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Abstract: The setting of sampling points on the detector array will affect the fitting error of Gaussian beam. Based on 
MATLAB and least square method, the fitting of ideal Gaussian beam in one dimension and two dimensions 
was simulated, and the influence of sampling point interval on the fitting error of characteristic parameters, 
such as facula center, facula radius and center power density, were studied. The results show that, the number 
of sampling points in the two-dimensional simulation is greater, so the fitting accuracy is better than that in 
the one-dimensional simulation under the same condition of sampling point interval. In the range of initial 
conditions of simulation calculation, the interval of sampling points shall be d≤50mm, then the fitting error 
would be controlled within the range of admissible one. 

1 INTRODUCTION 

Generally, the detector array is used to measure the 
power density distribution of the facula(C. Higgs, 
P.C. Grey, J.G. Mooney. 1999; J. Thomas Knudtson, 
Kenneth L. Ratzlaff. 1983). The characteristic 
parameters of the facula are acquried by the least 
square fitting. The setting of sampling points on 
detector array will affect the fitting error of facula. It 
can be predicted that, the smaller the interval between 
sampling points, and the larger the sampling range, 
the smaller the fitting error of facula. In the design of 
detector array, due to the limitation of single detector 
size and data processing capacity, the sampling point 
interval cannot be small infinitely, and the sampling 
range cannot be large infinitely, so it is necessary to 
make a balance between sampling point setting and 
fitting error. It is great to use as few sampling points 
as possible to obtain the fitting error that meets the 
requirements. In this paper, based on MATLAB and 
least square method, one-dimensional and two-
dimensional simulation are carried out for the 
sampling point setting on the Gaussian facula, and the 
influence of sampling point interval on the fitting 
error is studied. 
 
 
 
 

2 ONE-DIMENSIONAL 
SIMULATION 

2.1 Calculation Method of  
One-dimensional Simulation 

The general expression of power density distribution 
function of one-dimensional Gaussian beam is 
(Bingkun Zhou, Yizhi Gao, Tirong Chen, et al.. 2000): 
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Where x0 is the facula center, w0 is the facula radius, 
and I0 is the center power density. 

First of all, equation (1) is transformed by 
logarithm operation on both sides of the equal 
sign(Bing Kong, Zhao Wang, Yusan Tan, 2002), then: 
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The coefficients of a, b and c can be obtained by the 
second order polynomial fitting of the transformed 
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function. According to the relationship between the 
transformed function and the original Gaussian 
function, the corresponding parameters of the Gaussian 
function can be obtained as follow: 
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The position of the sampling point on the actual 
detector array is given, and the facula wobbles within 
a certain range. For the convenience of calculation, it 
is assumed that the facula is fixed, and sampling points 
are set uniformly. In this way, three parameters are 
involved in the distribution of sampling points, as 
shown in Figure 1. They are d, wr, and h, which stand 
for the interval of sampling points, the ratio of 
sampling point range to facula diameter, and the 
distance between the facula center and the sampling 
point on the left side of it. Parameters of d and wr are 
related to the design of detector array. Parameter of h 
changes randomly in the actual measurement, with the 
range of 0~d/2. 

 
Figure 1: Physical meaning of parameters in simulation 
calculation. 

For each set of d, wr and h, the coordinates xi of each 
sampling point can be determined. Then the true value 
I(xi) of each sampling point can be obtained by 
substituting xi to formula (1). There is a certain 
measurement error for each sampling points, which 
follows the normal distribution with the mean value of 
0 and the standard deviation of δ0. A group of random 
error values δi (i=1, 2, … , n, n is the number of 
sampling points) that meet the above normal 
distribution are selected, so the measured value of each 
sampling point is I'(xi)= I(xi)*(1+δi). Substituting it 
into formula (2), z'(xi)=ln(I'(xi)) is obtained. In 
MATLAB, the least square fitting of (xi，z'(xi)) is 
carried out using the polyfit function (Shenyong Ruan, 
Yongli Wang, Qunfang Sang, 2004), and three 
coefficients of a1, b1 and c1 are obtained. Then, the 
fitting coefficients x01, w01 and I01 are calculated 

according to formula (3). Here, the subscript "1" 
represents the fitting result. 

