
Deep Learning Techniques for Dragonfly Action Recognition

Martina Monaci1, Niccolò Pancino1,2 a, Paolo Andreini1 b, Simone Bonechi1 c,
Pietro Bongini1,2 d, Alberto Rossi1,2 e, Giorgio Ciano1,2 f, Giorgia Giacomini3 g,

Franco Scarselli1 h and Monica Bianchini1 i

1University of Siena, Department of Information Engineering and Mathematics, via Roma 56, 53100, Siena (SI), Italy
2University of Florence, Department of Information Engineering, via S. Marta 3, 50139, Florence (FI), Italy

3University of Siena, Department of Biochemistry and Molecular Biology, via Aldo Moro 2, 53100, Siena (SI), Italy

Keywords: Dragonfly, Machine Learning, Action Recognition, Deep Learning.

Abstract: Anisoptera are a suborder of insects belonging to the order of Odonata, commonly identified with the generic
term dragonflies. They are characterized by a long and thin abdomen, two large eyes, and two pairs of transpar-
ent wings. Their ability to move the four wings independently allows dragonflies to fly forwards, backwards,
to stop suddenly and to hover in mid–air, as well as to achieve high flight performance, with speed up to 50
km per hour. Thanks to these particular skills, many studies have been conducted on dragonflies, also using
machine learning techniques. Some analyze the muscular movements of the flight to simulate dragonflies as
accurately as possible, while others try to reproduce the neuronal mechanisms of hunting dragonflies. The
lack of a consistent database and the difficulties in creating valid tools for such complex tasks have signifi-
cantly limited the progress in the study of dragonflies. We provide two valuable results in this context: first, a
dataset of carefully selected, pre–processed and labeled images, extracted from videos, has been released; then
some deep neural network models, namely CNNs and LSTMs, have been trained to accurately distinguish the
different phases of dragonfly flight, with very promising results.

1 INTRODUCTION

Odonata are an order of medium/large
hemimetabolous insects, composed of more than
5000 species which differ in color and size. Odonata
are morphologically divided into two main in-
fraorders: Zygoptera and Anisoptera. Although they
are very similar in structure, they can be easily distin-
guished by the shape of the wings. In fact, Zygoptera,
commonly called “damselflies”, are characterized by
two pairs of almost identical wings, kept folded at
rest, along or above the abdomen. Unlike Zygoptera,
forewings of Anisoptera are narrower than the hind

a https://orcid.org/0000-0003-2212-4728
b https://orcid.org/0000-0002-7790-6818
c https://orcid.org/0000-0002-5540-3742
d https://orcid.org/0000-0001-9074-0587
e https://orcid.org/0000-0003-1688-6961
f https://orcid.org/0000-0003-2863-4315
g https://orcid.org/0000-0002-2939-7203
h https://orcid.org/0000-0002-8206-8142
i https://orcid.org/0000-0003-1307-0772

wings; they are kept flat and far from the body at rest,
and make Anisoptera much more skilled in flight.

Commonly, Anisoptera are also referred to as
“Dragonflies”. They live mainly in freshwater envi-
ronments, such as ponds, rivers and lakes. They are
characterized by a long and thin body, two large mul-
tifaceted eyes — made up of thousands of elementary
eyes called ommatidia —, two pairs of transparent
wings and six legs. They can move the four wings in
a fully independent way. This feature, unique in the
world of insects, allows them to reach speeds of up
to 50 km/h and to obtain formidable performance in
flight and hunting, where they can perform backward
movements, very narrow turns of death and stops in
mid–air.

