
On a Metasemantic Protocol for Modeling Language Extension

Ed Seidewitz a
Model Driven Solutions, 235A E. Church St., Frederick, MD, U.S.A.

Keywords: Modeling Language Extension, Modeling Language Semantics, Metamodeling, SysML.

Abstract: A metaobject protocol is an object-oriented interface that allows a programming language to be efficiently
extended by users of that language from within the language itself. A metasemantic protocol is a
generalization of that idea, providing a mechanism to allow users of a formally defined modeling language to
syntactically and semantically extend that language from within the language. Such an approach is
fundamental to the language architecture being developed for the proposed second version of the Systems
Modeling Language (SysML). SysML v2 is being effectively defined as an extension to a foundational Kernel
Modeling Language (KerML), and then users can define domain-specific languages in the same way as
extensions of SysML. This approach is already being worked out in the ongoing pilot implementation of
SysML v2, but there is still much to do before the vision of a true metasemantic protocol is fully realized.

1 INTRODUCTION

Almost thirty years ago, Gregor Kiczales and his
colleagues proposed the idea of a metaobject protocol
for programming languages (Kiczales, 1991). They
defined metaobject protocols as “interfaces to the
language that give users the ability to incrementally
modify the languages behavior and implementation”.
With this approach, “users are encouraged to
participate in the language design process”, but
without compromising “program portability or
implementation efficiency”.

For better or for worse, few languages in the
ensuing years provided metaobject protocols for their
users. As Kiczales et al. admit in their original work,
developing such protocols is hard, and they did not
claim to have entirely solved the problem. Further,
the implementation they provided was embedded
within the Common LISP Object System (CLOS).
CLOS provides powerful metalinguistic tools for
such an implementation, but it has a LISP syntax that
is daunting to many and a dwindling user community
that has limited the understanding of the proposed
meta-object protocol approach.

a https://orcid.org/0000-0002-7647-4769
1 See http://xtext.org
2 See https://www.jetbrains.com/mps/
3 See https://www.ruby-lang.org/
4 See, for example, https://thoughtbot.com/blog/writing-a-domain-specific-language-in-ruby
5 All indicated trademarks are of the Object Management Group.

Nevertheless, the need for user-specialized
languages did not go away. Today we see much work
on domain-specific programming languages (DSLs),
sometimes created from scratch using language
workbench technology (such as Xtext 1 or
JetBrains/MPS2). However, some level of domain-
specificity can be provided in any programming
language using specialized libraries. And some
general purpose languages (such as Ruby 3) are
particularly well-suited to being tailored in this way
to provide so-called “internal DSLs”, somewhat in
the spirit of the original metaobject protocol concept.4

The tension between general-purpose and
domain-specific languages also exists in the modeling
world. Well-known general-purpose modeling
languages include the Unified Modeling Language™
(UML, 2017), the Systems Modeling Language™
(SysML, 2018) and the Business Processing Model
and Notation™ (BPMN, 2014), all standardized by
the Object Management Group (OMG).5 On the other
hand, DSL workbenches can also be used to create
very targeted domain-specific modeling languages
(e.g., see Voelter, 2018).

Further, the profile mechanism in UML is
essentially intended as an internal DSL capability.

Seidewitz, E.
On a Metasemantic Protocol for Modeling Language Extension.
DOI: 10.5220/0009181604650472
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 465-472
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

465

Indeed, SysML is currently defined as a standard
profile of UML, tailoring the more general language
for use within the more specific systems engineering
community. User-defined profiles are also often used
within organizations and teams to succinctly capture
modeling patterns and domain-specific concepts
commonly used within those groups.

Unfortunately, profiles in UML do not actually
provide a full language extension mechanism. In
particular, the lack of a formal semantic definition for
UML means that profiles cannot provide any precise
way to extend the semantics of the language. (While
Foundational UML and succeeding standards based
on it do provide precise execution semantics for a
subset of UML, this subset does not yet include a
precise semantics for profiling.) At best, profiles
provide a formal means for syntactic extension UML.
However, most UML modeling tools provide only
limited support for even syntactic tailoring of UML
using profiles, often with little more support of user
profiles in UML 2 than the basic stereotyping and
tagging capabilities of UML 1.

