A Multiagent Framework for Querying Distributed Digital Collections

Jan de Mooij, Can Kurtan, Jurian Baas and Mehdi Dastani
Intelligent Systems, Department of Information and Computing Sciences, Utrecht University, The Netherlands

Keywords:

Abstract:

Multiagent System, Information Retrieval, Federated Search, Semantic Web.

Since initial digitization strategies are often inspired by existing usage of the data, and usage of archives often

varies among institutes, there is a lot of variation in accessibility of digital collections. We identify four chal-
lenges that researchers may encounter when querying such collections in conjunction for research purposes,
namely query formulation, alignment, source selection and lack of transparency. We present a multiagent
architecture to help overcome these challenges and discuss an prototype implementation of this framework.
By means of a query scenario we show the utility of using the framework for humanities researchers.

1 INTRODUCTION

Institutions start to realize that it is not just the size
of their data collections that determines their useful-
ness, but also their accessibility. Since initial digiti-
zation strategies are often inspired by existing usage
of the data, and usage of archives often varies among
institutes, there is a lot of variation in accessibility
of digital collections. Moreover, the distributed na-
ture of data sources has resulted in using various stan-
dards among these sources. Although Digital Her-
itage and Semantic Web aim at making it possible to
use data from multiple data providers, there are still
many challenges for organizing and integrating these
digital collections.

We aim at enabling integrated search on data col-
lections while keeping them distributed and without
forcing changes to the source of the data. Moreover,
we aim at enabling non-technical users to search dis-
tributed data collections. In order to achieve these ob-
jectives, we focus on the following challenges.

1. Query Formulation: The users of the system
should be supported in formulating queries as they
cannot be assumed to be able to formulate the
correct query right away. Users may be non-
technical, not know exactly what to look for, or
realize a query can be improved upon encounter-
ing new data.

2. Alignment: Data collections may use different
schemes to represent entities even for overlapping
content in the same domain. This problem may
appear at both the data records and schema repre-
sentation of the collection. For a large number of

de Mooij, J., Kurtan, C., Baas, J. and Dastani, M.
A Multiagent Framework for Querying Distributed Digital Collections.
DOI: 10.5220/0009154005150521

collections it is not feasible to solve these interop-
erability problems manually, and therefore semi-
automatic alignment approaches are required.

3. Source Selection: Complex queries that need
data from various collections require careful se-
lection of data sources since the quality of an-
swers are highly related to the relevancy of partic-
ipating sources. This requires automatically de-
ciding and querying relevant sources, and com-
bining the resulting data. These require in turn
some meta-knowledge about the data sources.

4. Lack of Transparency: The above mentioned
automated processes may affect transparency as
users may no longer understand how the answer
was formed. A user needs to understand what de-
cisions were made by the system and for what rea-
son.

We focus on the data collections of digital her-
itage, where the Resource Description Framework
(RDF) has been widely used. We assume that digital
collections can be queried using the SPARQL query
language and that they use different ontologies, or use
different identifiers for the same entities. We pro-
pose a multiagent system to meet these challenges in a
structured manner. The system consists of three agent
types organized in a hierarchical structure. The user
agent supports a user to formulate queries and get re-
sults back. The broker agent selects data sources, dis-
tributes sub-queries, and aggregates the results. Fi-
nally, the data source agent encapsulates a digital col-
lection to provide data for a request coming from the
broker. A query scenario is used to evaluate and illus-
trate the working of the prototype multiagent system.

515

In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 1, pages 515-521

ISBN: 978-989-758-395-7; ISSN: 2184-433X

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ARTIDIGH 2020 - Special Session on Artificial Intelligence and Digital Heritage: Challenges and Opportunities

2 A MULTIAGENT SYSTEM
ARCHITECTURE

In this section we describe the proposed role of the
user, broker, and data source agents in an architec-
ture for a multiagent system. The hierarchy of these
agents is presented in Fig. 1. We assume a general
ontology that fully describes the relevant domain in a
consistent and unambiguous manner is present. Par-
ticipating collections are aligned with this ontology,
rather than pairwise with each other.

