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Many neural network architectures rely on the choice of the activation function for each hidden layer. Given
the activation function, the neural network is trained over the bias and the weight parameters. The bias catches
the center of the activation, and the weights capture the scale. Here we propose to train the network over a
shape parameter as well. This view allows each neuron to tune its own activation function and adapt the neuron
curvature towards a better prediction. This modification only adds one further equation to the back-propagation
for each neuron. Re-formalizing activation functions as a comulative distribution function (cdf) generalizes
the class of activation function extensively. We propose to generalizing towards extensive class of activation
functions and study: i) skewness and ii) smoothness of activation functions. Here we introduce adaptive
Gumbel activation function as a bridge between assymmetric Gumbel and symmetric sigmoid. A similar
approach is used to invent a smooth version of ReLU. Our comparison with common activation functions
suggests different data representation especially in early neural network layers. This adaptation also provides

prediction improvement.

1 INTRODUCTION

Neural networks achieved considerable success in im-
age, speech, and text classification. In many neural
networks only bias and weight parameters are learned
to fit the data, while the activation function of each
neuron is pre-specified to sigmoid, hyperbolic tan-
gent, ReLU, etc. From a theoretical standpoint, a
neural network reasonably wide and deep, approx-
imates an arbitrarily complex function independent
of the chosen activation function, see (Hornik et al.,
1989) and (Cho and Saul, 2010). However, in prac-
tice, the prediction performance and the learned rep-
resentation depends on hyperparameters such as net-
work architecture, number of layers, regularization
function, batch size, initialization, activation function,
etc. Despite large studies on network hyperparam-
eter tuning, there have been few studies on how to
choose an appropriate activation function. The choice
of activation function changes learning representation
and also affects the network performance (Agostinelli
et al., 2014). We propose let data estimate the activa-
tion function during training by developing a flexible
activation function. We demonstrate how to formalize
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this such activations and show how to embed it in the
back-propagation.

Developing an adaptive activation function helps
fast training of deep neural networks, and has at-
tracted attention, see for instance (Zhang and Wood-
land, 2015), (Agostinelli et al., 2014), (Agostinelli
et al.,, 2014), (Jarrett et al., 2009), (Glorot et al.,
2011), (Goodfellow et al., 2013), (Springenberg and
Riedmiller, 2013) and recently (Dushkoff and Ptucha,
2016), (Hou et al., 2016), (Hendrycks and Gimpel,
2016), (Hou et al., 2017) and (Klambauer et al.,
2017). Here, we introduce adaptive activation func-
tions by combining two main tools: i) looking at acti-
vation as a cumulative distribution function (cdf) and
ii) making an adaptive version by equipping a distri-
bution with a shape parameter. The shape parameter
is continuous, so that an update equation can be added
in back-propagation. Here, we focus on the simple
architecture of LeNet5, but this idea can be used to
equip more complex and deep architectures with flex-
ible activations (Ramachandran et al., 2018).

There has been a surge of work in modifying the
ReLU. Leaky ReLU is one of the most famous modifi-
cations that gives a slight negative slope on a negative
argument (Maas et al., 2013). Another modification
called ELU (Clevert et al., 2015) attempts exponen-
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tial decrease of the slope from a predefined value to
zero. Taking a mixture approach, (Qian et al., 2018)
proposed a mixed function of leaky ReLU (Maas
et al., 2013) and ELU (Clevert et al., 2015) as an
adaptive function, that could be learned in a data-
driven way unlike SeLU (Klambauer et al., 2017). In-
spired by (Agostinelli et al., 2014), (Zhang and Wood-
land, 2015) (Qian et al., 2018) and (Klambauer et al.,
2017), we study the effect of i) the asymmetry and ii)
the smoothness of activation function. Our approach
can build recntly proposed modifications for quan-
tized training such as SignSWISH of (Darabi et al.,
2019) and foothill of (Belbahri et al., 2019). The
first study is performed by introducing an adaptive
asymmetric Gumbel activation that changes its shape
towards the symmetric sigmoid function. The sec-
ond study is achieved by equipping the ReLU func-
tion with a smoothness parameter which generalizes
the existing adaptive activations through distribution
functions. In both cases, we tune the shape parameter
for each neuron independently by adding an updating
equation to back-propagation.