However, in 2017 OMG issued a request for
proposals (RFP) for version 2 of SysML that no
longer requires the language to be a profile of UML
(SysMLv2, 2017). But the RFP includes
requirements calling for the language to have a formal
semantic basis that could be truly extended by users.
In addition, even though SysML v2 no longer needs
to be based on UML, it would be desirable to continue
to have interoperability between software and
systems modeling in the context of today’s many
software-intensive cyber-physical systems.

In response, the cross-industry team currently
working on a submission to the RFP6 has proposed a
language architecture in which the desired SysML v2
is based on a Kernel Modeling Language (KerML)
that acts as a general foundation for building
modeling languages. KerML moves a step beyond the
current OMG Meta Object Facility (MOF)
technology, which formalizes only the definition of
the abstract syntax of a modeling language, by also
providing a formal grounding for the definition of the
semantics of modeling languages built on it. And, as
with the metaobject protocol, the idea is that, just as
SysML v2 is based on KerML, users can, in the same
way, build their own more tailored domain-specific
language extensions, syntactically and semantically,
on SysML v2. However, in contrast to the inherently
object-oriented programming mechanism proposed
by Kitczales et al., this approach can be more

6 For public incremental pre-submission releases of

SysML v2 from the submission team, go to
http://openmbee.org/sysml-v2-release.

generally termed a metasemantic protocol for
modeling language extension.

This protocol can be summarized by the following
steps:

1. Define a model library that specifies the formal
semantic concepts needed in a language
extension.

2. Define the abstract syntax for the language
extension in terms of patterns of usage of the
model library that can be mapped back to the
abstract syntax of the language being extended.

3. Define a user-friendly surface syntax for the
language extension that maps to the extended
language abstract syntax.
The first two steps of the protocol have been

applied to UML and SysML in (Bock 2011) and
(Bock 2019). This paper gives an outline of how the
protocol is being further developed in the ongoing
work on SysML v2, and, in particular, examples of
the application of the third step. While the full SysML
v2 definition includes a complete abstract syntax as
well as both graphical and textual concrete surface
syntaxes, the presentation in this paper will focus on
the textual surface syntax, due to space limitations.

Section 2 presents an overview of basic structural
modeling in KerML and its model-library-based
approach to language extension. Section 3 describes
how the metasemantic protocol is used to build
SysML v2 on KerML, and Section 4 then discusses
how the same protocol can be used to build domain-
specific language extensions to SysML v2.

2 KERNEL MODELING
LANGUAGE

KerML provides a basic set of modeling capabilities
based on a formally defined semantic core. For the
purposes of this paper, we will discuss only some
simple structure modeling capabilities and only
describe the underlying core semantics informally.
The focus, in subsequent sections, will then be on
how successive layers of user-focused modeling
languages can be built, syntactically and
semantically, on this foundation.

UML and SysML are primarily graphical
languages, and SysML v2 will also define graphical
views of models, as SysML v1 does. However, unlike
UML and SysML v1, KerML and SysML v2 will also

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

466

both provide standard textual modeling notations. For
the purposes of this paper, and for general discussions
of language extensibility, it is easier to focus on just
this textual notation.

So, to begin, consider a very simple model of a car
that has an engine and four wheels, and which may
have a driver. Using the KerML textual notation, this
model may be represented as follows:

class Car {
 feature driver: Person[0..1];
 composite feature engine: Engine[1];
 composite feature wheels: Wheel[4];
}

As in UML, a class specifies a type whose
instances are objects that have various features. A
feature defines a mapping from instances of the
featuring class to instances of the type of the feature,
with some multiplicity. A composite feature is
considered to be an integral part of the featuring
object, while a non-composite feature is simply
referential.

Next, define an association between an engine
and the wheels driven by that engine:

assoc DriveTrain {
 end engine: Engine[0..1];
 end wheel: Wheel[*];
}

Again, as in UML, an association is a type whose
instances are links between objects of the types of the
end features of the association. The basic difference
between an end feature and a regular feature is that
the multiplicity of an end is for navigation across the
association. That is, the above association specifies
that one engine can be linked to multiple wheels, but
a wheel can only be linked to (at most) a single
engine. Nevertheless, each instance of the association
will link exactly one engine to exactly one wheel.