Therefore, the power density distribution function 
obtained by fitting is: 
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Compared with the true value in formula (1), the fitting 
error values of facula center (x01-x0), facula radius 
(w01-w0), and center power density (I01-I0) are obtained. 

A number of m groups of random error are selected, 
and a group of fitting error, such as (x01-x0)j, (w01-w0)j 
and (I01-I0)j, j = 1, 2, ... , m, is obtained for each group 
of random error according to the above process. Then 
the fitting error under the conditions of d, wr and h is 
acquired by the standard deviation of m groups of 
fitting error values is calculated. 

2.2 Initial Conditions of  
One-dimensional Simulation 

The initial conditions used in the calculation are: 
1) The facula center x0=0. The facula radius w0=50mm. 
The center power density I0=100mW/cm2. 
2) The ratio of the sampling point range to the facula 
diameter wr=2. The sampling point interval d is 
changed from 30mm to 60mm, and the step is 1mm. 
The distance between the facula center and the 
sampling point on the left side of it h is changed from 
0 to d/2, and the step is d/8. 
3) the standard deviation of sampling point error is 
δ0=15%. 
4) The number of groups of random error m = 10000. 

2.3 Results of One-dimensional 
Simulation 

When d=30mm, wr=2, h=0mm, a group of random 
error of sampling points is selected, and the fitting 
result for the measured values of sampling points is as 
Figure 2: 

 
Figure 2: Result of one-dimensional fitting. 
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In the figure, the black line represents the actual power 
density distribution, the red circle represents the 
measured value of the sampling point, and the blue line 
represents the power density distribution obtained by 
fitting the measured value of the sampling points, 
where x01=0.46mm, w01=49.80mm and 
I01=97.18mW/cm2, and the fitting errors are (x01-
x0)=0.46mm, (w01-w0)=-0.20mm, and (I01-I0)=-
2.82mW/cm2. 

A number of m=10000 groups of random error 
values are selected, and a number of m=10000 groups 
of the fitting error is obtained. Then the fitting error 
under the conditions of d=30mm, wr=2 and h=0mm is 
obtained: the fitting error of the facula center is 
δx0=0.61mm, the fitting error of the facula radius is 
δw0=0.59mm, and the fitting error of the center power 
density is δI0=8.73mW/cm2. 

When d and h change in the calculation range, the 
simulation results of the fitting errors are as shown in 
Figure 3 ~ Figure 5. 

 
Figure 3: Fitting error of the facula center for one-
dimensional simulation. 

 
Figure 4: Fitting error of the facula radius for one-
dimensional simulation. 

It can be seen from the figure: 
1) The relationship between fitting error and sampling 
interval is not monotonous increasing or decreasing, 
but segmented. With the increase of d, the overall 
errors of the next section is higher than that of the  

 
Figure 5: Fitting error of the center power density for one-
dimensional simulation. 

previous section. While in a certain section, it is 
basically monotonic decreasing. This is because in a 
certain range, the number of sampling points is 
constant. The larger d is, the wider the distribution of 
sampling points is, the more information is detected, 
and the smaller the fitting error is. When d increases to 
a certain value, because wr is limited to 2, the number 
of sampling points decreases, so the detection 
information decreases, and the fitting error suddenly 
increases. Taking h=0 as an example, the range of 
sampling points is limited to w0*wr=50*2=100mm. 
When d=30-33mm, there are three sampling points on 
both sides of the facula center. When d=34-50mm, 
there are two sampling points on both sides of the 
facula center. When d=51-60mm, there is one 
sampling point on both sides of the facula center. 
Therefore, the boundary between segments are 
between d=33mm and d=34mm, d=50mm and 
d=51mm. 
2) It is assumed that, the admissible errors of the facula 
center, facula radius and center power density are 1mm, 
2.5mm (5%) and 10mW/cm2 (10%), respectively, 
which are represented by solid red lines in the figures. 
When selecting the interval of sampling points d, the 
fitting errors should not exceed the admissible ones 
under all h conditions. It can be seen from the figures 
that, within the initial condition range of simulation 
calculation, the fitting error of facula radius is smaller 
than the admissible one, and the fitting errors of facula 
center and center power density do not exceed the 
admissible ones when d ≤ 40mm and d ≤ 33mm 
respectively. Therefore, d≤33mm should be selected 
to ensure the fitting accuracy. 
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3 TWO-DIMENSIONAL 
SIMULATION 