The performance of two fully-connected neural
networks and a convolutional network are compared
on simulated data, MNIST benchmark, and Movie re-
view sentiment data. As an application, we use the
classical LeNet5 architecture (Kim, 2014) to classify
the users’ intention using URLs they navigated on
their browser.

2 ADAPTIVE ACTIVATIONS

We recommend to perceive the activation function as
a cumulative distribution function bounded on [0, 1].
Common activation functions are bounded, but not
necessarily to [0, 1] like hyperbolic tangent. A lo-
cation and scale transformation is sufficient to trans-
form their range if necessary. However, still widely-
used activations such as ReLU or leaky ReL.U are un-
bounded. One may decompose unbounded activation
functions into two components: i) a bounded compo-
nent and ii) an unbounded component, and only adapt
the bounded ingredient through a continuous cumula-
tive distribution function.

2.1 Adaptive Gumbel

One of the common activation functions is the sig-
moid function that maps a real value to [0, 1] similar
to cumulative distribution functions. Although sig-
moid is rarely used in convolution layers, still it is
widely used in softmax layer and attention type mod-
els that revolutionized in natural language processing
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(Vaswani et al., 2017). More precisely, the sigmoid
function is the cumulative distribution function of the
symmetric and bell-shaped logistic distribution. An
asymmetric activation can be developed using a cu-
mulative distribution function of a skewed distribu-
tion like Gumbel, for example. Gumbel distribution is
the asymptotic distribution of extreme values such as
minimum or maximum (Coles et al., 2001). A shape
parameter that pushes a sigmoid distribution function
away from the logistic and more towards a Gumbel
distribution defines a sort of a shape parameter. Our
proposed adaptive Gumbel activation is

og(x)=1—{1 +0Lexp(x)}*é acR" xeR.
&)
The above form is inspired by Box-Cox transfor-
mation (Box and Cox, 1964) for binary regression.
The simplest form of neural network with no hidden
layer is a binary regression in which (1) generalizes
logistic regression towards complementary log-log re-
gression by tuning a € (0, 1], see Figure 1 (left panel).
The Gumbel cumulative distribution function arises in
the limit while oo — 0. The foothill function of (Bel-
bahri et al., 2019) and SignSwish function of (Darabi
et al., 2019) can be re-formalized in this context.

2.2 Adaptive ReLU

The ReLlLU activation function
6(x) = max(0,x)

is unbounded, unlike the sigmoid or hyperbolic tan-
gent. One may re-write the ReLLU activation as

G(x) = xA(x),

where A(x) is the cumulative distribution function of
a degenerate distribution. The function A(x) is also
known as Heaviside function and coincides with the
integral of the Dirac delta function. We propose to
replace A(x) with a smooth cumulative distribution
function Ag(x) such as the exponential cumulative
distribution function

Ag(x) = (1*€_m)ﬂ{x>0}(x)a
Ou(x) = xAq(x), aeR'xeR, (2

where 14 (x) is the indicator function on set A.

In (2) we recommend to equip the degenerate dis-
tribution A(x) with a smoothing parameter o.. Any
continuous random variable with a scale parameter
is a convenient choice for Ag(x). A random vari-
able with infinitesimal scale behaves like a degener-
ate distribution, so A(x) is retrieved when the scale
tends to zero, or equivalently o0 — oo. The general-
ized ReLU (2) coincides with the SWISH activation
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Figure 1: Adaptive Gumbel activation (left panel) and adap-
tive ReLu activation (right panel) for ¢ = 1,2,5.

function (Ramachandran et al., 2018) if Aq(x) is the
logistic cumulative distribution function
Ag(x) = (14 %)L, (3)
The SiLU (Elfwing et al., 2018) is a special case of
(3) while . = 1.
One may show that the proposed parameterization
preserves model identifiability in simple Bernoulli re-
gression model.

Theorem 1. a binary regression with the adaptive ac-
tivation (1) is identifiable.
See Appendix for the proof.

3 BACK-PROPAGATION

Define the vector of linear predictors of layer / as

Tll = [nllﬂ g an]T7
where
ni= W()—|-WTX,',i= 1,...,n,
and the /th hidden layer output h’ = 5(n?!), in which
N’ =wo+w h~l

Traditionally, 6(x) is sigmoid or ReLU activation.
The adapted back-propagation uses the conventional
back-propagation, but each neuron carries its own ac-
tivation function G¢(x). The adaptation parameter o
for each neuron is trained along with bias and weights
[Wo, W}T.