Given the DriveTrain association, we can now
extend our earlier Car model to reflect the fact that (in
this simple model) exactly two of the wheels of a car
are driven by the car's engine:

class Car {
 feature driver: Person[0..1];
 composite feature engine: Engine[1];
 composite feature wheels: Wheel[4];
 connector drive: DriveTrain
 from engine[1] to wheels[2];
}

A connector is a feature whose instances are links
specifically between values of features of the
containing class of the connector. Thus, the connector

drive specifies that the single engine of the car has
links to two of the wheels of the car. It is fundamental
to the semantics of the connector that the linked
engine and wheels are parts of the same car.

Now, some of the semantic statements made in the
description of the example above are actually
captured more formally in terms of elements of a
Kernel Model Library that is integral to the
specification of KerML. For instance, this model
library includes the following elements (this is a
simplification of the actual library, adequate for our
present purposes):

class Object specializes Anything;

class BinaryLink specializes Object {
 end source: Anything[*];
 end target: Anything[*];
}

The type Anything is at the root of the KerML
type specialization hierarchy. The class Object is
then the base type of all classes of things with identity
and properties that may change over time (as distinct
from data values, not considered in detail in this
paper, which are immutable things with value
semantics). The class BinaryLink is the base type of
all binary associations, whose instances are objects
that link a source thing to a target thing.

The notation previously used for the association
DriveTrain is actually a shorthand for the more
explicit class model shown below:

class DriveTrain specializes BinaryLink
{
 end engine: Engine[1]
 redefines BinaryLink::source;
 end wheels: Wheel[*]
 redefines BinaryLink::target;
}

That is, DriveTrain is a class that specializes
BinaryLink, redefining its source and target ends to
have more restrictive types and multiplicities. In this
way, the semantics of associations are reduced to the
semantics of classes with end features (and the only
difference between end features and the fundamental
semantics of regular features is in how multiplicity is
interpreted).

The earlier model of a car, as extended with a
connector, is then itself a shorthand for:

class Car specializes Object {
 feature driver: Person;
 composite feature engine: Engine;
 composite feature wheels: Wheel[4];

On a Metasemantic Protocol for Modeling Language Extension

467

 composite feature drive:
 DriveTrain[*] {
 end engine: Engine[1]
 redefines DriveTrain::engine
 subsets Car::engine;
 end wheel: Wheel[2]
 redefines DriveTrain::wheel
 subsets Car::wheels;
 }
}

That is, the connector drive is actually just a
composite feature whose type is the association
DriveTrain. But, further, the actual connection
between the engine and wheels features of Car is
modeled using local redefinitions of the end features
of DriveTrain. For example, the redefinition of
wheel specifies that, in the context of a car, the
engine is linked to exactly two wheels and the linked
wheels must be a subset of the overall set of wheels
that are part of the car.

Allowing a feature to have nested features is a
critical capability in KerML that is not found in UML
or most other modeling language (nor even in
ontological languages like OWL). One can think of
nested features as being part of a local specialization
of the base type of the containing feature, but with a
specifically contextual semantics. This contextuality
is what ensures, for example, that the feature drive
in the class model above fundamentally has the
desired connector semantics in which the engine and
wheels linked by the feature must be part of the same
car.

As we will see, this ability to define features
contextually nested in other features is especially
important for achieving semantic extensibility.

3 SYSTEMS MODELING
LANGUAGE

The current proposal for SysML v2 is to define it as
an extension to KerML. Semantically, this extension
is captured in the Systems Model Library for SysML,
which extends KerML's Kernel Model Library. The
elements of the Systems Model Library capture the
key systems modeling concepts that are important for
the systems engineering user community of SysML.