The query process starts with a user who is inter-
ested in a question relating to facts in one or more
connected data collections. This user interacts with
the system through the user agent, which helps the
user express the question formally and constrain or
loosen it where necessary. The query is then passed
on by the user agent to a broker agent. After the bro-
ker has collected the answers, the results are presented
back to the user by the user agent. At this stage, the
user can download the results for further analysis, or
work together with the user agent to further improve
the query based on the provided results. The main
purpose of the user agent is to hide the complexity of
formal query writing for distributed data collections
from novice users.

The main task of the broker agent is to organize
the query distribution process and automated data in-
tegration. The broker agent uses the general ontology
to learn which concepts exist across the participating
collections, and contacts individual data source agents
to learn which specific concepts occur in their respec-
tive collections, represented by their capabilities. The
broker agent uses these capabilities to select sources
which can provide partial results to incoming queries.
When a new query is received, the broker agent splits
it into one or more subqueries, which can each be an-
swered by at least one source agent, according to the
stored capabilities. These agents are asked to provide
the answers for their part of the user query, and the
broker agent joins these intermediate results to form
the final answer to the original query. Although the
user agent itself will contact only one broker, multi-
ple broker agents which can work together to answer
a given query may exist in the system.

Each digital collection is managed by a data
source agent that can be understood as an expert on
the data it encapsulates. Source agents are capable
of querying SPARQL endpoints, making them work
with existing RDF data structures, or of exposing raw
database files. The main task of the source agent is to
answer specific subqueries sent to it by a broker agent.
The broker agent will be agnostic about the ontology
used in the local collection, so the source agent trans-

516

lates the subquery to that ontology, and makes sure re-
sults that are sent back are presented in the vocabulary
of the general ontology. In order to be included in the
query process, a data source agent constructs a local
expertise model, representing the capabilities of the
collection it encapsulates, and shares that expertise
with the broker when requested. The model is con-
structed by indexing concepts used in the local col-
lection through automatically generated queries, and
communicated in the vocabulary of the general ontol-
ogy.

Data providers can instantiate source agents for
their own collections, and announce that agent to the
multiagent system to make their data available. They
can use the default agent implementation, or make
changes to reflect their own values. For example,
fine-grained access control not possible with regu-
lar SPARQL endpoints, or domain specific reasoning
to improve result quality, could be included. Most
importantly, however, this agent can run on a server
maintained by the data provider itself, so they remain
in full control.

3 PROTOTYPE
IMPLEMENTATION

In this section we discuss a first prototype implemen-
tation of the architecture proposed above, which we
intend to extend to a fully functional application in
future work. This prototype has been created using
the Java-based edition of the agent programming lan-
guage 2APL (Dastani, 2008; Dastani and Testerink,
2014). All agent communication, including query
requests and the sending of query answers, occurs
through message passing. In this implementation, the
general ontology we use is one specific to the domain
of cultural heritage. For all participating digital col-
lections, a mapping to this ontology is provided in
separate files (Zamborlini et al., 2017). Additionally,
linksets containing equivalence relations between en-
tity IRI’s across collections are provided (Idrissou
et al., 2018). By means of the general ontology and
linksets, the broker and data source agents align the
data at both ontology and instance levels during query
processing.

Whenever the agents need to perform RDF or
SPARQL related operations, Apache Jena' is used.
Permitted queries are restricted to the set of non-
nested conjunctive SPARQL queries with a few op-
erators only. This means each query can only be a
conjunction of triple patterns (SUBJECT-PREDICATE-

Uhttps://jena.apache.org/

A Multiagent Framework for Querying Distributed Digital Collections

Data
Source
Agent

Data
Source
Agent

Data
Source
Agent

Figure 1: An overview of the multiagent system.

OBJECT triples with variables in zero or more loca-
tions), FILTERs, and BINDs.

