
Geometric Deep Learning on Skeleton Sequences for 2D/3D Action
Recognition

Rasha Friji1,2, Hassen Drira3 and Faten Chaieb4

1CRISTAL Lab, National University of Computer Science ENSI, Manouba University Campus, Manouba, Tunisia
2Talan Innovation Factory, Talan, Tunisia

3IMT Lille Douai, Univ. Lille, CNRS, UMR 9189,
CRISTAL – Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France

4Ecole Nationale des Sciences de l’Informatique INSAT, Tunisia

https://talan.com/

Keywords: Geometric Deep Learning, Action Recognition, Abnormal Gait Recognition.

Abstract: Deep Learning models, albeit successful on data defined on Euclidean domains, are so far constrained in many
fields requiring data which underlying structure is a non-Euclidean space, namely computer vision and imag-
ing. The purpose of this paper is to build a geometry aware deep learning architecture for skeleton based action
recognition. In this perspective, we propose a framework for non-Euclidean data classification based on 2D/3D
skeleton sequences, specifically for Parkinson’s disease classification and action recognition. As a baseline,
we first design two Euclidean deep learning architectures without considering the Riemannian structure of the
data. Then, we introduce new architectures that extend Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks(RNNs) to non-Euclidean data. Experimental results show that our method outperforms
state-of-the-art performances for 2D abnormal behavior classification and 3D human action recognition.

1 INTRODUCTION

Geometric deep learning is a terminology, initiated by
Bronstein et al. (Bronstein et al., 2017), and used to
refer to deep learning approaches to generalize deep
neural networks to non-Euclidean domains such as
manifolds (e.g action recognition) and graphs (image
analysis). Skeleton sequences is an example of non-
Euclidean data which has been increasingly standing
out (Du et al., 2015; Shahroudy et al., 2016; Vemula-
palli et al., 2014; Ke et al., 2017) given the availability
of huge datasets and the multitude of possible appli-
cations. In this paper, we focus on skeleton-based 2D
Parkinson’s disease classification and 3D skeleton-
based action recognition. CNNs (LeCun and Ben-
gio, 1998) have proven distinguished performance in
image classification (Krizhevsky et al., 2012; Cohen
et al., 2018; Xiong et al., 2015; Ke and Li, 2014;
Ciresan et al., 2012). In our work, we propose a
first CNN based architecture validated for the Parkin-
son’s disease classification. But, instead of directly
applying CNN on video images, we primarily iden-
tify the sequence of performed actions, by tracking
the trajectories of human skeleton joints. We rep-

resent then every action with a sequence of joints’
2D coordinates and perform spherical modelling fol-
lowed by a projection in the tangent space. Nonethe-
less, as far as video action recognition is concerned,
even deep CNNs are still not capable of modelling
the temporal correlation between the video frames
(Wang et al., 2016). In order to address this limitation
and to exploit the dynamics of human movements,
the joints’ series have been used in recurrent neu-
ral networks (RNNs) with Long-Short Term Memory
(LSTM) neurons (Graves, 2012; Graves et al., 2013)
for action recognition (Du et al., 2015; Veeriah et al.,
2015; Zhu et al., 2016). Motivated by these works, we
propose a second non-Euclidean architecture based
on CNN and LSTM combination for action recogni-
tion, tested on NTU RGB+D dataset. At the first layer
of the network, we used a deep CNN for features ex-
traction. At the second layer, features are then passed
to LSTM which makes the network temporally-
aware. The contributions of this work are 1) Novel
non-Euclidean deep neural networks architectures for
2D/3D skeletal sequences based action recognition.
2) Actions are recognized with respect to the geom-
etry of the manifold of skeletal sequences and with
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respect to the temporal dependencies between these
sequences 3) Ablation studies for the classification of
Parkinson’s disease and action recognition. Experi-
ments are conducted on two benchmark datasets to
prove the competitiveness of the proposed method.

The rest of the paper is organized as follows. In
section 2, we briefly review existing geometry-aware
deep learning models applied on non linear manifolds
using CNNs and RNNs networks. Section 3 intro-
duces the spherical modelling of skeletal data and the
mapping to the tangent space. In section 4, we de-
scribe the proposed method. Experimental settings
and results are reported in section 5, and lastly sec-
tion 6 concludes the paper.