For example, a central idea in the structural
modeling of systems is that a system can be
decomposed into parts, and that these parts can have
ports, which define specific points through which the
parts can be interconnected. This conception is

captured as follows in the model library (again, this is
a simplification of the actual SysML model library):

class Part specializes Object {
 composite feature ports: Port[*];
}

class Port specializes Part {
 feature inputs: Anything[*];
 feature outputs: Anything[*];
}

Given the concepts of parts and ports, we can then
provide the ability to specify the interfaces between
parts in terms of how their ports may be
interconnected. Unlike the way the term “interface”
is used in software engineering, to a systems
engineer, an interface generally specifies not just the
externally visible face of a single part, but both ends
of an allowed connection between two parts. Thus,
we define an interface as an association that connects
two ports:

class Connection specializes
 BinaryLink, Part {
 end source: Part[*]
 redefines BinaryLink::source;
 end target: Part[*]
 redefines BinaryLink::target;
}

class Interface specializes Connection
{
 end source: Port[*]
 redefines Connection::source;
 end target: Port[*]
 redefines Connection::target;
}

Given just the above systems engineering
concepts, we can now improve our earlier model of a
drive train into a (slightly) better systems engineering
interface model:

class DrivePort specializes Port {
 feature torque: Torque
 subsets outputs;
}

class DrivenPort specializes Port {
 feature torque: Torque
 subsets inputs;
}

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

468

assoc DriveTrain specializes Interface
{
 end drive: DrivePort
 redefines Interface::source;
 end driven: DrivenPort[*]
 redefines Interface::target;
}

Unlike the model given in the previous section, the
interface model for DriveTrain is no longer specific
to the Engine and Wheel types, but can be used to
specify the interface between any two parts that have
DrivePort and DrivenPort connection points.

Note that the DrivePort class defines a torque
output and that the DrivenPort class has a
corresponding torque input. This means that the two
port definitions are compatible for specifying the
opposite ends of an interface. In general, two ports are
compatible if, for any input of one of the ports, there
is a corresponding output of the other port.

Next, we can use the above interface definition for
DriveTrain in our Car model (presuming that
Engine and Wheel are also redefined as parts):

class Car specializes Part {
 feature driver: Person;
 composite feature engine: Engine {
 composite feature enginePort:
 DrivePort subsets ports;
 }
 composite feature wheels: Wheel[4];
 composite feature driveWheels:
 Wheel[2] subsets wheels {
 composite feature wheelPort:
 DrivenPort subsets ports;
 }
 connector drive: DriveTrain
 from engine::enginePort[1]
 to driveWheels::wheelPort[2];
}

Now, rather than the drive connector being directly
between the engine and the wheels, it is a connection
between the corresponding ports on those parts. Note
that we have added the ports locally to the engine
and driveWheels features of Car, rather than to the
Engine and Wheel classes themselves, to emphasize
that these are localized connection points to the
engine and wheels in a specific car. Further, this
allows us to more specifically model that only two of
the wheels of a car are drive wheels and that only
these wheels have the ability to be interfaced to the
engine.

The Systems Model Library provides the
additional semantic concepts necessary to use KerML
in a more specialized domain like systems

engineering. However, syntactically, the resulting
system engineering models are rather cumbersome
and inconsistent with the kind of structural modeling
terminology familiar to system engineers. This may
be remedied by providing a specialized surface syntax
for SysML, in just the way that the notation for
associations and connectors in KerML was really just
syntactic sugar for specific patterns of usage of
classes and features.

Thus, using the specialized SysML textual
notation, the interface definition given above for
DriveTrain is written as follows:

port def DrivePort {
 out torque: Torque;
}

interface def DriveTrain {
 end drive: DrivePort;
 end driven: ~DrivePort[*];
}

In this syntax, special keywords like port and
interface are used as markers for corresponding
linkages to the semantic library. Further, the notation
~DrivePort specifies a conjugation of the port
definition DrivePort. The conjugate of a port
definition is a port definition with similar features, but
with inputs and outputs reversed. In this way, a
conjugated port definition is conveniently always
compatible as the type of the opposite end in an
interface definition to a port typed by the original port
definition.