3.1 User Agent

A user interacts with the user agent through a web
interface. Expert users are given the opportunity to
write formal SPARQL queries, similar to existing
SPARQL endpoints such as the Virtuoso interface of
DBpedia®. This allows expert users to write SPARQL
queries over distributed collections without knowl-
edge of availability or content of individual collec-
tions. In ongoing work we are investigating methods
of making the query writing process more accessible
to non-technical users.

When the user is finished with constructing the
query, the user agent starts the querying process by
performing a syntax check. If any errors in the query
syntax are found, suggestions for repairing the query
are presented to the user. Otherwise, the broker is
asked to start the query process. When the results are
ready, these are displayed in a table where the user
can inspect the results, or export them as a CSV file
for further analysis. For each variable in the query, all
data sources that contributed some values are listed,
allowing the user to trace answers back to the source.
This last feature is a first step towards transparency of
the process.

3.2 Broker Agent

The broker agent uses the process given in Algo-
rithm 1 to answer a user query. First, it creates a
set of candidate sources for each triple pattern in the
query. A source agent is marked as a candidate for
a triple pattern if all concepts occurring in that triple

Zhttps://dbpedia.org/sparql

also are within the capabilities of that source. From
the candidate sources, each triple pattern is matched
with at least one data source agent, ensuring the en-
tire query is covered (line 1). Each data source in the
final selection receives an abstract representation of
the triple patterns matched to that data source, and
is expected to reply with a collection of RDF triple
patterns (line 3). The broker agent collects all these
triple patterns in a Jena model, to create a temporary
virtual graph containing the aggregated data (lines 5-
8). The broker adds the linksets of all participating
data sources to this model (line 10), and uses the
Jena reasoner to materialize the equivalence relations
(line 11). This ensures that when different identi-
fiers are used across collections, they resolve to the
same entity. Finally, the broker evaluates the original
SPARQL query on the temporary model (line 12), and
streams the result back to the user agent.

Algorithm 1: answerQuery(Q,A, L, reasoner).
Data: Query Q, Set of Agents A, Linkset L,
Reasoner reasoner
Result: Resultset R
1 SQ « split(Q,A) // create subqueries
2 foreach subQ € SQ do

3 | send(subQ) // send to agent
4 end

5 M+ init() // initialize model
6 /* async partial data collection */
7 foreach P <+ collect() do

8 | M.add(P) // add partial model
9 end

10 M.add(L) // add linkset

[

M .reason(reasoner) // reason over data
R < M .execute(Q) // execute query
return R

o
w

517

ARTIDIGH 2020 - Special Session on Artificial Intelligence and Digital Heritage: Challenges and Opportunities

3.3 Data Source Agent

When a data source agent receives a query request, it
generates a CONSTRUCT query that uses all the triples
specified by the broker. With the CONSTRUCT key-
word, SPARQL allows aggregating results as an RDF
graph, which is a temporary virtual database con-
structed based on the query. By using concepts of
the local collection in the query body, but taking the
translations of those concepts from the general ontol-
ogy and placing them in the head, results are automat-
ically returned to the broker agent in the vocabulary
of the general ontology. More complex mappings can
be dealt with this way as well. An example of this
approach is provided in Listing 1, which assumes the
general ontology describes the class schema:Person
and a property of that class schema:name, while the
local ontology contains the semantically equivalent
property local:name but does not contain a class
representing People (equivalent to schema:Person).
However, the local ontology contains a class contain-
ing men and a class containing women. The mapping
specified that those two classes together are equiv-
alent to schema:Person, so the translation can still
occur.

CONSTRUCT {
?7x rdf:Type schema:Person
?7x schema:name ?name

}

WHERE {
{ ?x rdf:type local:Man }
UNION
{ ?x rdf:type local:Woman } .
?7x local :personName ?name

}

Listing 1: Example CONSTRUCT query used for translation.

