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Abstract: A metaobject protocol is an object-oriented interface that allows a programming language to be efficiently 
extended by users of that language from within the language itself. A metasemantic protocol is a 
generalization of that idea, providing a mechanism to allow users of a formally defined modeling language to 
syntactically and semantically extend that language from within the language. Such an approach is 
fundamental to the language architecture being developed for the proposed second version of the Systems 
Modeling Language (SysML). SysML v2 is being effectively defined as an extension to a foundational Kernel 
Modeling Language (KerML), and then users can define domain-specific languages in the same way as 
extensions of SysML. This approach is already being worked out in the ongoing pilot implementation of 
SysML v2, but there is still much to do before the vision of a true metasemantic protocol is fully realized. 

1 INTRODUCTION 

Almost thirty years ago, Gregor Kiczales and his 
colleagues proposed the idea of a metaobject protocol 
for programming languages (Kiczales, 1991). They 
defined metaobject protocols as “interfaces to the 
language that give users the ability to incrementally 
modify the languages behavior and implementation”. 
With this approach, “users are encouraged to 
participate in the language design process”, but 
without compromising “program portability or 
implementation efficiency”. 

For better or for worse, few languages in the 
ensuing years provided metaobject protocols for their 
users. As Kiczales et al. admit in their original work, 
developing such protocols is hard, and they did not 
claim to have entirely solved the problem. Further, 
the implementation they provided was embedded 
within the Common LISP Object System (CLOS). 
CLOS provides powerful metalinguistic tools for 
such an implementation, but it has a LISP syntax that 
is daunting to many and a dwindling user community 
that has limited the understanding of the proposed 
meta-object protocol approach. 
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Nevertheless, the need for user-specialized 
languages did not go away. Today we see much work 
on domain-specific programming languages (DSLs), 
sometimes created from scratch using language 
workbench technology (such as Xtext 1  or 
JetBrains/MPS2). However, some level of domain-
specificity can be provided in any programming 
language using specialized libraries. And some 
general purpose languages (such as Ruby 3 ) are 
particularly well-suited to being tailored in this way 
to provide so-called “internal DSLs”, somewhat in 
the spirit of the original metaobject protocol concept.4 

The tension between general-purpose and 
domain-specific languages also exists in the modeling 
world. Well-known general-purpose modeling 
languages include the Unified Modeling Language™ 
(UML, 2017), the Systems Modeling Language™ 
(SysML, 2018) and the Business Processing Model 
and Notation™ (BPMN, 2014), all standardized by 
the Object Management Group (OMG).5 On the other 
hand, DSL workbenches can also be used to create 
very targeted domain-specific modeling languages 
(e.g., see Voelter, 2018). 

Further, the profile mechanism in UML is 
essentially intended as an internal DSL capability. 
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Indeed, SysML is currently defined as a standard 
profile of UML, tailoring the more general language 
for use within the more specific systems engineering 
community. User-defined profiles are also often used 
within organizations and teams to succinctly capture 
modeling patterns and domain-specific concepts 
commonly used within those groups. 

Unfortunately, profiles in UML do not actually 
provide a full language extension mechanism. In 
particular, the lack of a formal semantic definition for 
UML means that profiles cannot provide any precise 
way to extend the semantics of the language. (While 
Foundational UML and succeeding standards based 
on it do provide precise execution semantics for a 
subset of UML, this subset does not yet include a 
precise semantics for profiling.) At best, profiles 
provide a formal means for syntactic extension UML. 
However, most UML modeling tools provide only 
limited support for even syntactic tailoring of UML 
using profiles, often with little more support of user 
profiles in UML 2 than the basic stereotyping and 
tagging capabilities of UML 1. 

However, in 2017 OMG issued a request for 
proposals (RFP) for version 2 of SysML that no 
longer requires the language to be a profile of UML 
(SysMLv2, 2017). But the RFP includes 
requirements calling for the language to have a formal 
semantic basis that could be truly extended by users. 
In addition, even though SysML v2 no longer needs 
to be based on UML, it would be desirable to continue 
to have interoperability between software and 
systems modeling in the context of today’s many 
software-intensive cyber-physical systems. 