In SysML terminology, the class of a part is called
a block. Therefore, the model of a Car is given in
SysML by the following block definition:

block Car {
 ref driver: Person;
 part engine: Engine {
 port enginePort: DrivePort;
 }
 part wheels: Wheel[4];
 part driveWheels: Wheel[2]
 subsets wheels {
 port wheelPort: ~DrivePort;
 }

 interface drive: DriveTrain
 connect engine::enginePort[1]
 to driveWheels::wheelPort[2];
}

This provides a more succinct structural model of a
car, using more familiar systems engineering
terminology. However, the underlying semantics is
still formally specified by mapping this notation back

On a Metasemantic Protocol for Modeling Language Extension

469

to KerML and expanding to the required patterns of
usage of the Systems Model Library.

4 USER DOMAIN-SPECIFIC
LANGUAGES

SysML v1 is defined as a standard profile of UML v2.
However, it also allows the profile capability of UML
to be leveraged so that users can define profiles that
further specialize SysML. Indeed, this capability is
widely used by major SysML-using organizations,
which often define corporate and even project-
specific profiles of SysML.

Unfortunately, as discussed previously, the UML
profile mechanism falls far short of a full domain-
specific language extension capability. While SysML
tools are well-tailored to the modeling and
diagrammatic specializations of the standard SysML
profile, they rarely allow the same level of tailoring
for a user-defined profile. It is thus often frustrating
and cumbersome to use a SysML profile, which does
not allow true syntactic or semantic extensibility.

An important requirement for SysML v2 is to
improve the ability for users to extend the language.
The proposal is to do this by leveraging the same
approach to linguistic extension used to build SysML
v2 on KerML in order to build user domain-specific
languages on SysML. This is quite similar in concept
to the intent of further leveraging the UML profile
mechanism in SysML v1, but using a much more
powerful mechanism for linguistic extensibility than
what is possible with the UML profile mechanism.

As an example of this, consider a simple language
for failure mode and effects analysis (FMEA) that is
actually being developed as an example within the
SysML v2 submission team. Using the same
approach as was used for defining SysML in the
previous section, we first define a model library that
captures the basic concepts of FMEA (once again,
this is a gross simplification of what would be needed
for a real FMEA model library):

block FMEAItem {
 part situations: Situation[*];
 part causation: Causes[*];
}

block Situation {
 ref referent: Part;
}

block Cause specializes Situation {
 value occurrence: Real[0..1];
}

block Effect specializes Situation {
 value severity: String[0..1];
}

block FailureMode
 specializes Cause, Effect {
 value detectability: Real[0..1];
}

assoc block Causes {
 end cause: Cause[*];
 end effect: Effect[*];
}

In this model, an item of an FMEA involves a set of
situations, each of which pertains to some part of the
system under analysis. Situations are divided into
causes and effects, with a failure mode being both an
effect and a possible cause of other effects. Finally,
an FMEA item may also contain a model of the causal
links between the situations it is covering.

For instance, suppose we are analyzing the
possible failure modes of a glucose meter, which
monitors the glucose level of a patient and applies
therapy as necessary by pumping glucose from a
reservoir to the patient:

block GlucoseMeter {
 ref patient: Patient;
 part battery: Battery;
 part pump: Pump;
 part reservoir: Reservoir;
}

This analysis includes the following model of the
effect of the possible failure of the battery of the meter
to recharge:

block GlucoseMeterBatteryFMEAItem
 specializes FMEAItem {
 ref meter: GlucoseMeter;

 part 'battery depleted': Cause
 subsets situations {
 ref redefines referent =
 meter::battery;
 value redefines occurrence =
 0.005;
 }
 part 'battery cannot be charged':
 FailureMode subsets situations {
 ref redefines referent =
 meter::battery;
 value redefines detectability =
 0.013;
 }
 part 'glucose level undetected':
 FailureMode subsets situations {
 redefines ref referent = meter;
 }

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

470

 part 'therapy delayed': Effect
 subsets situations {
 ref redefines referent =
 meter::patient;
 value redefines severity =
 "High";
 }

 link :Causes subsets causation
 connect 'battery depleted'
 to 'battery cannot be charged';
 link :Causes subsets causation
 connect
 'battery cannot be charged'
 to 'glucose level undetected';
 link :Causes subsets causation
 connect
 'glucose level undetected'
 to 'therapy delayed';
}

