s 
Integrated Development and Learning Environment 
(IDLE) version 2.7.11. Any additional code utilized 
in the creation or updating of the networks can be 
found in the attached appendix.   

2.2 Network Design and Integration 

The cumulative network containing all 15 cancer 
networks was created using Cytoscape (Shannon, 
Markiel, Ozier, et al., 2003) version 3.4.0 in 
conjunction with Java version 1.8.0_111. Each cancer 
network was imported individually into Cytoscape 
(www.cytoscape.org) via the Cytoscape application 
KEGGParser (Nersisyan, Samsonyan, Arakelyan, 
2014) version 1.7.11. Importing each sub-network 
individually allowed for the verification of the data, 
especially comment tagging, assuring its 
completeness before the cumulative merge was 
initiated. The specific composition of each sub-
network was used by Cytoscape to determine which 
nodes and edges would be fused in the cumulative 
network. During the merging process, each network 
element was analysed by Cytoscape to determine 
whether it was common in the adjoining network; 
and, if the match was found, it would lead to the 
accumulation of comment tags. Cytoscape network 
merge tools were used to integrate the 15 sub-
networks into a cumulative network. 

Customized Python scripts requested the pathway 
information for each cancer network by leveraging 
the KEGG API. The script searched for the organism 
Homo sapiens (code in KEGG for human: hsa) and 
output all available files matching the specified 
protocols. The files were all saved separately in the 
eXtensible Markup Language (.xml) format. 

2.3 Network Information Formatting 

Cytoscape export controls were used to export the 
background information of the cumulative network in 
the Cytoscape.js (.cyjs) format. 

The data contained in the exported file were first 
reformatted into the JavaScript Object Notation 
(JSON, .json) format by using Regular Expression 

(regex) patterns thereby creating the required JSON 
file. The data contained in the JSON file were further 
adjusted to include a community object and to 
account for the additional genomic libraries appended 
to each individual node in the form of image 
hyperlink objects (Figure 1).  
 

 

Figure 1: The preliminary merging of 15 cancer-type 
biological pathways from the KEGG resources by the 
Cytoscape network analysis software. Green rectangular 
nodes represent genes. Smaller circular nodes represent 
chemical compounds. Each edge represents an individual 
interaction within a pathway. 302 edges and 256 nodes are 
represented in the merged pathways system.  

Each image hyperlink object serves the purpose of 
affixing a path that when clicked would redirect the 
web browser to supplementary genomic content 
stored in KEGG, NCBI AceView, GeneCards, Gene 
Ontology, and Ensemble (depending on which icon is 
selected) as will be illustrated in Figure 5b. The 
community object includes information regarding 
background pathway information of each individual 
gene and compound node. The community object 
serves two primary purposes: first, it allows for 
further characterization of the node information 
detailing the specific biological pathway(s) that 
contains that node; and, second, it allows for future 
implementation of features which will allow for the 
visualization of each independent sub-pathway 
contained in each of the 15 cancer sub-networks. 

The final cumulative network was migrated to a 
freely accessible webpage located on GitHub 
(https://adrquint.github.io/integrated-cancer-
networks/). The migration of the cumulative network 
allowed for final visualization of the cumulative 
network as well as the implementation of JavaScript 
applications. Network visualization was accomplished 
by using the “Force Directed” Layout found on the 
Data-Drive Documents JavaScript library (D3.js) 
(https://d3js.org/). A selection colour palette was added 
on the left side of the page, Figure 2).  
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Figure 2: The fifteen cancer networks represented as circles 
with specific colour codes.  The size of the circles are 
illustrative of the number of genes involved in each cancer 
network. 

This allowed for a specific cancer sub-network to 
be selected and the background to become semi-
transparent; this visual aid identifies the network 
being considered in the context of the overall merge-
system. The selection for each individual sub-
network grants the user the ability to visualize one 
network at a time. By selecting multiple networks, 
this process can be additive to form merged networks 
which are strictly common to only those cancer types. 
The palette also serves the purpose of associating the 
node (gene product) with specific cancer networks. A 
drop-down menu was incorporated to allow the user 
to directly view and select the genes present after the 
selection of one or several sub-networks. 

3 RESULTS AND DISCUSSION 

Figure 1 represents the results of work that involved 
auto-downloading, merging and developing a 
cumulative network containing 15 human cancer-
sub-networks.   

The green rectangles are nodes that represent gene 
products. Chemical compounds contained in a 
pathway are represented by smaller circular nodes 
(possibly too small to visualize). The edges that 
connect the genes represent an individual type of 
interaction in the pathway. The networks for 
specifically chosen types of cancers represent 265 
nodes and 302 edges. 