In response, the cross-industry team currently 
working on a submission to the RFP6 has proposed a 
language architecture in which the desired SysML v2 
is based on a Kernel Modeling Language (KerML) 
that acts as a general foundation for building 
modeling languages. KerML moves a step beyond the 
current OMG Meta Object Facility (MOF) 
technology, which formalizes only the definition of 
the abstract syntax of a modeling language, by also 
providing a formal grounding for the definition of the 
semantics of modeling languages built on it. And, as 
with the metaobject protocol, the idea is that, just as 
SysML v2 is based on KerML, users can, in the same 
way, build their own more tailored domain-specific 
language extensions, syntactically and semantically, 
on SysML v2. However, in contrast to the inherently 
object-oriented programming mechanism proposed 
by Kitczales et al., this approach can be more 
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generally termed a metasemantic protocol for 
modeling language extension. 

This protocol can be summarized by the following 
steps: 

1. Define a model library that specifies the formal 
semantic concepts needed in a language 
extension. 

2. Define the abstract syntax for the language 
extension in terms of patterns of usage of the 
model library that can be mapped back to the 
abstract syntax of the language being extended. 

3. Define a user-friendly surface syntax for the 
language extension that maps to the extended 
language abstract syntax. 
The first two steps of the protocol have been 

applied to UML and SysML in (Bock 2011) and 
(Bock 2019). This paper gives an outline of how the 
protocol is being further developed in the ongoing 
work on SysML v2, and, in particular, examples of 
the application of the third step. While the full SysML 
v2 definition includes a complete abstract syntax as 
well as both graphical and textual concrete surface 
syntaxes, the presentation in this paper will focus on 
the textual surface syntax, due to space limitations. 

Section 2 presents an overview of basic structural 
modeling in KerML and its model-library-based 
approach to language extension. Section 3 describes 
how the metasemantic protocol is used to build 
SysML v2 on KerML, and Section 4 then discusses 
how the same protocol can be used to build domain-
specific language extensions to SysML v2. 

2 KERNEL MODELING 
LANGUAGE 

KerML provides a basic set of modeling capabilities 
based on a formally defined semantic core. For the 
purposes of this paper, we will discuss only some 
simple structure modeling capabilities and only 
describe the underlying core semantics informally. 
The focus, in subsequent sections, will then be on 
how successive layers of user-focused modeling 
languages can be built, syntactically and 
semantically, on this foundation. 

UML and SysML are primarily graphical 
languages, and SysML v2 will also define graphical 
views of models, as SysML v1 does. However, unlike 
UML and SysML v1, KerML and SysML v2 will also 
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both provide standard textual modeling notations. For 
the purposes of this paper, and for general discussions 
of language extensibility, it is easier to focus on just 
this textual notation. 

So, to begin, consider a very simple model of a car 
that has an engine and four wheels, and which may 
have a driver. Using the KerML textual notation, this 
model may be represented as follows: 

class Car { 
 feature driver: Person[0..1]; 
 composite feature engine: Engine[1]; 
 composite feature wheels: Wheel[4]; 
} 
 

As in UML, a class specifies a type whose 
instances are objects that have various features. A 
feature defines a mapping from instances of the 
featuring class to instances of the type of the feature, 
with some multiplicity. A composite feature is 
considered to be an integral part of the featuring 
object, while a non-composite feature is simply 
referential. 

Next, define an association between an engine 
and the wheels driven by that engine: 

assoc DriveTrain { 
 end engine: Engine[0..1]; 
 end wheel: Wheel[*]; 
} 

Again, as in UML, an association is a type whose 
instances are links between objects of the types of the 
end features of the association. The basic difference 
between an end feature and a regular feature is that 
the multiplicity of an end is for navigation across the 
association. That is, the above association specifies 
that one engine can be linked to multiple wheels, but 
a wheel can only be linked to (at most) a single 
engine. Nevertheless, each instance of the association 
will link exactly one engine to exactly one wheel. 