As we saw when defining SysML earlier, the
resulting model here may be semantically correct, but
it is syntactically cumbersome and unfriendly. And,
once again, this can be remedied by providing an
appropriate surface syntax:

item GlucoseMeterBatteryFMEAItem {
 ref meter: GlucoseMeter;

 cause 'battery depleted'
 on meter::battery
 occurs 0.005;
 causes failure
 'battery cannot be charged'
 on meter::battery
 detected 0.013;
 causes failure
 'glucose level undetected'
 on meter;
 causes effect 'therapy delayed'
 on meter::patient
 severity "High";
}

This notation is much clearer to a human reader, but
its semantics are still given formally by mapping it
back to the earlier SysML model, which is, in turn,
formally defined by mapping it back to KerML and
its core semantics.

5 CONCLUSION

Ongoing work on a pilot implementation for KerML
and SysML has already demonstrated the feasibility
of each of the three steps of the metasemantic
protocol. Unfortunately, the current prototype

approach uses different technologies for each of the
steps:

1. Model libraries are written in KerML or SysML
(or, potentially, in any further domain-specific
extension of SysML).

2. Abstract syntax is modeled using current OMG
MOF technology and implemented using the
Eclipse Modeling Framework.

3. Concrete syntax for textual notation is
implemented using the Xtext DSL framework.

For a true metasemantic protocol, however, all of
the above steps need to be achievable within a single
linguistic framework that is accessible to end users.
That is, all the steps need to be achievable using
KerML or SysML. This is already the case for the first
step, and it will not be conceptually difficult to
achieve for the second step, since the modeling
capabilities already available in KerML are sufficient
to cover the metamodeling capabilities of MOF.
However, providing a robust linguistic capability for
the third step is more difficult, especially when one
includes requirements for both textual and graphical
surface notations.

That said, the SysML v2 RFP already has
requirements for the language to include a robust
capability for defining user views and viewpoints of
a model, well beyond the simple capability found in
SysML v1. Our plan is to leverage this required
capability in order to fill out the final part of the
language extension mechanism for SysML v2. The
hope is to realize as much of the full vision of a full
metasemantic protocol by the time final submissions
are due for the SysML v2 RFP in June 2021.

ACKNOWLEDGEMENTS

I would like to thank Andrius Armonas, No Magic
Europe/Dassault Systemes, for allowing me to adapt
his work on the FMEA example language extension
of SysML v2.

REFERENCES

Bock, C., Odell, J., 2011. Ontological Behavior Modeling.
Journal of Object Technology 10 (3): 1–36,
https://doi.org/10.5381/jot.2011.10.1.a3.

Bock, C., Galey, C., 2019 Integrating four-dimensional
ontology and systems requirements modelling. Journal
of Engineering Design 30 (10–12): 477–522,
https://doi.org/10.1080/09544828.2019.1642461.

On a Metasemantic Protocol for Modeling Language Extension

471

BPMN, 2014. Business Process Model and Notation
(BPMN), Version 2.0.2, Object Management Group,
https://www.omg.org/spec/BPMN/2.0.2.

Kiczales, G., des Rivières, J., Bobrow, D. G., 1991. The Art
of the Metaobject Protocol, The MIT Press, Cambridge.

SysML, 2018. OMG Systems Modeling Language (OMG
SysML), Version 1.6, Object Management Group,
https://www.omg.org/spec/SysML/1.6/.

SysML v2, 2017. Systems Modeling Language (SysML) v2
RFP, Object Management Group,

https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2.
UML, 2017. OMG Unified Modeling Language (OMG

UML), Version 2.5.1, Object Management Group,
https://www.omg.org/spec/UML/2.5.1.

Voelter, M., 2018. Fusing Modeling and Programming into
Language-Oriented Programming. In Leveraging
Applications of Formal Methods, Verification and
Validation. Modeling. 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part I, LNCS 11244, Springer Nature,
Switzerland, https://doi.org/10.1007/978-3-030-03418-
4_19.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

472