2 RELATED WORK

In this section, we briefly review the relevant lit-
erature of geometry-aware deep learning architec-
tures for skeleton sequences based classification using
CNNs and RNNs networks.

2.1 CNNs based Methods

Unlike the common deep learning architectures that
have been widely used in many applications, only lim-
ited efforts have been spent on non-linear deep learn-
ing. In the past few years, the interest for CNNs
adapted to manifolds has grown exponentially. The
first generalized CNNs to manifolds was proposed
by (LeCun and Bengio, 1998) who used local in-
trinsic patches to define the convolution operation.
Yann LeCun and M.Bronstein proposed in (Bronstein
et al., 2017) an overview of the mainly used non-
Euclidean deep learning architectures. In problems
like shape description, retrieval, and correspondence,
a Geodesic Convolutional Neural Network (GCNN)
was designed in (Masci et al., 2015) to learn invariant
shape features. GCNN is an intrinsic version of CNN
on manifolds where Masci, Jonathan, et al proposed
an application of filters on local patches represented
in geodesic polar coordinates. In (Cohen et al., 2018),
Cohen, Taco S., et al., proposed spherical CNNs using
a generalized Fast Fourier Transform (FFT).

2.2 CNN and RNNs Combination based
Methods

Recently, RNNs (Baccouche et al., 2011; Lefebvre
et al., 2013; Zhu et al., 2016) have been used for ac-
tion recognition. However, vanishing gradient prob-
lems often occurred because of the large number of

parameters computations and the neglect of initial in-
put effect after few layers. As a solution, LSTM net-
works (Donahue et al., 2017a; Ng et al., 2015; Srivas-
tava et al., 2015) were deployed since they integrate
memory units and they are subsequently capable of
capturing long-term dependencies. Based on the ex-
tension of CNNs to 3D, Baccouche et al. (Baccouche
et al., 2011) propose a unidirectional model with only
one hidden layer LSTM-RNN for action recognition.
Lefebvre et al. (Lefebvre et al., 2013) propose a bidi-
rectional LSTM-RNN with one forward hidden layer
and one backward hidden layer for gesture classifica-
tion. In (Zhu et al., 2016), in order to learn the in-
herent co-occurrence features of skeleton joints, these
joints are fed to a regularized deep LSTM at each time
interval. In (Shahroudy et al., 2016), Shahroudy et al.
propose to learn the long-term context representations
of the body parts with a part-aware LSTM (P-LSTM).
In (Liu et al., 2016), a spatial temporal LSTM is used
to learn both the spatial and temporal information of
skeleton sequences and a Trust Gate is introduced to
omit noisy joints. This approach achieves the state-
of-the-art performance on the NTU RGB+D dataset
(Shahroudy et al., 2016).

3 MODELLING OF 2D/3D
SKELETAL DATA

Actions captured by visual sensors and cameras are
often subject to scale variations. This is due to the
change of distance between the camera and the person
performing the action. As a result, the same actions
can be interpreted very differently. In order to avoid
this problem, sequences of skeletons should be invari-
ant to global scaling. For this purpose, a modeling
is done on the input of our architecture to normalize
skeletons.

3.1 Spherical Modelling

Let X ∈ R n×k be a body skeleton, where n indicates
the number of body joints and k denotes the dimen-
sion of X. To remove scale, we propose to model
skeletons as elements on a (n× k−1) dimension Rie-
mannian manifold, more specifically, the unit sphere
S embedded in R n×k. To do so, we divide every skele-
ton X by its Frobenius norm given by Eq.1:

‖X‖F =

(
n

∑
i, j=1
|xi j|2

)1/2

(1)

With this process, we consequently get skeletons
representations as well as their temporal evolution,
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called trajectories on the unit sphere S embedded in
R n×k. Accordingly, each motion sequence of a mov-
ing skeleton is represented with a trajectory on the
unit sphere S embedded in R n×k as shown in Fig.1
(for visualization purposes the trajectory is shown in
2D, however, it lies, in fact, on a space of (n× k−1)
dimensions).