A data source can be created either by specifying
the URL of a SPARQL endpoint, allowing existing
infrastructure of knowledge institutes to be used, or
by giving it direct access to the source files of the
collection formatted as, for example, Turtle, TDB(2),
N-Triples or JSON-LD. The data source agent au-
tonomously determines query strategies based on the
method with which the data is provided. For exam-
ple, an edge case of SPARQL endpoints that the data
source agent deals with is that some of these servers
limit the number of results that a single query can
yield. If the result size is larger than this number, the
SPARQL endpoint will silently drop results beyond
that limit without notice. Since the limit is usually
constant for a given endpoint, the data source agent
can determine if such a limit exists and, if so, what

518

that limit is in advance. When querying the endpoint,
it iteratively requests batches of data smaller than this
maximum result size by including a LIMIT clause, and
keeps track of the progress to continue querying until
all results are collected.

3.4 Agent Preparation

Since this infrastructure allows data providers to add
data source agents to the system at any time, some
organization is needed. Besides the main processes
described above, each agent type has a specific ini-
tialization phase, where they prepare to take part in
the query process. In this phase, source agents build
the expertise model of the digital collection they rep-
resent and try to find the query result limit. Broker
agents search for and contact available data source
agents to request their expertise, in order to get a
global idea of knowledge present in the system. User
agents prepare by finding the broker agents in the sys-
tem they can send their user’s queries to.

In order to allow agents to find each other in the
open multiagent system, we add a directory facili-
tator. This is an agent that acts as a yellow pages
service to all other agents, by matching offered ser-
vices (e.g. ‘answer queries’) to other agents’ require-
ments. For an agent to announce itself to the system, it
only needs to contact this directory facilitator, which
then informs all relevant agents of the new arrival.
This is a common approach in open multiagent sys-
tems (O’Brien and Nicol, 1998; Dale and Mamdani,
2001).

4 EVALUATION

We show the utility of the multiagent architecture to
humanities researchers through an example query sce-
nario. A digital heritage researcher, Alice, has a hy-
pothesis that with the advancement in book pressing
technology, publishing books became easier. She ex-
pects to see a trend in historical data where first pub-
lications of authors come at an increasingly younger
age. She searches information online, but realizes that
she has to match published books to authors manu-
ally. She then finds three relevant sources exposed
through SPARQL, two of which provide personnel
data about authors — Ecartico® and OnStage* — and the
other a library archive listing details of those authors’
published works — STCN>. She writes one SPARQL

3http://www.vondel. humanities.uva.nl/ecartico/
“http://www.vondel. humanities.uva.nl/onstage/
Shttp://www.stcn.nl

query for each collection, tailored to the data it can
provide, but notices that each entity has a different
identifier in each collection. Even though there is a
file that maps those identifiers, she still needs to match
the data manually.

She then learns about the multiagent system in
which the three collections are already connected. Al-
ice opens the web page through which she can inter-
act with the user agent in her browser, and writes the
query given in Listing 2 to requests all authors and
their published works, and uses birth and death dates
to calculate what age they were when they first had a
work published. Note that prefixes have been omitted.

SELECT DISTINCT ?name ?birth
(min(?pubYear) AS ?firstPub)
(?firstPub — ?birth) AS ?age)
WHERE {

?person a :CreativeAgent
?person :hasName 7name
?person :birthYear ?birth
?person :deathYear ?death
?person :authorOf ?work
?work a :Story
?work :publishedAs ?pub
?7pub a :CreativeAct
7pub :yearPublished ?pubYear

GROUP BY ?person ?year ?death
HAVING (?firstPub < ?death)

Listing 2: A SPARQL query which finds the age of authors
when they first had a work published.

The system automatically distributes the query among
relevant data sources and collects the results without
requiring further input from Alice. The user agent
then presents the answers back to Alice. The first 5
results for the query in Listing 2 that were obtained
using the prototype implementation are displayed in
Table 1. The entire query evaluation process takes
roughly 20 seconds in this prototype version for the
given query.

Table 1: The first 5 results of the query in Listing 2.