Suppose the vector of parameters for a neuron in
layer [ is 8' = [o,w), w'] and the network is trained
using loss function £(.).

In practice, L(.) is the entropy loss for classifi-
cation, and the squared error loss for regression, pe-
nalized with an L norm }; 9? or an L norm };|0,]
upon convenience. The updating back-propagation
rule, given a learning rate Y > 0, for a neuron in layer
lis

oL
Wo
oL
I I
W WY &)
oL
I 9L
o = o=V, (6)
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Figure 2: Histogram of fitted o for Adaptive ReLu (blue)
and Adaptive Gumbel (red) activation functions for simu-
lated data with one hidden layer.
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Figure 3: Fitted adaptive Gumbel activations on layer 2 and
layer 4 of an eight hidden layer network. Adapted activa-
tions vary more often in earlier layers, see also Figure 4.

/ wl

Figure 4: Fitted adaptive ReLU activations on layer 2 and
layer 4 of an eight hidden layer network. Adapted activa-
tions vary more often in earlier layers, see also Figure 3.

where (4) updates the bias, (5) updates the weights,
and (6) adapts the activation function. Note that one
may choose different learning rates for each equation.
We recommend to reparametrize (6) with ¢* in nu-
merical computations to enforce o > 0.

4 BENCHMARKS

Here, we compare the adaptive modification in three
datasets. One dataset is a simulated fully-connected
network in Section 4.1, where the true activation func-
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tion and true labels are known. Furthermore, we eval-
uate activation adaptation on convolutional models on
the MNIST image data in Section 4.2, and on Movie
Review text data in Section 4.3.

4.1 Simulated Data

Our objective in this experiment is to understand how
the choice of activation function affects the perfor-
mance of the network. We simulated data from two
fully-connected neural networks: i) a network with
only 1 hidden layer, and ii) with 8 hidden layers, each
layer with 10 neurons. Activation functions are fixed
to ReLU and sigmoid in data simulation setup. Ac-
cording to works in (LeCun et al., 1998b) and recently
in (Krizhevsky et al., 2012) and (Glorot and Bengio,
2010), several weight initialization and different com-
bination of number of input and output units in weight
initialization formulation along with different type of
activation functions could be employed in deep neu-
ral networks. In this paper, biases were initialized
from A((0,0.5) in simulated models and biases in fit-
ted models are initialized by formulation suggested in
(LeCun et al., 1998b). The original weights in simu-
lated models were initialized from a mixture of two
normals Aj(1,0.5) and A5(—1,0.5) with an equal
proportion and weights in fitted models initialized by
(LeCun et al., 1998b) settings.

The simulated data set includes 10’000 examples
of 10 features with a binary output. In each config-
uration, we have a fully-connected network with 10
neurons at each layer is trained with a fixed learning
rate Y = .01, regularization parameters L; = .001 and
L, = .001, batch size = 20, and number of epochs =
2000 for both simulated and fitted models. The learn-
ing rate, L and L, regularization constants are tuned
using 5-fold cross-validation. The average results are
reported from a 5-fold cross validation as well.

The results summarized in Table 1 show that,
overall, adaptive Gumbel outperforms sigmoid.
Adaptive ReLU competes closely with ReLLU in shal-
low networks, and slightly outperforms ReLU in
deeper networks. Figure 2 confirms adaptive Gum-
bel and adaptive ReLU have different training range
for o.. Figure 3 and Figure 4 depicts the learned acti-
vations in an eight hidden layer fully connected net-
work. Early layers have more variable learned activa-
tions, and often the last layers do not change much.
The deeper layers are more difficult to learn.

We run several models with different number of
fully connected hidden layers from 1 to 8 including 1,
2,4 and 8 layers. In Table 1, we aimed at studying the
effect of varying activation functions on the accuracy
of the predictions produced by the fitted model com-
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Table 1: Prediction accuracy for data simulated with sig-
moid (Sig), adaptive Gumbel (AGumb), ReLU and adaptive
ReLU (AReLU) in networks with 1 and 8 hidden layers.
The maximum standard error is 0.22.

simulated fitted network
layers Sig AGumb ReLU AReLU
1 Sig 95.8 97.5 97.8 97.7
ReLU | 96.1 97.4 98.2 98
3 Sig 83.7 83.8 81.8 81.9

ReLU | 57.3 88.2 89.3 89.9

convolution convolution  fully-connected
input image pooling pooling output

2 &'