Figure 1: Spherical modelling of the skeleton sequence
data.

3.2 Inverse Exponential Map

The input fed to our CNNs network lies on a Rieman-
nian manifold which is the Unit Sphere S embedded
in R n×k. Unlike the Euclidean space which is a vec-
tor space characterized by translation invariance and
operations like vector addition and scalar multiplica-
tion, the non- Euclidean structure of our input implies
that there are no such properties. Consequently, even
basic operations like convolution can’t be applied on
the Unit Sphere S embedded in R n×k, since they are
not defined. However, manifolds, including Rieman-
nian manifold, are topological spaces that can be lo-
cally assimilated to an Euclidean space. Given that
the unit sphere S embedded in R n×k has a Rieman-
nian manifold structure, the manifold can be assim-
ilated, locally around each point x, to an Euclidean
space known as the tangent space TX (S).

Following, we define the tangent space shown in
Fig.2 and the inverse exponential map layer used to
map data from the Riemannian manifold which is the
unit sphere embedded in R n×k to a tangent space.

A differentiable d-dimensional manifold X is a
topological space where each point x has a neighbor-
hood, which is homeomorphic to a d-dimensional Eu-
clidean space, a.k.a the tangent space and denoted by
Tx(X). In other words, at each point x on the manifold
X, it is possible to associate a linear space Tx(X). The
space Tx(X) is a local Euclidean representation of the
manifold X around x. This space is called the tangent
space of the manifold X at the point x. Considering
that the tangent space is linear and hence equipped

Figure 2: Examples of two tangent spaces: Tx(X) at a point
x of the manifold X and T ′x (X) at a point x’ of the manifold
X.

with the inner product, the Riemannian metric on S is
defined by Eq.2:

< X1,X2 >= trace(X1,X2),X1,X2 ∈ TX (S) (2)

Figure 3: Unit Sphere S embedded in R n×k, the trajectories
α1 and α2 of two sequences of skeletons, the geodesic α(t)
connecting arbitrary points on α1 and α2, the tangent space
TX1(S) at the skeleton X1 and skeletons X2 and X3 mapped
on TX1(S).

The inverse exponential map shown in Fig.3, also
known as the logarithm map and uniquely defined
around a small neighborhood of a point x on the man-
ifold X, is given by Eq.3:

exp−1
X1
(X j) =

θ

sinθ
(X j− cos(θ)X1) (3)

With θ = cos−1(trace(X1(X j)
T ). Here X1 and X j

represent skeletons on the unit S embedded in R n×k.
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Figure 4: Architecture of the non-Euclidean CNN based proposed method: a) Input 2D skeletal joints coordinates b) Mod-
elling of skeletal data on the Riemannian manifold c) Skeletal data mapping on tangent space d) Feature Extraction with CNN
e) Classification.

4 PROPOSED METHOD

Overall architecture of the proposed methods are de-
picted in Fig.4 and Fig.5. Both models have simi-
lar global structure components with the difference
that in the first architecture, feature extraction is per-
formed with CNN only, while the second architec-
ture is based on CNN-LSTM, taking into account se-
quence dependencies.

4.1 Non-Euclidean CNN based Model

In this section, we present a general framework al-
lowing to design CNN architectures on non-Euclidean
domains. For this purpose, we build a network struc-
ture where each input is an element of the unit sphere
S embedded in R n×k. As shown in Fig.5, this ar-
chitecture is composed of classical convolution layer,
pooling layer, and fully connected layer, subsequent
to a spherical modelling and an inverse exponen-
tial map layer to address the problem of the non-
Euclidean structure of the input data.

After spherical modelling of the skeleton se-
quence data, we use Eq.3 to map each skeleton X j
from the sphere S to the tangent space TX1(S) at the
skeleton X1. We choose a skeleton X1 as a reference
and map all the other skeletons to the tangent space
of X1 as shown in Fig.2. Since the tangent space is an
Euclidean space, the input is no more a trajectory on a
manifold. It lies however on an Euclidean Space and
hence can be fed into any regular CNN layer.