Tname ?birth ?firstPub ?age
Vondel 1587 1638 51
Coster 1579 1638 59
Brandt 1626 1644 18
Lescailje 1649 1685 36
Cats 1577 1656 79

Alice exports the results to CSV and uses tools she
is already familiar with for the analysis. When she
is ready to publish her findings, she looks at the list
of consulted collections provided by the user agent

A Multiagent Framework for Querying Distributed Digital Collections

so she knows which sources to cite. This scenario
shows that the proposed multiagent system can help
a researcher find results for a query which requires
information from multiple data sources.

S RELATED WORK

The MUSEUMFINLAND project (Hyvonen et al.,
2005) aimed at making data from multiple museums
available to non-technical users in an integrated man-
ner. They have developed a general ontology de-
scribing the common domain of the museums, and
a faceted search browser to provide easy access to
the collections. Where our approach aims at facilitat-
ing researchers, their approach was primarily aimed
at facilitating museum visitors. Moreover, where our
approach integrates data virfually without requiring
changes in the collections themselves, in the MUSE-
UMFINLAND project museums were asked to align
their data to the general ontology and uploaded their
data to a central repository.

Since RETSINA (Sycara et al.,, 1996) has been
proposed, the hierarchical multiagent structure with
user, broker and data source agents has been a com-
mon approach to access information sources. The
authors describe how process models can be used
by agent-based semantic web services to indicate
what inputs are required for the services they pro-
vide (Sycara et al., 2004). Broker agents reason over
these required inputs and either use other services to
acquire missing information, or request that informa-
tion from the user directly. While we use a similar
organizational structure, our contribution can be dis-
tinguished in that it deals with the problems users may
face when querying distributed heterogeneous collec-
tions.

Garcia et. al. (Garcia-Sanchez et al., 2008) have
noted the variation in standards in semantic web and
compared those to relatively rigid web standards and
protocols. They have proposed a multiagent system
that uses the stricter web standards to discover web
services that publish semantic data and use their ser-
vice descriptions to map those data to a domain on-
tology automatically. A separate ontology is used
to store collections’ capabilities, allowing agents to
jointly reason over discovered services. This ap-
proach was aimed at the automated integration of se-
mantic data and to minimize the amount of human in-
tervention required, rather than at accessible search.
Although the application has been developed for the
domain of bioinformatics, the authors claim it could
be applied to open environments.

In the Semantic Web literature, various solutions

519

ARTIDIGH 2020 - Special Session on Artificial Intelligence and Digital Heritage: Challenges and Opportunities

to distributed querying have been proposed. By far
the easiest solution is to consolidate all data in a cen-
tral data warehouse, as this allows the use of existing
query technologies. However, this requires a huge
maintenance effort and is only feasible if the data
rarely needs updating, and a single entity has full per-
mission to host the data.

With the introduction of the SERVICE keyword in
SPARQL 1.1, the W3C formalized a possible solu-
tion for querying distributed data (Hartig et al., 2017;
Prud’hommeaux and Aranda, 2013). The method al-
lows users to specify different remote data sources for
specific parts of a query. This approach expects users
to know which remote sources to consult for every
piece of data.

A different approach is that of Federation En-
gines. Most research in federation engines focuses
on evaluating queries as fast as possible, while main-
taining soundness and completeness of results. Vari-
ous methods have been suggested which can broadly
be classified in two categories: limiting communi-
cation overhead and efficient joining. Since queries
and results are transmitted over a network, decreas-
ing the amount and size of these transmissions can
significantly improve communication speed and thus
query execution time. Limited communication over-
head can be achieved by intelligently selecting only
relevant sources, and constraining the query so only
relevant results are returned. Engines such as Splen-
did (Goérlitz and Staab, 2011b) and DARQ (Quilitz
and Leser, 2008) achieve this by statistically indexing
participating sources, while for example FedX uses
query-time heuristics (Schwarte et al., 2011). Meth-
ods such as Hibiscus (Saleem and Ngomo, 2014) and
those proposed by Harth et. al. (Harth et al., 2010)
use even more advanced data structures. Examples
of efficient joining include early join (to drop irrel-
evant results before these are sent back to the fed-
eration engine) and Nested Join Loops, where un-
bound variables in a sub-query are bound with results
from previous sub-queries (Gorlitz and Staab, 2011b;
Schwarte et al., 2011). Gorlitz and Staab (Gorlitz
and Staab, 2011a) provide an excellent overview of
the challenges and approaches in federated querying.
Saleem et. al. (Saleem et al., 2018) have investigated
the efficiency of various federation engines over mul-
tiple endpoints.