Figure 5: The LeNet5 architecture. Two convolutional lay-
ers, each layer followed by a max polling, and eventually a
fully-connected layer on top.

pared to its original counterpart when they have the
same number of hidden layers, same number of neu-
rons at each layer. Our goal was to understand how
accurately fitted model could predict the class labels
at the end of training step while we increase the num-
ber of hidden layers from 1 (as a simple fully con-
nected multi-layer perceptron) to a very deeper one
with 8 hidden layers. In this paper we only present
the results for 1 and 8 hidden layers due to page limits.
For models with less layers, fitting models with ReLU
or adaptive ReLU almost outperforms the other acti-
vation functions. For deeper models, fitting models
with the adaptive Gumbel also exhibits a good perfor-
mance in competition with ReLU and adaptive ReLU.
As seen in this table, as the number of hidden lay-
ers increases, an expected drop in the performance
of all fitted models is observed. Hence, it is evident
that there is no question to continue for deeper fully-
connected layers.

4.2 MNIST Data

Here we evaluate the performance of adapting acti-
vation on convolutional neural networks using hand-
written digits grayscale image data. Our convolu-
tional architecture is the classical LeNet5 (LeCun
et al., 1998a), but with adaptive activations. The orig-
inal LeNet5 use a modified hyperbolic tangent activa-
tion, but the ReL U activation is often used which pro-
vides a superior classification accuracy. The LeNet5
architecture contains two convolutional layers, each
convolutional layer followed by a max-pooling layer.
A single fully-connected hidden layer is put on top
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Figure 6: Training and validation error curves of different
adaptive models on MNIST data.

with 1000 neurons, see Figure 5.

Motivated from Section 4.1, we only keep ReLU
as the strong competitor, because adaptive Gumbel
always outperforms sigmoid. The network param-
eters are trained with batch normalization, learning
rate Y= 0.01, batch size 100, and iterated 150 epochs.
Figure 8 (left panel) shows are adaptive models con-
verge. Prediction accuracy is summarized in Table 2.
The best performance appears for adaptive Gumbel on
convolutional layer, closely followed by ReLU. Hy-
per parameters including learning rate for CNN mod-
els are chosen according to the primary settings of
LeNet5 implementation developed by Theano devel-
opment team. We select fixed hyper parameters in
all CNN models to study the effect of changing acti-
vation functions on final performance. The accuracy
of each model is reported by running the correspond-
ing algorithm on standard test set provided in MNIST
data.

Table 2: Convolutional architecture of LeNet5 on MNIST
data. The activations in the rows represent the activation
functions of convolutional layers, while the columns repre-
sent activations of fully-connected layers for ReLU, adap-
tive ReLU (AReLU), and adaptive Gumbel (AGumb) acti-
vations. The sigmoid activation is not reported as it was
beaten always by the other techniques. The accuracy is
computed over the standard test set.

Conv layer fully-connect layer
ReLU AReLU AGumb
ReLU 99.1 98.7 99.1
AReLU | 98.8 98.9 98.9

AGumb | 98.7 98.8 98.9

4.3 Movie Review Data

This time we try convolutional architecture on text
data over pre-trained word vectors. The data consists
of 2000 movie reviews, 1000 positive and 1000 nega-
tive (Pang and Lee, 2004).

These word vectors use the word2vec (Mikolov
et al., 2013) trained on 100 billion words of Google
News to embed a word in a vector of dimension
300. Word2vec transforms each word into a vector
such that the words semantics is preserved. A CNN
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model with pre-trained word2vec vectors called static
in (Kim, 2014), is used in our experiments. In this
variant, the static CNN we use involves two convolu-
tional layers each of them followed by a max-pooling
layer and a fully-connected layer at the end. The
fully-connected network includes one hidden layer
with 100 neurons and a softmax output layer for bi-
nary text classification. The hyper parameters in all
models are same including learning rate Y= 0.05, im-
age dimensions (img-w) = 300, filter sizes = [3,4,5],
each have 100 feature maps, batch size = 50, dropout
= 0.5, number of hidden layers = 1, number of neu-
ron = 100 and number of epochs = 50. For consis-
tency, same data, pre-processing and hyper-parameter
settings are used as reported in (Kim, 2014). Unlike
MNIST data, the Movie Review dataset does not have
a standard test set. So, we report the average accuracy
over 5-fold cross-validation in Table 3.