4.2 Non-Euclidean CNN-LSTM based
Model

Fig.5 depicts the non Euclidean CNN-LSTM pro-
posed method. This architecture is an extension of

the previous one, aiming to improve and consolidate
the obtained results using a better performing model
and tested on a larger dataset. As far as the overall
building components are concerned, the two archi-
tectures are basically identical: input skeletal joints
coordinates, spherical modelling, mapping to tangent
space, feature extraction and action recognition. The
only difference is the introduction of LSTM to cap-
ture global sequence dependencies of the input data.
CNN-LSTM (Donahue et al., 2017b) architecture in-
volves using CNN layers for feature extraction from
input data combined with LSTMs for sequential fea-
tures interpretation. In our approach, we implement
this architecture using two consecutive CNN layers
ahead of dropout and a max pooling layer. The whole
CNN model is wrapped in a "TimeDistributed" layer.
The extracted features are next flattened and provided
to the LSTM model before a dense mapping to an ac-
tion is performed.

5 EXPERIMENTS

In this section, we introduce the testing datasets, the
evaluation protocols and the experimental results ob-
tained by our methods with comparison to state of the
art and baseline models.

5.1 Datasets

The first proposed architecture has been tested on
Parkinson’s Vision-Based Pose Estimation Dataset(Li
et al., 2017). The second architecture has been tested
on NTU RGB+D dataset. In this part, we introduce
the two datasets on which we performed our experi-
ments.

Geometric Deep Learning on Skeleton Sequences for 2D/3D Action Recognition

199



Figure 5: Architecture of the non-Euclidean CNN-LSTM based proposed method: a) Input 3D skeletal joints coordinates b)
Modelling of skeletal data on the Riemannian manifold c) Skeletal data mapping on tangent space d) Feature Extraction with
CNN combined with LSTM neurons to support sequence prediction e) Action recognition.

Parkinson’s Dataset. Parkinson’s Disease (PD) is
a progressive neurodegenerative disease (Nussbaum
and Ellis, 2003). It causes a decrease of dopamine
neurons in the brain and therefore a reduction of
dopamine levels that these neurons produce. The
“Parkinson’s Vision-Based Pose Estimation Dataset”
(Li et al., 2017) contains movement trajectories ex-
tracted from 526 videos of 9 participants (5 men and
4 women) with an average age of 64 years and di-
agnosed with idiopathic Parkinson’s diseases. Par-
ticipants completed a two hour Levodopa infusion
protocol followed by a two hour observation during
which they were asked to do various tasks like drink-
ing from a cup, communication tasks (describing an
image, talking with another person, recalling some-
thing and mental math ), leg agility(stomping of the
leg vertically with the maximum possible amount of
speed and amplitude) and toe-tapping. Communi-
cation and drinking from a cup tasks were used to
evaluate the Dyskinesia whereas leg agility and toe-
tapping were used to evaluate Parkinsonism. Videos
were recorded using a consumer grade video camera
and then a 2D human pose estimation was done us-
ing Convolutional Pose Machines (CPM) (Wei et al.,
2016). Since the CPM algorithm gives only an anno-
tation of the head which is not adapted for tracking
head turning movements, an object tracker algorithm
was used to estimate the face position. Finally, skele-
tons with 15 joints are obtained. Since this dataset has
action-sequences of variable lengths, we split every
sequence into 100-frame sequences, which makes, in
total, a number of 30859 sequences. After data sam-
pling, every sequence is composed of 100 skeletons
represented with 15 joints. Every joint has two coor-
dinates. The sequences used have therefore a dimen-
sion of 100 × 30 each: 100 indicates the number of
skeletons in a sequence and 30 denotes the number of
joint-coordinates of each skeleton. For the designed

CNN architecture, we transform those sequences into
a 1D signal by concatenating all the skeletons in a se-
quence.