In this work we have not focused on optimiza-
tion. However, where federation engines require ad-
herence to global standards that cannot be guaranteed
in the domain of Digital Heritage, our approach fo-
cuses on integrating these types of collections. More-
over, agents are capable to adapt to user intentions
as well as imperfect data, and handle distributed data

520

more dynamically. Furthermore, agents can run in a
physically distributed fashion, so data providers can
control access to their data by maintaining their own
agents. Of course, nothing prohibits incorporating ex-
isting approaches from federation engines for query
optimization, but this has not been the focus of this
work.

6 CONCLUSION

In this work we have acknowledged four challenges
that researchers may encounter when querying digi-
tal collections of various data providers in conjunc-
tion: query formulation, alignment, source selection,
and lack of transparency. To overcome these chal-
lenges, we have proposed a multiagent architecture
where data providers can expose their data using cus-
tom ontologies and users can search these data in an
integrated manner. To this end, three types of agents,
namely user, broker and data source, collaborate to
query the distributed data on behalf of the user. We
have implemented a prototype of this architecture in
Java and shown its utility through an example sce-
nario.

The limitations of this approach stem from the
assumption of the presence of a general ontology,
linksets and mappings. While a general ontology is
a common requirement for data sources which are
not intrinsically aligned, the creation of mappings
and linksets between digital collections currently re-
lies on manual labor. We are in the process of de-
veloping automated techniques by means of an em-
bedding; an abstract representation of entities in a
multi-dimensional vector space that encodes a no-
tion of ‘sameness’ through distance in this space. To
achieve this, we are adapting an existing natural lan-
guage processing approach called GloVe (Pennington
et al., 2014) and work based on that approach (Cochez
et al., 2017) to the domain of Semantic Web. We in-
tend to have a new type of agent encapsulating such an
embedding to create linksets dynamically when new
data source agents enter the system or participating
sources are updated.

In future work, we further aim to increase assis-
tance to the user by providing more intuitive ways
for interacting with the system. Specifically, we in-
tend to provide guidance to the user when writing a
query by providing suggestions for how a query can
be extended. This should make the querying pro-
cess easier and guarantee the written query will be
able to produce answers. At this stage, user studies
will be conducted to evaluate usability of the system
with novice users. For improved source selection, we

will focus on building a model that summarizes the
content of collections and the relations between them
more expressively. Lastly, in an open environment,
data quality cannot be enforced. Data source agents
can have the responsibility of run-time data enhance-
ment when imperfections are encountered. This is ex-
pected to reduce the number of crashes on endpoints
and increase data availability. Thus, the overall re-
liability of the system would be improved. We fur-
ther intend to make agents more adaptable to unfore-
seen circumstances, such as temporary unavailability
of data sources, by incorporating methods suggested
by Decker and Sycara (Decker and Sycara, 1997).

ACKNOWLEDGEMENTS

This work was done in the context of the Golden
Agents project (www.goldenagents.org), funded by
the Netherlands Organization of Science NWO —
Large Investments program.

REFERENCES

Cochez, M., Ristoski, P., Ponzetto, S. P., and Paulheim, H.
(2017). Global RDF vector space embeddings. In
International Semantic Web Conference, pages 190—
207. Springer.

Dale, J. and Mamdani, E. (2001). Open standards for in-
teroperating agent-based systems. Software Focus,
2(1):1-8.