Although the biology of dragonflies has been
widely surveyed, there are still very few studies on
the kinematic analysis of these insects. In 1975, the
Swedish biologist Norberg was the first to study their
flight by filming a dragonfly in the open field (Nor-
berg, 1975). He measured parameters such as the
width and frequency of the wing flapping, revealing
that dragonflies keep their body in an almost horizon-

562
Monaci, M., Pancino, N., Andreini, P., Bonechi, S., Bongini, P., Rossi, A., Ciano, G., Giacomini, G., Scarselli, F. and Bianchini, M.
Deep Learning Techniques for Dragonfly Action Recognition.
DOI: 10.5220/0009150105620569
In Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020), pages 562-569
ISBN: 978-989-758-397-1; ISSN: 2184-4313
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tal position during flight. A decade later, Azuma et
al., using a more advanced video camera, showed that
the flaps of the dragonfly’s wings follow a trajectory
which can be well represented by a sinusoidal func-
tion (Azuma et al., 1985), thus confirming the vor-
tex theory, postulated since 1979. Moreover, by col-
lecting both morphological and kinematic data, they
were able to define the first mathematical expression
of the wing speed. Since then, numerous experiments
have been carried out in this particular research con-
text. New technologies (Wang et al., 2003) were ex-
ploited, for instance, to analyze the muscle move-
ments during flight (Faller and Luttges, 1991a; Faller
and Luttges, 1991b), in order to produce prototypes
of robotic drones capable of accurately simulating the
flight of a dragonfly (Couceiro et al., 2010). These
simulations, however, failed to fully reproduce the
dexterity, capacity, flexibility and freedom of maneu-
ver of dragonflies (Hu et al., 2009).

This paper aims at creating an action recognition
model capable of distinguishing the different phases
of the dragonfly flight, using deep learning tech-
niques. Given the wide interest of the biological re-
search community in the study of dragonflies1, we as-
sume that it is quite useful to develop a reliable system
for recognizing dragonfly actions. Indeed, research in
different fields could benefit from the recognition sys-
tem to test hypotheses on dragonfly anatomy, flight
dynamics and predatory behaviors.

The term Deep Learning (DL) refers to neural net-
work models composed by many layers, arranged in a
cascade, so that the information fed to the network is
processed thoroughly, layer after layer. Despite their
considerable computational complexity, these mod-
els have proved to be particularly flexible for differ-
ent tasks, such as object recognition in images and
video, speech recognition, up to the classification of
phenomena of the animal world (Trnovszky et al.,
2017), and in particular of insects (Stern et al., 2015).
Deep learning, and specifically Convolutional Neural
Networks (CNNs), is actually emerging as the lead-
ing machine learning tool in computer vision. Re-
cently, deep learning has achieved impressive results
in several visual recognition tasks, often outperform-
ing classical image processing approaches. CNNs
are currently broadly employed in different domains
that range from object classification and detection
(Krizhevsky et al., 2012; He et al., 2016; Szegedy
et al., 2017), to semantic segmentation (Donahue

1Odonata are very ancient animals. Fossils dating back
to the Permian period have been found, coming from ap-
proximately 285 million years ago; dragonfly–like fossils
date back 300 million years (Carboniferous period), about
40 million years before the appearance of dinosaurs.

et al., 2015; Zhao et al., 2017; Andreini et al., 2018)
and medical image analysis (Spanhol et al., 2016;
Pereira et al., 2016; Andreini et al., 2019; Anthi-
mopoulos et al., 2016; Milletari et al., 2016). De-
spite huge efforts made by the research community
in developing methods able to reduce the amount of
data needed for training DL architectures (Khoreva
et al., 2017; Bonechi et al., 2018; Shu et al., 2018;
Bonechi et al., 2019a), the success of state–of–the–art
CNNs is usually based on the availability of large sets
of supervised images. For this reason, the release of
public benchmarks to develop and evaluate new algo-
rithms is becoming increasingly critical (Deng et al.,
2009; Lin et al., 2014; Bonechi et al., 2019b; Bonechi
et al., 2019c). Just as CNNs significantly increased
the performance in computer vision tasks, a compa-
rable success has been obtained by Recurrent Neural
Networks (RNNs) in the analysis of sequential data.
Long Short–Term Memory (LSTM) networks are one
of the most successful RNN models, designed to re-
duce the problems caused by long–term dependen-
cies and vanishing gradients. LSTMs are currently
broadly employed in tasks involving the analysis of
sequential data, which range from Natural Language
Processing (NLP) (Graves and Jaitly, 2014; Sutskever
et al., 2014; Kowsari et al., 2019) to human mobil-
ity (Rossi et al., 2019) and music composition (Sturm
et al., 2016). The integration of CNNs and RNNs al-
lows to take advantage from the characteristic of both
the models, and has been successfully applied to tasks
like video classification and image captioning (Don-
ahue et al., 2015; Vinyals et al., 2015).