NTU RGB+D Dataset. This dataset (Shahroudy
et al., 2016) is one of the largest skeleton-based hu-
man action datasets, consisting of more than 56000
sequences and 4 million frames. It covers 60 classes
of actions performed by 40 distinct subjects, in-
cluding both individual daily actions (e.g. read-
ing,clapping, writing,(sneezing, staggering, falling
down, etc) and interaction actions (e.g. hugging,
handshaking, pointing).

- Data Modalities: To collect this dataset, Mi-
crosoft Kinect v2 sensors were utilized. Four major
data modalities were collected: depth maps, 3D joint
information, RGB frames, and IR sequences. Joint
information, which is the data modality used in this
work, consists of 3-dimensional locations of 25 major
body joints for detected and tracked human bodies in
the scene. The configuration of body joints is illus-
trated in Fig.6.

- Views: Three cameras were used at the same
time to capture three different horizontal views from
the same action. For each setup, the three cameras
were located at the same height but from three differ-
ent horizontal angles: −45°, 0°, +45°. Each subject
was asked to perform each action twice, once towards
the left camera and once towards the right camera.
Hence, two front views, one left side view, one right
side view, one left side 45 degrees view, and one right
side 45 degrees view are captured. The three cameras
are assigned consistent camera numbers. Camera 1
always observes the 45 degrees views, while camera
2 and 3 observe front and side views.

NTU RGB+D dataset is considered very challeng-
ing given the large view points, the intra-class non
uniformity and the variation of sequence length. To
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Figure 6: Configuration of 25 body joints in our dataset.
The labels of the joints are: 1-base of the spine 2-middle of
the spine 3-neck 4-head 5-left shoulder 6-left elbow 7-left
wrist 8- left hand 9-right shoulder 10-right elbow 11-right
wrist 12- right hand 13-left hip 14-left knee 15-left ankle
16-left foot 17- right hip 18-right knee 19-right ankle 20-
right foot 21-spine 22- tip of the left hand 23-left thumb
24-tip of the right hand 25- right thumb. (Shahroudy et al.,
2016).

overlap the complication of this variation, we con-
sider the same length of sequence for all the subjects,
which is the length of the shortest sequence.

5.2 Evaluation Protocols

As a means to standardize the assessment of the
results of our work, we define in this section, the
adopted evaluation setups for each of the two datasets.

5.2.1 Protocol on Pakinson’s dataset

Our goal is to classify sequences into three different
classes: normal, Parkinson’s disease (PD) or Parkin-
son’s disease with Levodopa-induced dyskinesia (PD
with LID). Given that only the communication se-
quences have ratings for PD and LID and that the
communication task had the best performance accord-
ing to (Li et al., 2017), we only use those sequences
for our multi-classification problem. In all experi-
ments, we adopt the leave-one-out cross validation
protocol which means using, for N times (N is the
number of instances), the sequences of one person as
the validation set and the remaining sequences as the
training set.

5.2.2 Protocols for NTU RGB+D

To get standard evaluations for all the reported results
on this benchmark, we define precise criteria for two
types of action classification evaluation, as described
in this section.

Cross-subject Protocol. For the cross-subject eval-
uation protocol, we split the 40 subjects into training
and testing sets, each is composed of 20 subjects. The
training and testing groups are made up of 40,320 and
16,560 samples, respectively. In our work, we use for
training, the subjects which IDs are among the follow-
ing list of values: 1, 2, 4, 5, 8, 9, 13, 14, 15,16, 17,
18, 19, 25, 27, 28, 31, 34, 35, 38. The 20 remaining
subjects are reserved for testing.

Cross-view Protocol. In cross-view protocol, we
select the samples from cameras 2 and 3 for train-
ing and the samples from camera 1 for testing. The
training set consists then of the front and two side
views of the actions,whilst testing set incorporates left
and right 45 degree views of the action performances.
For this assessment, the training and testing sets have
37,920 and 18,960 samples, respectively.

5.3 Results

This section summarizes the experimental results for
both non Euclidean architectures, each tested on a
separate benchmark dataset. The classification accu-
racy reported in the results sections is in percentage.