Given the DriveTrain association, we can now 
extend our earlier Car model to reflect the fact that (in 
this simple model) exactly two of the wheels of a car 
are driven by the car's engine: 

class Car { 
 feature driver: Person[0..1]; 
 composite feature engine: Engine[1]; 
 composite feature wheels: Wheel[4]; 
 connector drive: DriveTrain  
  from engine[1] to wheels[2]; 
} 
 

A connector is a feature whose instances are links 
specifically between values of features of the 
containing class of the connector. Thus, the connector 

drive specifies that the single engine of the car has 
links to two of the wheels of the car. It is fundamental 
to the semantics of the connector that the linked 
engine and wheels are parts of the same car. 

Now, some of the semantic statements made in the 
description of the example above are actually 
captured more formally in terms of elements of a 
Kernel Model Library that is integral to the 
specification of KerML. For instance, this model 
library includes the following elements (this is a 
simplification of the actual library, adequate for our 
present purposes): 

class Object specializes Anything; 
 
class BinaryLink specializes Object { 
 end source: Anything[*]; 
 end target: Anything[*]; 
} 
 

The type Anything is at the root of the KerML 
type specialization hierarchy. The class Object is 
then the base type of all classes of things with identity 
and properties that may change over time (as distinct 
from data values, not considered in detail in this 
paper, which are immutable things with value 
semantics). The class BinaryLink is the base type of 
all binary associations, whose instances are objects 
that link a source thing to a target thing. 

The notation previously used for the association 
DriveTrain is actually a shorthand for the more 
explicit class model shown below: 

class DriveTrain specializes BinaryLink 
{ 
 end engine: Engine[1]  
  redefines BinaryLink::source; 
 end wheels: Wheel[*]  
  redefines BinaryLink::target; 
} 
 

That is, DriveTrain is a class that specializes 
BinaryLink, redefining its source and target ends to 
have more restrictive types and multiplicities. In this 
way, the semantics of associations are reduced to the 
semantics of classes with end features (and the only 
difference between end features and the fundamental 
semantics of regular features is in how multiplicity is 
interpreted). 

The earlier model of a car, as extended with a 
connector, is then itself a shorthand for: 

class Car specializes Object { 
 feature driver: Person; 
 composite feature engine: Engine; 
 composite feature wheels: Wheel[4]; 
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 composite feature drive:  
        DriveTrain[*] { 
  end engine: Engine[1]  
   redefines DriveTrain::engine  
   subsets Car::engine; 
  end wheel: Wheel[2]  
   redefines DriveTrain::wheel  
   subsets Car::wheels; 
 } 
} 
 

That is, the connector drive is actually just a 
composite feature whose type is the association 
DriveTrain. But, further, the actual connection 
between the engine and wheels features of Car is 
modeled using local redefinitions of the end features 
of DriveTrain. For example, the redefinition of 
wheel specifies that, in the context of a car, the 
engine is linked to exactly two wheels and the linked 
wheels must be a subset of the overall set of wheels 
that are part of the car. 

Allowing a feature to have nested features is a 
critical capability in KerML that is not found in UML 
or most other modeling language (nor even in 
ontological languages like OWL). One can think of 
nested features as being part of a local specialization 
of the base type of the containing feature, but with a 
specifically contextual semantics. This contextuality 
is what ensures, for example, that the feature drive 
in the class model above fundamentally has the 
desired connector semantics in which the engine and 
wheels linked by the feature must be part of the same 
car. 

As we will see, this ability to define features 
contextually nested in other features is especially 
important for achieving semantic extensibility. 

3 SYSTEMS MODELING 
LANGUAGE 

The current proposal for SysML v2 is to define it as 
an extension to KerML. Semantically, this extension 
is captured in the Systems Model Library for SysML, 
which extends KerML's Kernel Model Library. The 
elements of the Systems Model Library capture the 
key systems modeling concepts that are important for 
the systems engineering user community of SysML. 