In this work, we propose a dragonfly action recog-
nition system capable of classifying video frames in
five classes: take–off, flight, landing, stationary and
absent (frames in which the dragonfly is not present).
Deep learning requires a huge set of fully annotated
data, but, unfortunately, we are not aware of a pub-
licly available labeled dataset of dragonfly images. To
train a deep learning architecture, we first collected a
suitable number of samples from online videos, which
were appropriately preprocessed and labeled frame
by frame. Then, different classifier networks for ac-
tion recognition were compared. First of all, a stan-
dard convolutional neural network was tested: this
model elaborates one frame at a time, discarding the
information of previous frames. To correctly iden-
tify the action, the information contained in the previ-
ous frame could be fundamental. Therefore, we also
trained an LSTM model, which is capable of elabo-
rating frame sequences.

The paper is organized as follows. In Section 2,
the dataset construction is described. Then, in Sec-
tion 3, the main architectural components responsible

Deep Learning Techniques for Dragonfly Action Recognition

563



for processing (sequences of) images are briefly in-
troduced, as well as the experimental settings and the
obtained results, comparing the performance of dif-
ferent architectures and providing a detailed analysis
of the problems encountered during their implemen-
tation. Finally, Section 4 draws some conclusions and
proposes future works.

2 DRAGONFLY DATASET
COLLECTION

Generally, datasets used to study insects are com-
posed of pre–processed videotapes recorded by re-
searchers or by specialized personnel with ad hoc
equipments. Nevertheless, for this project, it was
not possible to proceed in the usual way, mainly due
to two reasons: first of all, we did not have access
to adequate recording tools, since qualitatively valid
videos require a suitable equipment, such as a sta-
ble tripod, high resolution video cameras, powerful
zoom, which were not available. Last but not least,
the speed and the “nomadic” nature of the dragon-
fly make the process of positioning the shooting in-
struments extremely complex. Under these circum-
stances, we decided to build a dataset using dragonfly
videos readily available online. Although this kind of
set–up may seem more superficial than direct record-
ing, it offers the substantial advantage of the variabil-
ity in setting and recorded specimens, thus being po-
tentially useful to improve the generalization capabil-
ities of machine learning models.

Therefore, about 40 videos have been downloaded
and converted, through a frame–by–frame decompo-
sition, into several image sequences. In particular, the
sequence generation process was composed of three
phases. First, it was verified that the number of frames
per second was comparable for all the videos and, ac-
tually, we found that they were constituted by 25 to
30 fps, so no further data pre–processing was neces-
sary. Then the speed of each video was standardized,
i.e. the slow–motion videos were “speeded up”. Due
to the documentary nature of the videos — composed
of several independent sequences related to different
specimens of dragonflies, recorded in different phases
of flight — in the last phase, several flight sequences
were extrapolated.

The creation of classifiers, based on supervised
learning, requires the availability of a consistent set
of labeled data, that is, in which a specific target class
is associated with each example. For this reason, a
class label has been manually associated with each
frame of the dataset. In particular, five classes have
been identified: three of them describe the different

phases of the dragonfly flight, namely take–off, flight
and landing, together with two more classes which
refer to the dragonfly states immediately preceding or
following its movement, such as stationary and ab-
sent. From the original set of videos, about 400 dis-
tinct sequences were manually identified, correspond-
ing to a hundred targeted sub–sequences, for a total of
about 61K frames.