5.3.1 Results of CNN Only based Architecture

Table.1 reports the resulting accuracy values of
2D skeletal sequences classification on “Parkinson’s
Vision-Based Pose Estimation Dataset” for different
methods. In line with the state of the art approach (Li
et al., 2017) based on random forest tree algorithm,
we compare results achieved using only the commu-
nication sequences and adopting leave-one-out cross
validation. The Euclidean CNN architecture shown

Table 1: Results on Parkinson’s Vision-Based Pose Estima-
tion Dataset.

Method Leave-one-out
cross validation
Accuracy

State of the art (Li et al.,
2017)

71.4%

Euclidean CNN (Baseline) 68%
Non Euclidean CNN 72%
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Figure 7: Architecture of the baseline Euclidean CNN based proposed method: a) Input 2D skeletal joints coordinates b)
Modelling of skeletal data on the Riemannian manifold c) Feature Extraction with CNN d) Classification.

Figure 8: Architecture of the baseline Euclidean CNN-LSTM based proposed method: a) Input 3D skeletal joints coordinates
b) Modelling of skeletal data on the Riemannian manifold c) Feature Extraction with CNN combined with LSTM neurons to
support sequence prediction d) Action recognition.

in Fig.7 is used as a baseline method to point out the
contribution of inverse exponential map layer.

In Table.1, it can be seen that the non-Euclidean
CNN architecture, with 72% accuracy, outperforms
the baseline architecture which accuracy is 68%. This
improvement can highlight the importance of the
mapping of the skeletal data to tangent space. Com-
pared with the state of the art results, the performance
of our proposed method improved by 0.6%. This im-
proved performance is due to the fact that our method
takes into account the non-Euclidean structure of the
skeletal data.

5.3.2 Results of CNN-LSTM based Architecture

The results of action recognition on NTU RGB+D
dataset for the two evaluation protocols: cross-subject
and cross-view are reported in Table.2. The first two
lines refer to the accuracy values obtained by the two
state of the art approaches(Shahroudy et al., 2016)
which deploy respectively, one layer and two layers

Table 2: Results on NTU RGB+D dataset using two evalu-
ation protocols: cross-subject and cross-view. The two first
lines refer to the state of the art results(Shahroudy et al.,
2016).

Method Cross-
Subject
Accuracy

Cross-
View
Accuracy

1 Layer P-
LSTM(Shahroudy
et al., 2016)

62.05% 69.40%

2 Layer P-
LSTM(Shahroudy
et al., 2016)

62.93% 70.27%

Euclidean CNN-
LSTM (Baseline)

56.61% 62.32%

Non Euclidean
CNN-LSTM

61.45% 71.03%

of part-aware extension of the long short-term mem-
ory (P-LSTM). Similarly to CNN based architecture,
we used a baseline euclidean CNN-LSTM architec-
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ture, as shown in Fig.7, for the purpose of pointing
out the contribution of inverse exponential map layer.
With reference to this architecture, the performance
of our proposed method improves with 4.84% using
cross-subject protocol and with 8.71% using cross-
view protocol.

Table.2 shows also that our non-Euclidean CNN-
LSTM based model achieves competitive result to the
state of the art (Shahroudy et al., 2016) in terms of
cross-subject accuracy. In fact, our model reaches
61.45% accuracy versus 62.93% in (Shahroudy et al.,
2016). For cross-view accuracy, our method outper-
forms the state of the art with 0.76% increase.

6 CONCLUSIONS

In this paper, we have proposed, for action recogni-
tion, to map skeleton sequences from the Riemannian
manifold to linear spaces, previous to feature extrac-
tion and learning layers. We proposed a first non-
Euclidean architecture based on CNNs to extract a
compact representation of each skeletons frame.We
then propose a second non-Euclidean temporally-
aware architecture based on CNN-LSTM networks.
We have tested the proposed approaches using two
datasets, namely Parkinson’s Vision-Based Pose Es-
timation dataset and NTU RGB+D dataset. Exper-
imental results have shown the effectiveness of the
proposed architectures compared to state of the art
models. However, for future work, we are working
1) on integrating our method with state of the art ar-
chitectures to consolidate its performance and 2) on
improving the geometry awareness of deep learning
architecture for action recognition by modifying the
inner operations of the CNN network.
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