For example, a central idea in the structural 
modeling of systems is that a system can be 
decomposed into parts, and that these parts can have 
ports, which define specific points through which the 
parts can be interconnected. This conception is 

captured as follows in the model library (again, this is 
a simplification of the actual SysML model library): 

class Part specializes Object { 
 composite feature ports: Port[*]; 
} 
 
class Port specializes Part { 
 feature inputs: Anything[*]; 
 feature outputs: Anything[*]; 
} 
 

Given the concepts of parts and ports, we can then 
provide the ability to specify the interfaces between 
parts in terms of how their ports may be 
interconnected. Unlike the way the term “interface” 
is used in software engineering, to a systems 
engineer, an interface generally specifies not just the 
externally visible face of a single part, but both ends 
of an allowed connection between two parts. Thus, 
we define an interface as an association that connects 
two ports: 

class Connection specializes  
  BinaryLink, Part { 
 end source: Part[*]  
  redefines BinaryLink::source; 
 end target: Part[*]  
  redefines BinaryLink::target; 
} 
 
class Interface specializes Connection 
{ 
 end source: Port[*]  
  redefines Connection::source; 
 end target: Port[*]  
  redefines Connection::target; 
} 
 

Given just the above systems engineering 
concepts, we can now improve our earlier model of a 
drive train into a (slightly) better systems engineering 
interface model: 

class DrivePort specializes Port { 
 feature torque: Torque  
  subsets outputs; 
} 
 
class DrivenPort specializes Port { 
 feature torque: Torque  
  subsets inputs; 
} 
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assoc DriveTrain specializes Interface 
{ 
 end drive: DrivePort  
  redefines Interface::source; 
 end driven: DrivenPort[*]  
  redefines Interface::target; 
} 
 

Unlike the model given in the previous section, the 
interface model for DriveTrain is no longer specific 
to the Engine and Wheel types, but can be used to 
specify the interface between any two parts that have 
DrivePort and DrivenPort connection points. 

Note that the DrivePort class defines a torque 
output and that the DrivenPort class has a 
corresponding torque input. This means that the two 
port definitions are compatible for specifying the 
opposite ends of an interface. In general, two ports are 
compatible if, for any input of one of the ports, there 
is a corresponding output of the other port. 

Next, we can use the above interface definition for 
DriveTrain in our Car model (presuming that 
Engine and Wheel are also redefined as parts): 

class Car specializes Part { 
 feature driver: Person; 
 composite feature engine: Engine { 
  composite feature enginePort:  
   DrivePort subsets ports; 
 } 
 composite feature wheels: Wheel[4]; 
 composite feature driveWheels:  
   Wheel[2] subsets wheels { 
  composite feature wheelPort:  
   DrivenPort subsets ports; 
 } 
 connector drive: DriveTrain  
  from engine::enginePort[1]  
  to driveWheels::wheelPort[2]; 
} 
 

Now, rather than the drive connector being directly 
between the engine and the wheels, it is a connection 
between the corresponding ports on those parts. Note 
that we have added the ports locally to the engine 
and driveWheels features of Car, rather than to the 
Engine and Wheel classes themselves, to emphasize 
that these are localized connection points to the 
engine and wheels in a specific car. Further, this 
allows us to more specifically model that only two of 
the wheels of a car are drive wheels and that only 
these wheels have the ability to be interfaced to the 
engine. 

The Systems Model Library provides the 
additional semantic concepts necessary to use KerML 
in a more specialized domain like systems 

engineering. However, syntactically, the resulting 
system engineering models are rather cumbersome 
and inconsistent with the kind of structural modeling 
terminology familiar to system engineers. This may 
be remedied by providing a specialized surface syntax 
for SysML, in just the way that the notation for 
associations and connectors in KerML was really just 
syntactic sugar for specific patterns of usage of 
classes and features. 