Most of the data — approximately 77% of the im-
ages — belongs to the stationary class, probably due
to the aforementioned difficulty in capturing dragon-
flies during their flight, making the dataset strongly
unbalanced. This issue could compromise the pro-
cess of learning, because the model tends to follow
the prior probability, assigning all the examples to the
most common class and ignoring the others. Since
the dataset is intended for the use in machine learn-
ing applications, we decided to pre–process the data,
randomly removing about 80% of the frames labeled
as stationary (also getting rid of many sequences en-
tirely composed of such images). By doing so, a final
dataset of about 300 sequences was obtained, for a to-
tal of about 23k images: more precisely, 41% of the
images belongs to the stationary class, 12% to the ab-
sent class, 4% to the take off class, 8% to the landing
class, and 35% to the flight class2.

The DragonFly dataset is composed of strongly
heterogeneous images, from the recorded setting to
the aspect ratio or the resolution of the tapes. For this
reason, the images have been further processed by re-
moving noisy elements — such as logos or text — and
by scaling them to a fixed square size of 224× 224
pixels, a format often used in convolutional networks
(Simonyan and Zisserman, 2014) running on a stan-
dard computer. Since the aspect ratio of all videos
was not 1:1, images have been resized to have the
longest horizontal side at a fixed length, maintaining
unchanged the original aspect ratio. Given an image
with width x and height y, the new dimensions x′ and
y′ are computed according to:

x′ = 224

y′ = x · 224
y

(1)

which means that the longest dimension x has been
scaled to 224 pixels, while y has been adapted ac-
cordingly. Therefore, in order to obtain square im-
ages, a padding operation was performed, inserting
two bands of the same thickness, composed of black
pixels, above and below the image, as shown in Fig.1.
This technique is very common in image processing,
since the insertion of rows and columns coded with
constant values for all the images of the dataset is

2The Dragonfly dataset is available upon request.

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

564



easily learnable and, therefore, does not constitute a
disturbing element for the training 3.

Images are represented in the RGB color space,
where each color is coded by three values correspond-
ing to the red, green and blue channels. In conclusion,
the size of a generic input image is 224× 224× 3,
where the last dimension is given by the three RGB
channels associated with each pixel.

Figure 1: Example of the dataset transformation: On the
left, the raw image, with size 640× 360 pixels; on the
right, the final image, with size 224× 224, after resizing
and padding.

3 EXPERIMENTAL SETUP AND
RESULTS

To develop a dragonfly action recognition method,
we used two types of neural networks: CNNs and
LSTMs. Both models take color images as input data,
with size 224×224×3 as described in Section 2, with
normalized values in the range [−1,1]. The models
were trained with Adam optimizer (Kingma and Ba,
2014), based on the cross–entropy loss function. In
the following, the classes are referred to by their ini-
tials:
• A: Absent;

• S: Stationary;

• TO: Take–Off;

• L: Landing;

• F: Flight.
All the procedures described in this section have been
entirely developed in Python, with the help of the
Keras API (TensorFlow backend) for the realization
of the neural architectures and the analysis of the ob-
tained results (Rossum, 1995; Chollet, 2015). The
experiments were carried out in a Linux environment
on a single NVIDIA GeForce GTX 1080 with 8 GB
GDDR5X.

Initial tests were performed using CNNs. This
kind of network is typically used to process only one

3Actually, padding allows also to design deeper net-
works and improves performance by keeping information
at the borders. The main drawback of padding is to increase
computational time and memory consumption. Possible ar-
tifacts can be avoided by using mirror padding.

image at a time. In fact, it is not designed to deal
with video analysis: CNNs only extract features from
the individual frames, without capturing the temporal
correlation between the elements of a sequence. Al-
though this task is well suited for LSTM models —
they can make predictions based on time series data
— the use of CNNs is fundamental because it allows
to extract relevant features from each of the frames.
Two methods based on CNNs are proposed in the
following, based respectively on architectures which
were built from scratch and on pre–trained models.