Again adaptive activation provides a better predic-
tion accuracy. Figure 8 (right panel) suggests that for
Movie review data is more difficult to converge com-
pared to MNIST. We suspect this happens, because i)
text data carry less information compared to image,
ii) embedding may mas some information that exists
in the text.

can
n't
wait

to

watch
the

new
episode

of

Figure 7: Movie comments are embedded into a vector.
Then a CNN model classifies the text to a “’positive review”
or ’negative review”.

Table 3: Convolutional architecture of LeNet5 on Movie
review data. The activations in the rows represent the acti-
vation functions of convolutional layers, while the columns
represent activations of fully-connected layers for ReLU,
adaptive ReLU (AReLU), and adaptive (AGumb) Gumbel
activations. The maximum standard error estimated using
5-fold cross-validation is 0.17.

Conv layer Fully-connect layer
ReLU AReLU AGumb
ReLU 79.1 79.1 78.9
AReLU 78.9 78.5 79.3
AGumbel 523 77.4 78.7

Accordingly, our empirical results show that us-
ing adaptive Gumbel, as the activation function, in
fully-connected layer is a good choice. Moreover,
adaptive ReLU works when it is applied in convolu-
tional layers. A comparison between the best results
of our experiments (reported from 5-fold crossvalida-
tion) and the state-of-the-art results by (Kim, 2014)
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teration

Figure 8: Training and validation error curves of different
adaptive models on Movie review data.

on the same version of Movie Review data shows that
our adaptive activation functions perform fairly good
and are match on Movie Review data in terms of ac-
curacy. Applying those adaptive activation functions
with fine-tuning the hyper parameters may result in
further improvement.

S APPLICATION

The sequence of URL clicks are gathered to study
user intentions by an international tech company. The
dataset is private and is extracted from a survey, while
anonymous visitors visited a commercial website over
a period of three months and their action is recorded
at the end of the session. In those surveys, visitors
are typically asked to tell their purpose of visit from

CEINNTS

the “browse-search product”, “complete transaction-
purchase”, “get order-technical support” or “other”,
so treated as a four-class problem. The study aims
at exploring the relationship between user behavioral
data (which includes URL sequences as features).
The stated purpose of the visit provided in the survey
after the end of sessions. The data consist of approxi-
mately 13500 user sessions and each record is limited
to maximum of 50 page visits. The goal is to con-
struct a model that predicts visitors’ intention based
on URL sequence they navigated from page to page.
The application on user intention prediction are
just about to make their early steps, see (Liu et al.,
2015), (Vieira, 2015), (Korpusik et al., 2016), (Lo
et al., 2016), and (Hashemi et al., 2016). Our ap-
proach in this work is to use neural networks in two
steps; like in the Movie review data of Section 4.3, by
i) embedding a URL into representative vectors and
ii) using these representations as features to a neu-
ral network to predict the user intention. We treat
each URL as a sentence, where each word of this
sentence is separated by “/”. A similar approach is
used in text classification, sentiment analysis (Kim,
2014), semantic parsing (Yih et al., 2014) and sen-
tence modeling, see (Kalchbrenner et al., 2014) and
(Kim, 2014). Again we applied LeNet5 architecture
with adaptive activation. We report precision and re-
call, because different methods compete very closely
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in terms of accuracy.

The results summarized in Table 4 show that adap-
tive Gumbel performs slightly better, while ReL.U and
adaptive ReLU closely compete with each other.

Table 4: Running LeNet5 convolutional model with ReL.U,
adaptive ReLU (AReLU), and adaptive Gumbel (AGumb)
activations on URL data. Different activations performed
almost identical in terms of accuracy, so only the prescition
(P), and the recall (R) are reported.

Conv layer Fully-connect layer
ReLU AReLU AGumb
P R P R P R
ReLU 68.0 68.0 | 68.1 679 | 68.0 678
AReLU 68.1 679 | 680 68.0 | 679 679
AGumb 68.1 683 | 682 681 | 68.1 68.3

5.1 Conclusion

We proposed a general method to adapt activation
functions by looking at the activation function as a
cumulative distribution function. This view is useful
to adapt a bounded activation such as sigmoid or hy-
perbolic tangent commonly used in recurrent neural
networks and attention models. It is well-known in
deep neural networks with bounded activations suf-
fer from vanishing gradient. Therefore, a method-
ology for adapting unbounded activations is as im-
portant. We recommended to decompose ReLU into
an unbounded component and a bounded component.
Therefore, the cumulative distribution function idea
can be re-used to adapt the bounded counterpart.