Table 1 represents the number of nodes and edges 
identified for each of the 15 types of cancers studied. 
Breast cancer is significantly overrepresented in the 
table. 

The primary aim of this paper is to illustrate the 
merging of cancer networks. The methodologies 
described in the previous section demonstrated how 

the position of the node in the network is transferred 
from the cancer biological pathway name to the gene.  
Table 2 represents a truncated list of sub-pathways 
and networks that are associated with common genes.  
The full Excel spreadsheet is available upon request 
from the corresponding author of the paper (CJC). 

Table 1: The Table shows the total number of nodes (genes) 
involved in the pathways and the total edges (interactions) 
for each cancer-type. 

Cancer Network Nodes Edges 
Breast 119 104 
Glioma 78 73 
Renal Cell Carcinoma 64 34 
Pancreatic 57 45 
Prostate 57 47 
Colorectal 55 32 
Chronic Myeloid Leukaemia 54 42 
Non-small Lung 54 47 
Small Lung 47 34 
Acute Myeloid Leukaemia 44 40 
Endometrial 43 25 
Bladder 39 17 
Melanoma 34 23 
Basal Cell Carcinoma 27 11 
Thyroid 26 14 

 
Cytoscape is a powerful network design and 

analysis software. It can be used for different 
networks—not necessarily for biological pathways.  
One of the drawbacks of using the Cytoscape network 
analysis software however, is in the area of universal 
knowledge dissemination. This standalone software 
has to be downloaded to one’s computer (free). In 
order to make the merged-network resource, 
PIACAN, accessible over the Internet, the web 
resources were developed as described in Section 2.3. 

Table 2: The table shows which genes are common to the 
four pathways that contain the most number of common 
genes. 

Gene Node Sub-Networks 

ARAF ENDO, nSCLC, PROS, BRCA, AMLE, BLAD, COLO, GLIO, 
RENA, PANC, CMLE, MELA 

MAP2K1 ENDO, nSCLC, COLO, PROS, BRCA, AMLE, BLAD, GLIO, 
THYR, RENA, PANC, CMLE, MELA 

MAPK1 ENDO, nSCLC, COLO, BRCA, PROS, AMLE, GLIO, BLAD, 
THYR, PANC, RENA, CMLE. MELA 

PIK3R5 BRCA, CMLE, MELA, PANC, nSCLC, ENDO, SCLC, PROS, 
GLIO, AMLE, COLO, RENA 

 

PIACAN: Pathway Integration and Analysis of Cancer Networks

249



When the user accesses the PIACAN web-
resource (https://adrquint.github.io/integrated-
cancer-networks), the web page dynamically opens 
into a two-panel arrangement. The first panel (Figure 
2) indicates the 15 cancers in colour-coded circles.  
The size of the circles represent the number of 
pathways associated with that specific cancer type.  

Each gene in figure 3 is represented only once in 
the merged pathway system. Each of these genes is 
colour coded. Most have multiple colours. The 
colours allow the user at a glance to see which cancer 
pathways contain that gene. Figure 4 is a close-up of 
a portion of Figure 2.  

 

 

Figure 3: The figure shows all the merged cancer networks 
for all cancer types. The gene-nodes in this merged pathway 
are represented by circles. Each gene is represented by 
colours depending on the number of pathways of cancer 
types they represent. 

 

Figure 4: Close-up of a region of the merged cancer 
networks that show colours for each gene representing 
cancer types with which they are associated. 

In figure 4, (a zoomed-in area of the merged 
network represented in Figure 3), one can see, for 

example, that two colours represent the BRAF gene: 
purple and dark gray. The colours can be matched by 
the cancer type in figure 2a which shows that BRAF 
gene can be found in Thyroid Cancer (dark gray) and 
Melanoma (purple). One can also see that the ARAF 
and PIK3R5 genes are present in many of the cancers 
whose pathways are represented here.  

The web resource also helps users dynamically 
assess genes, pathways and cancer types. Users can 
click multiple cancer types and only those nodal-
genes implicated in selected cancers and their 
associated networks and sub-networks become 
visible (Figure 5 and 6). 

 

 

Figure 5: Figure shows a use-case where the user has 
selected three cancer-types. The other cancer-types faded 
for additional clarity. 