3.1 Calculation Method of  
Two-dimensional Simulation 

The general expression of the power density 
distribution function of the two-dimensional Gaussian 
beam cross-section facula is as follows: 
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Where (x0, y0) is the facula center, (w0x, w0y) is the 
facula radius in the X and Y directions, and I0 is the 
center power density. 

Similar to the one-dimensional simulation 
calculation, equation (5) is transformed by logarithm 
operation on both sides of the equal sign. 
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The coefficients a, b, c, d and e can be obtained by the 
second order polynomial fitting of the transformed 
function. According to the relationship between the 
transformed function and the original Gaussian 
function, the corresponding parameters of the Gaussian 
function can be obtained as follow: 
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Similar to the one-dimensional simulation calculation 
shown in Figure 1, four parameters are involved in the 
two-dimensional distribution of sampling points.They 
are the interval of sampling points d, the ratio of 
sampling point range to facula diameter wr, the 
distance between the facula center and the sampling 
point on the left side of it hx, and the distance between 
the facula center and the sampling point under it 
hy.Parameters of d and wr are related to the design of 
detector array. Parameters of hx and hy change 

randomly in the actual measurement, with the range of 
0~d/2. 

For each set of d, wr, hx and hy, the coordinates (xi, 
yj) of each sampling point can be determined, where 
i=1, 2,... , nx, j=1, 2,... , ny, nx and ny represent the 
number of columns and rows of sampling points 
respectively. The true value I(xi, yj) of each sampling 
point is obtained by substituting (xi, yj) to formula (5). 
A group of random error values δij are selected, and the 
measured value of each sampling point is I'(xi, yj)= I(xi, 
yj)*(1+δij). Substituting it into formula (6), z'(xi, 
yj)=ln(I'(xi, yj)) is obtained. Then the least square fitting 
of ((xi ， yj) ， z'(xi, yj)) is carried out, and five 
coefficients of a1, b1, c1, d1 and e1 are obtained. So, the 
fitting coefficients (x01, y01), (w0x1, w0y1) and I01 are 
calculated according to formula (7). 

So far, the power density distribution function of 
the two-dimensional Gaussian beam cross-section 
facula is obtained by fitting: 
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Compared with the true value in formula (5), the fitting 
errors of facula center (x01-x0, y01-y0), facula radius 
(w0x1-w0x, w0y1-w0y), and center power density (I01-I0) 
are obtained. 

A number of m groups of random error are selected, 
and a group of fitting error, such as (x01-x0, y01-y0)j, 
(w0x1-w0x, w0y1-w0y)j and (I01-I0)j, j = 1, 2, ... , m, is 
obtained for each group of random error according to 
the above process. Then The fitting error under the 
conditions of d, wr hx and hy is acquired by the 
standard deviation of m groups of fitting error values is 
calculated. 

3.2 Initial Conditions of  
Two-dimensional Simulation 

The initial conditions used in the calculation are: 
1) The facula center (x0,y0)=(0,0). The facula radius 
w0x=w0y=50mm. The center power density 
I0=100mW/cm2. 
2) The ratio of the sampling point range to the facula 
diameter wr=2. The sampling point interval d is 
changed from 30mm to 60mm, and the step is 1mm. 
The distance between the facula center and the 
sampling point on the left side of it hx is changed from 
0 to d/2, and the step is d/4. The distance between the 
facula center and the sampling point under it hy is 
changed from 0 to hx, and the step is d/4. 
3) the standard deviation of sampling point error is 
δ0=15%. 
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4) The number of groups of random error m = 10000. 