Thus, using the specialized SysML textual 
notation, the interface definition given above for 
DriveTrain is written as follows: 

port def DrivePort { 
 out torque: Torque; 
} 
 
interface def DriveTrain { 
 end drive: DrivePort; 
 end driven: ~DrivePort[*]; 
} 
 

In this syntax, special keywords like port and 
interface are used as markers for corresponding 
linkages to the semantic library. Further, the notation 
~DrivePort specifies a conjugation of the port 
definition DrivePort. The conjugate of a port 
definition is a port definition with similar features, but 
with inputs and outputs reversed. In this way, a 
conjugated port definition is conveniently always 
compatible as the type of the opposite end in an 
interface definition to a port typed by the original port 
definition. 

In SysML terminology, the class of a part is called 
a block. Therefore, the model of a Car is given in 
SysML by the following block definition: 

block Car { 
 ref driver: Person; 
 part engine: Engine { 
  port enginePort: DrivePort; 
 } 
 part wheels: Wheel[4]; 
 part driveWheels: Wheel[2]  
  subsets wheels { 
  port wheelPort: ~DrivePort; 
 } 
 
 interface drive: DriveTrain  
  connect engine::enginePort[1]  
  to driveWheels::wheelPort[2]; 
} 
 

This provides a more succinct structural model of a 
car, using more familiar systems engineering 
terminology. However, the underlying semantics is 
still formally specified by mapping this notation back 
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to KerML and expanding to the required patterns of 
usage of the Systems Model Library. 

4 USER DOMAIN-SPECIFIC 
LANGUAGES 

SysML v1 is defined as a standard profile of UML v2. 
However, it also allows the profile capability of UML 
to be leveraged so that users can define profiles that 
further specialize SysML. Indeed, this capability is 
widely used by major SysML-using organizations, 
which often define corporate and even project-
specific profiles of SysML. 

Unfortunately, as discussed previously, the UML 
profile mechanism falls far short of a full domain-
specific language extension capability. While SysML 
tools are well-tailored to the modeling and 
diagrammatic specializations of the standard SysML 
profile, they rarely allow the same level of tailoring 
for a user-defined profile. It is thus often frustrating 
and cumbersome to use a SysML profile, which does 
not allow true syntactic or semantic extensibility. 

An important requirement for SysML v2 is to 
improve the ability for users to extend the language. 
The proposal is to do this by leveraging the same 
approach to linguistic extension used to build SysML 
v2 on KerML in order to build user domain-specific 
languages on SysML. This is quite similar in concept 
to the intent of further leveraging the UML profile 
mechanism in SysML v1, but using a much more 
powerful mechanism for linguistic extensibility than 
what is possible with the UML profile mechanism. 

As an example of this, consider a simple language 
for failure mode and effects analysis (FMEA) that is 
actually being developed as an example within the 
SysML v2 submission team. Using the same 
approach as was used for defining SysML in the 
previous section, we first define a model library that 
captures the basic concepts of FMEA (once again, 
this is a gross simplification of what would be needed 
for a real FMEA model library): 

block FMEAItem { 
 part situations: Situation[*]; 
 part causation: Causes[*]; 
} 
 
block Situation { 
 ref referent: Part; 
} 
 
block Cause specializes Situation { 
 value occurrence: Real[0..1]; 
} 

block Effect specializes Situation { 
 value severity: String[0..1]; 
} 
 
block FailureMode  
 specializes Cause, Effect { 
 value detectability: Real[0..1]; 
} 
 
assoc block Causes { 
 end cause: Cause[*]; 
 end effect: Effect[*]; 
} 
 

In this model, an item of an FMEA involves a set of 
situations, each of which pertains to some part of the 
system under analysis. Situations are divided into 
causes and effects, with a failure mode being both an 
effect and a possible cause of other effects. Finally, 
an FMEA item may also contain a model of the causal 
links between the situations it is covering. 