 

Figure 6: When specific cancers are selected, only the 
merged pathways related to those cancers are illustrated 
from the complete pathway show in Figure 3. The red-
bordered inset shows how when a mouse is placed over a 
gene, dynamic links are created (via icons) for more 
information about that gene at KEGG, AceView, NCBI, 
Gene Ontology, Gene Cards and Ensemble. 
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Circles representing the other cancers are 
rendered faded. In the right panel only the nodes that 
are common to breast and prostate cancer are 
rendered—the rest of the meta-network is faded.  The 
colour codes on the genes that are common to cancer-
types to which they belong. 

4 DISCUSSION 

PIACAN allows the direct and dynamic comparison 
each of the 15 cancer networks against each other in 
terms of gene content. In this study, we have changed 
the paradigm of the assessment of gene- networks 
from the “network name” to the “gene”. The latter 
now becomes the pivotal node around which the 
merged networks are illustrated.   

The comparative analyses resulted in the 
conclusion that a common set of genes initiated 
several cancer progression origin sites. Furthermore, 
this information can be utilized to actively monitor 
the organism’s evolutionary developments and how 
this process affects cancer progression. To illustrate 
this, we assessed the merged pathways and coinciding 
sub-networks for three cancers: breast and 
endometrial cancers, breast and prostate cancers, and 
endometrial and prostate cancers. The rationale 
behind the selection of these pair-wise comparisons 
was due to these groups having the closest alignments 
in regard to the number of genes they had in common.  
Breast and Endometrial Cancer. The comparison of 
the breast and endometrial cancer groups yielded 20 
common genes between the two groups. This 
comparison produced the highest number of common 
genes of all the three groups compared. Out of the 20 
common genes, eight of these are found in the 10 
genes most commonly found in all 15 networks. The 
only two that weren’t found in the 20, were RB1 and 
E2F1. Although, drawing connections between 
pathways in terms of a mechanism of the progression 
of cancer from a primary to a secondary tissue is 
premature, it is noteworthy that the overlap between 
the breast cancer and endometrial cancer networks is 
significant. One can make the case the genomic 
relatedness of these two cancers can be attributed to 
the fact that both tissues are anatomically present 
primarily in females and thus the possibility that they 
both are active is much higher than in a study 
comparing differences in cancer that primarily affect 
one sex over the other. The connection between breast 
and endometrial tissues can be attributed to the stages 
of embryonic development. In these processes, the 
tissues differentiating the male and female sexes 
develop resulting in distinctive developmental 

processes uniquely found in one sex and not the other. 
In females,  
Breast and Prostate Cancer. In our second group, we 
compared the levels of overlap in gene contents of 
breast and prostate cancers. This group contained 19 
common genes which were found to be active in both 
cancers. Out of 19 common genes, nine of which were 
found in the list of the top most commonly found 
genes among the networks processed. The only one 
that wasn’t was TP53. Generally, cancers affecting 
primarily one sex have a much higher percentage of 
cases reported within that sex. Cases of occurrences 
in the opposite sex however, are also common. Breast 
cancer is predominately present in females; however, 
cases in males have been reported.  
Endometrial and Prostate Cancer. In the third group, 
we compared the gene contents of endometrial and 
prostate cancers. This group contained 18 common 
genes involved in both cancer networks. Out of the 18 
common genes in this group, seven of these were 
found in our top 10 common genes in all of our 
networks. 

5 CONCLUSIONS 

The merging of the cancer networks demonstrated 
that the gene products found within certain cancer 
networks are not unique.  They are found in many 
other mapped networks.  PIACAN leverages on-line 
resources of cancer-pathways, already available 
network merging pathways as well as web-
development for universal free access. Although this 
is a valid step forward and provides many 
opportunities for discovery, more work remains to be 
done. Integrating more data from addition resource 
into our dynamic networks would be highly beneficial 
to visually expressing the similarities found between 
different cancers. 

The information contained within KEGG is vast 
and diverse; it is not however, the only online 
resource that can be incorporated into our research. 
What was demonstrated in this report is a pilot 
system. To make this a truly comprehensive system, 
future work will involve the incorporation of 
information of online libraries including PubMed, 
PubChem, and the Protein Data Bank (PDB). The 
resources for gene-product information which 
PIACAN can currently access are those where the 
gene product name can be directly incorporated into 
a URL link.  If we were to create additional links to 
resources where gene information is mapped onto 
alphanumeric IDs, the one would have to dedicate 
effort to translating these IDs into gene names.   
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With the array of other online bioinformatics 
libraries, which are freely accessible, it possible to 
begin to make conjectures and generate hypotheses as 
to how diseases, in this case cancer, are related and 
how they interact with each other. This systematic 
approach could lead to an innovative targeting of 
cancers at key locations before they metastasize and 
form secondary cancers, which is a significant health 
concern. 
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