3.1 Classification via non Pre–trained
CNNs

In this experiment, we tried to devise an ad hoc model
for the dragonfly action recognition task. Several ar-
chitectures, with different depths, were tested. All the
networks share the functional and structural charac-
teristics described below:
• Weights are randomly initialized using a Standard

Normal Distribution;

• The convolutional layers have a kernel size of 3
and a stride equal to 1 pixel;

• The layers are grouped in blocks of two, with a
number of filters which is doubled from a block
to the next one;

• At the output of each convolutional layer, a batch–
normalization function and a ReLu activation
function are applied;

• After each block, a max–pooling procedure is ap-
plied on non–overlapping 2×2 regions of the fea-
ture maps;

• A flatten or global max 2D pooling function is
applied at the end of the convolutional layer se-
quence, in order to transform a multidimensional
structure into a vector;

• Two fully connected layers are used to process the
results of the global max–pooling, the latter hav-
ing a softmax activation function, obtaining the
final output of the network.

A first set of experiments was designed with the aim
of identifying a good combination of hyperparame-
ters, such as the number of convolutional blocks or
the number of feature maps. The best performing ar-
chitecture is shown in Fig.2. It is based on 5 convolu-
tional blocks associated with 16, 32, 64, 128 and 256
feature maps, respectively. Its predictions reached an
accuracy of 77% on the validation set and 71% on the
test set.

Table 1 shows the confusion matrix related to the
test set, as well as the performance on each class. This

Deep Learning Techniques for Dragonfly Action Recognition

565



Figure 2: Best non pre–trained CNN architecture. The input image is processed by five convolutional blocks (in light blue)
and then by two fully connected layers (in orange).

Table 1: Confusion Matrix and Accuracy of a non pre–
trained CNN. The generic element mi j represents the num-
ber of images belonging to the i–th class misclassified as
belonging to the j–th class. The number of correct predic-
tions associated with each class is then found on the main
diagonal. The last column shows the accuracy on each class.

A S TO L F Accuracy
A 131 10 0 29 119 45,3%
S 36 1518 65 15 179 83,7%

TO 3 61 12 0 107 6,6%
L 6 67 15 37 73 18,7%
F 19 107 42 6 659 79,1%

network can classify the images belonging to classes
S and F with high accuracy, while it has more dif-
ficulties in recognizing class A. Furthermore, as we
can see from the results, this model is completely
unable to correctly distinguish elements belonging to
class TO and L. As expected, given the nature of this
network, which processes one image at a time, it is
challenging for it to distinguish take–off images from
landing ones, and flight images from stationary ones.

3.2 Classification via CNNs and
Transfer Learning

Transfer learning is a machine learning technique
where a network is pre–trained on a task and then used
as a starting point for a new model, which is trained
to solve another task, not necessarily related to the
first one. Some form of correlation between the two
problems, though, guarantees better results. The main
advantage of this technique is the reduction in train-
ing times, because the second model weights are ini-
tialized according to the knowledge acquired during
the first training, rather than at random. For the same
reason, the minimum number of examples required
for training the second model is reduced. These two
advantages are often fundamental for deep networks,
which require vast amounts of data and long times to
be properly trained.

Three CNN models, which are well known in liter-
ature, were used for transfer learning: the MobileNet
(Sandler et al., 2018), the VGG16 (Simonyan and Zis-
serman, 2014) and the DenseNet121 (Huang et al.,
2016). All of them are pre–trained on the ImageNet

dataset (Deng et al., 2009). Two different transfer
learning methods were adopted, which represent two
different degrees of “preservation” of the knowledge
acquired on ImageNet. The first method consists in
re–training only the last (fully–connected) layers of
the CNN, while the weights inherited from the origi-
nal network are kept unchanged. In this experiment,
the convolutional section of the network behaves like
a feature extractor, while the fully connected layers al-
low the network to deal with the new task. The second
strategy, called fine tuning, consists in adapting all the
weights of the original CNN model by re–training the
entire network on new data. The latter (see Fig.3)
showed better performance, correctly classifying 69%
of images belonging to the test set.