For instance, suppose we are analyzing the 
possible failure modes of a glucose meter, which 
monitors the glucose level of a patient and applies 
therapy as necessary by pumping glucose from a 
reservoir to the patient: 

block GlucoseMeter { 
 ref patient: Patient; 
 part battery: Battery; 
 part pump: Pump; 
 part reservoir: Reservoir; 
} 

This analysis includes the following model of the 
effect of the possible failure of the battery of the meter 
to recharge: 

block GlucoseMeterBatteryFMEAItem  
 specializes FMEAItem { 
 ref meter: GlucoseMeter; 
 
 part 'battery depleted': Cause  
  subsets situations { 
  ref redefines referent =  
   meter::battery; 
  value redefines occurrence =  
   0.005; 
 } 
 part 'battery cannot be charged':  
  FailureMode subsets situations { 
  ref redefines referent =  
   meter::battery; 
  value redefines detectability =  
   0.013; 
 } 
 part 'glucose level undetected':  
  FailureMode subsets situations { 
  redefines ref referent = meter; 
 } 
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 part 'therapy delayed': Effect  
  subsets situations { 
  ref redefines referent =  
   meter::patient; 
  value redefines severity =  
   "High"; 
 } 
 
 link :Causes subsets causation  
  connect 'battery depleted'  
  to 'battery cannot be charged'; 
 link :Causes subsets causation  
  connect  
   'battery cannot be charged'  
  to 'glucose level undetected'; 
 link :Causes subsets causation  
  connect  
   'glucose level undetected'  
  to 'therapy delayed'; 
} 
 

As we saw when defining SysML earlier, the 
resulting model here may be semantically correct, but 
it is syntactically cumbersome and unfriendly. And, 
once again, this can be remedied by providing an 
appropriate surface syntax: 

item GlucoseMeterBatteryFMEAItem { 
 ref meter: GlucoseMeter; 
 
 cause 'battery depleted'  
  on meter::battery  
  occurs 0.005; 
 causes failure  
  'battery cannot be charged'  
  on meter::battery  
  detected 0.013; 
 causes failure  
  'glucose level undetected'  
  on meter; 
 causes effect 'therapy delayed'  
  on meter::patient  
  severity "High"; 
} 
 

This notation is much clearer to a human reader, but 
its semantics are still given formally by mapping it 
back to the earlier SysML model, which is, in turn, 
formally defined by mapping it back to KerML and 
its core semantics. 

5 CONCLUSION 

Ongoing work on a pilot implementation for KerML 
and SysML has already demonstrated the feasibility 
of each of the three steps of the metasemantic 
protocol. Unfortunately, the current prototype 

approach uses different technologies for each of the 
steps: 

1. Model libraries are written in KerML or SysML 
(or, potentially, in any further domain-specific 
extension of SysML). 

2. Abstract syntax is modeled using current OMG 
MOF technology and implemented using the 
Eclipse Modeling Framework. 

3. Concrete syntax for textual notation is 
implemented using the Xtext DSL framework. 

For a true metasemantic protocol, however, all of 
the above steps need to be achievable within a single 
linguistic framework that is accessible to end users. 
That is, all the steps need to be achievable using 
KerML or SysML. This is already the case for the first 
step, and it will not be conceptually difficult to 
achieve for the second step, since the modeling 
capabilities already available in KerML are sufficient 
to cover the metamodeling capabilities of MOF. 
However, providing a robust linguistic capability for 
the third step is more difficult, especially when one 
includes requirements for both textual and graphical 
surface notations. 

That said, the SysML v2 RFP already has 
requirements for the language to include a robust 
capability for defining user views and viewpoints of 
a model, well beyond the simple capability found in 
SysML v1. Our plan is to leverage this required 
capability in order to fill out the final part of the 
language extension mechanism for SysML v2. The 
hope is to realize as much of the full vision of a full 
metasemantic protocol by the time final submissions 
are due for the SysML v2 RFP in June 2021. 
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