3.3 Results of Two-dimensional 
Simulation 

The actual distribution of the power density of the two-
dimensional Gaussian facula is shown in Figure 6. 
When d=30mm, wr=2, hx=hy=0mm, a group of 
random error of sampling points is selected, and the 
measured value of sampling points is obtain as shown 
in the red dot in Figure 6. The power density 
distribution obtained by fitting the measured value of 
the sampling points is shown in Figure 7, where 
x01=0.30mm, w0x1=49.82mm, y01=0.32mm, 
w0y1=49.98mm and I01=101.00mW/cm2, and the fitting 
errors are (x01-x0)=0.30mm, (w0x1-w0x)=-0.18mm, (y01-
y0)=0.32mm, (w0y1-w0y)=-0.02mm and (I01-
I0)=1.00mW/cm2, respectively. 

Figure 6: Gaussian facula and measured value of sampling 
points. 

A number of m=10000 groups of random error values 
are selected, and a number of m=10000 groups of the 
fitting errors (x01-x0)j, (w0x1-w0x)j, (y01-y0)j, (w0y1-w0y)j 
and (I01-I0)j are obtained. Then the fitting errors under 
the conditions of d=30mm, wr=2 and hx=hy=0mm are 
obtained: the fitting error of the facula center is (δxo, 
δy0)=(0.23mm, 0.23mm), the fitting error of the facula 
radius is (δw0x, δw0y)=(0.22mm, 0.22mm), and the 
fitting error of the center power density is 
δI0=4.16mW/cm2. 

When d, hx and hy change in the calculation range, 
the simulation results of the fitting errors are as shown 
in Figure 8 ~ Figure 12. 
It can be seen from the above data: 
1) Within the range of initial conditions of simulation 
calculation, the fitting error of two-dimensional 
simulation is less than that of one-dimensional 
simulation. The reason is: there are more sampling 
points  distributed  in  two-dimensional,  and  more 

 
Figure 7: Result of two-dimensional fitting. 

 
Figure 8: Fitting error of the facula center x0 for two-
dimensional simulation. 

 
Figure 9: Fitting error of the facula center y0 for two-
dimensional simulation. 

information is detected, then the fitting error is smaller. 
2) The relationship between the fitting error and the 
interval of sampling points is not monotonous 
increasing or decreasing, but segmented. Because the 
number of sensors has changed. With the increase of d, 
the overall error of the next section is higher than that 
of the previous section. While in a certain section, it is 
basically monotonic decreasing. This is consistent with 
one-dimensional simulation. 
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Figure 10: Fitting error of the facula radius w0x for two-
dimensional simulation. 

 
Figure 11: Fitting error of the facula radius w0y for two-
dimensional simulation. 

 
Figure 12: Fitting error of the center power density for two-
dimensional simulation. 

3) It is assumed that, the admissible errors of the facula 
center, facula radius and center power  density are 
1mm, 2.5mm (5%) and 10mW/cm2 (10%), 
respectively, which are represented by solid red lines 
in the figure. When selecting the interval of sampling 
points d, the fitting errors should not exceed the 
admissible ones under all hx and hy conditions. It can 
be seen from the figure that, in the initial condition 
range of the simulation calculation, the fitting errors of 
the facula center and the facula radius are smaller than 
the admissible ones, and the fitting error of the center 

power density exceeds the admissible one when 
d>50mm. Therefore, in the design, d≤50mm should 
be selected to ensure that all fitting errors do not exceed 
the admissible ones. The interval range of sampling 
points is larger than that allowed by one-dimensional 
simulation. 

4 CONCLUSIONS 

Based on MATLAB and least square method, the one-
dimensional and two-dimensional fitting of Gaussian 
distribution facula are carried out. The influence of 
sampling point layout on fitting error is studied, and the 
relationship between the fitting error and sampling 
point interval is analyzed. The results show that, the 
number of sampling points in the two-dimensional 
simulation is larger, and the fitting accuracy is better 
than that in the one-dimensional simulation under the 
same sampling point interval. Because the actual facula 
is a two-dimensional Gaussian distribution, the two-
dimensional simulation results shall be prioritized. 

In the range of initial conditions of simulation 
calculation, the interval of sampling points should be d
≤50mm, so that the fitting errors of facula center, 
facula radius and center power density can be 
controlled within the admissible ones. 
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