In fully-connected networks adapting activation
helps prediction most of the time. According to our
experiments adapting activation helps prediction ac-
curacy often, even in complex architectures. How-
ever, adaptive Gumbel mostly outperforms other acti-
vations in convolutional architectures.

We designed a series of experiments to understand
how our proposed activation functions affect on the
prediction of the fitted models using a simulated data.
The results of this experiment show that using adap-
tive activation functions in fitting models for predic-
tion approximation is superior compared to standard
functions in terms of accuracy regardless of network
size and activation functions used in original model.
In the next step, we aim at evaluating the performance
of the typical convolutional neural network (CNN)
models using our proposed activation functions on
image and text data. Accordingly, we design a series
of experiments on MNIST as a widely-used image
benchmark to understand how accurate the adaptive
activation functions in LeNet5 CNN models classify
the hand-written digit images compared to standard
activation functions. Compared to standard sigmoid,



applying adaptive Gumbel in fully-connected layer of
the CNN models are recommended. Generally, CNN
models using proposed activation functions improves
prediction and convergence speed compared to mod-
els that work exclusively with standard functions.

A series of experiments using CNN models
trained on a top of word2vec text data is performed
to evaluate the performance of the proposed activa-
tion functions in a sentiment analysis application on
Movie Review benchmark. Our empirical results im-
ply that using adaptive Gumbel as activation functions
in fully-connected layer and adaptive ReLU in con-
volutional layers are strongly recommended. These
observations are consistent with the findings were no-
ticed in experiments on MNIST data. Also, a com-
parison between our best observations and the state-
of-the-art results in (Kim, 2014) indicates that our re-
ported accuracy using adaptive activation functions
reproduces their accuracy. We believe that applying
more fine-tuning hyper parameters and using other
complex variants of CNN models accompanied with
our proposed activation functions could improve the
existing results. To recap, our experiments on two
well-known image and text benchmarks imply that by
virtue of using adaptive-activation functions in CNN
models, we can improve the performance of the deep
networks in terms of accuracy and convergence.

Learning the adaptation parameter is feasible by
adding only one equation to back-propagation. Com-
putationally, letting neurons of a layer choose their
own activation function, in this framework, is equiv-
alent to adding a neuron to a layer. This minor extra
computation changes the network flexibility consider-
ably, especially in shallow architectures. We focused
only on the classic LeNet5 architecture, but there is a
potential of exploring this methodology with a wide
variety of distribution functions for portable architec-
tures such as MobileNets (Howard et al., 2017), Pro-
jectionNets (Ravi, 2017), SqueezeNets (Iandola et al.,
2016), QuickNets (Ghosh, 2017), etc. It also has
a potential to generalize modified quantized training
(Hubara et al., 2018) and (Partovi Nia and Belbahri,
2018).
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APPENDIX

Proof of Theorem 1. Suppose the Bernoulli distribu-
tion

pli) =m (1—m)!' 0,y ={0,1},

where T; is a function of parameters @ = (1, o) where
1 is the linear predictor, and a is the activation shape

T; = 6g(N) (7

Therefore, to ensure distinct probability distributions
are indexed by o on a continuum of o > 0, the identi-
fiability of 6 (x) must be studied, i.e. distinct values
of parameter o lead to distinct activation functions.
Formally,

a#d <> I ER s.t. 6g(x) 0y (x). (8)
Equivalently

O (X) = G (x) <> o= o )



which falls on 64 (x) identifiability definition (Huang,
2005). Take G4 (x) in equation (1) that defines adap-
tive Gumbel

Oo(x) = oOy(x),

{1+ oexp(x)} {1+ o exp(x)} .

[l
I

Given 1+ oexp(x) >0

1 1
&log{l—&—ocexp(x)} = alog{l-i-(x’exp(x)}.

Let z = exp(x) and f;(a) = log(1+ oz) which has
derivative of arbitrary order. Take the Taylor expan-
sion of log(1 + aiz)

a0 1 [ & o)
(X{Z n! }_OL’{Z n!

n=0 n=0

The latter equation holds for all z if and only if all cor-
responding polynomial coefficients are equal. Equiv-
alently,

o=0o. (10)
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