Dastani, M. (2008). 2APL: a practical agent programming
language. Autonomous agents and multi-agent sys-
tems, 16(3):214-248.

Dastani, M. and Testerink, B. (2014). From multi-agent
programming to object oriented design patterns. In
International Workshop on Engineering Multi-Agent
Systems, pages 204-226. Springer.

Decker, K. S. and Sycara, K. (1997). Intelligent adaptive
information agents. Journal of Intelligent Information
Systems, 9(3):239-260.

Garcia-Sanchez, F., Fernandez-Breis, J. T., Valencia-
Garcia, R., Gémez, J. M., and Martinez-Béjar, R.
(2008). Combining semantic web technologies with
multi-agent systems for integrated access to biolog-
ical resources. Journal of Biomedical Informatics,
41(5):848-859.

Gorlitz, O. and Staab, S. (2011a). Federated data manage-
ment and query optimization for linked open data. In
New Directions in Web Data Management 1, pages
109-137. Springer.

Gorlitz, O. and Staab, S. (2011b). Splendid: SPARQL end-
point federation exploiting void descriptions. In Pro-
ceedings of the Second International Conference on
Consuming Linked Data-Volume 782, pages 13-24.
CEUR-WS. org.

A Multiagent Framework for Querying Distributed Digital Collections

Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.-
U., and Umbrich, J. (2010). Data summaries for on-
demand queries over linked data. In Proceedings of
the 19th international conference on World wide web,
pages 411-420. ACM.

Hartig, O., Vidal, M.-E., and Freytag, J.-C. (2017). Feder-
ated Semantic Data Management (Dagstuhl Seminar
17262). Dagstuhl Reports, 7(6):135-167.

Hyvonen, E., Mikeld, E., Salminen, M., Valo, A., Viljanen,
K., Saarela, S., Junnila, M., and Kettula, S. (2005).
MuseumFinland—Finnish museums on the semantic
web. Web Semantics: Science, Services and Agents on
the World Wide Web, 3(2-3):224-241.

Idrissou, A., Zamborlini, V., Latronico, C., van Harmelen,
F., and van den Heuvel, C. (2018). Amsterdamers
from the golden age to the information age via lentic-
ular lenses: Short paper.

O’Brien, P. D. and Nicol, R. C. (1998). FIPA—towards a
standard for software agents. BT Technology Journal,
16(3):51-59.

Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global vectors for word representation. In Proceed-
ings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532—
1543.

Prud’hommeaux, E. and Aranda, C. B. (2013).
SPARQL 1.1 federated query. W3C recom-
mendation, W3C. http://www.w3.0rg/TR/2013/
REC-sparql1 1-federated-query-20130321/.

Quilitz, B. and Leser, U. (2008). Querying distributed RDF
data sources with SPARQL. In European Semantic
Web Conference, pages 524-538. Springer.

Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., and Ngomo,
A.-C.N. (2018). An evaluation of SPARQL federation
engines over multiple endpoints. In The Web Confer-
ence. ACM.

Saleem, M. and Ngomo, A.-C. N. (2014). Hibiscus:
Hypergraph-based source selection for SPARQL end-
point federation. In European Semantic Web Confer-
ence, pages 176-191. Springer.

Schwarte, A., Haase, P.,, Hose, K., Schenkel, R., and
Schmidt, M. (2011). FedX: Optimization techniques
for federated query processing on linked data. In
International Semantic Web Conference, pages 601—
616. Springer.

Sycara, K., Pannu, A., Willamson, M., Zeng, D., and
Decker, K. (1996). Distributed intelligent agents.
IEEE expert, 11(6):36—46.

Sycara, K., Paolucci, M., Soudry, J., and Srinivasan, N.
(2004). Dynamic discovery and coordination of agent-
based semantic web services. IEEE Internet comput-
ing, 8(3):66-73.

Zamborlini, V., Betti, A., and van den Heuvel, C. (2017).
Toward a core conceptual model for (im) material cul-
tural heritage in the golden agents project.

521