The performance on the classes S and F are sat-
isfactory, while there is a certain difficulty in recog-
nizing the other three classes (see Table 2). As men-
tioned in Section 3.1, this result was expected, con-
sidering the frame–by–frame classification logic of a
CNN.

Table 2: Confusion Matrix and Accuracy of the transfer–
learning–based CNN.

A S TO L F Accuracy
A 131 188 41 14 1 34,9%
S 110 1553 5 49 96 85,7%

TO 14 136 9 1 23 4,9%
L 27 77 6 21 67 10,6%
F 66 120 10 4 633 76,0%

Figure 3: Fine–tuning–based CNN architecture. The input
image is processed by the MobileNet (pre–trained on Im-
ageNet, in light blue), and then by three fully connected
layers (in orange) composed by 1024, 512 and 5 neurons,
respectively.

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

566



3.3 Recurrent Classification with
LSTMs

The basic idea is to process a video sequence as it
is, rather than analyzing its frames separately. This
aspect is fundamental since each frame is inevitably
related to the others by a cause–effect relationship.
Indeed, taking into account the information coming
from adjacent images is useful to obtain a more ade-
quate recognition of the different phases of flight.

Since the recurrent layers are not able to process
multidimensional data, a feature extractor network —
composed of replicas of the same MobileNet model
showed in Fig.3 — has been inserted upstream, fol-
lowed by a flattening–merge mechanism to produce
one–dimensional data, compatible with the recurrent
layers of the LSTM model. The resulting composite
network, shown in Fig.4, is a hybrid “CNN+LSTM”
model, and represents the architectural prototype of
the second classification approach. The LSTM net-
work is characterized by two dense layers composed
of 100 and 5 neurons, respectively. To analyze the
entire sequence, a sliding window with a size of 7
frames was used. A supersource transduction was car-
ried out in the LSTM layers, meaning that the output
propagated to the final dense layers comes from the
last frame of the analyzed subsequence (i.e. the sev-
enth frame).

Two different strategies for providing sequences
to the network were adopted in the training process.
The first consists in training on sub–sequences ob-
tained by extracting the sliding windows in each se-
quence of the training set, so as to obtain more over-
lapping sub–sequences (sequential approach, Fig.5).
The second strategy is based on a random selection
of sub–sequences from randomly selected sequences.
The results for both the approaches are shown in Ta-
bles 3 and 4, respectively. It is worth noticing that the
sequential approach reaches an accuracy of 73,9%,
while the random one got 68,8%.

As shown by these results, the random approach
does not seem to bring advantages to classification,
while the network trained with a sequential approach
can appropriately manage the information coming
from temporal coherence. Unfortunately, once again,
the results improve only for classes A, S and F,
while performance on classes S and TO are really
low. These latter classes are inherently difficult to
be distinguished and, in addition, sequences belong-
ing to these two classes are only a small subset of the
dataset, making the learning process even harder.

Table 3: Confusion Matrix and Accuracy of the LSTM–
based architecture for sequential frames.

A S TO L F Accuracy
A 180 12 8 0 77 65,0%
S 70 1299 1 11 168 83,9%

TO 1 136 2 0 44 1,1%
L 10 64 0 0 112 0,0%
F 33 36 0 0 740 91,5%

Table 4: Confusion Matrix and Accuracy of the LSTM–
based architecture for randomly selected frames.

A S TO L F Accuracy
A 211 12 17 2 35 76,2%
S 124 1202 113 19 91 77,6%

TO 21 107 23 9 23 12,6%
L 23 64 7 13 79 7,0%
F 48 94 46 2 619 76,5%

4 CONCLUSIONS

This paper proposes some deep learning approaches
to dragonfly action recognition from images/videos
(see Table 5, in which performance and time per
epoch are summarized for all the analyzed models).
In particular, apart from the collection of a large la-
beled dataset, some guidelines for the calibration, de-
sign and implementation of deep models to face this
task have been provided.

Table 5: Performance for all the above analyzed deep archi-
tectures.

Tested Networks Accuracy Time per epoch
CNN 3.1 71% 30 sec
CNN 3.2 69% 30 sec
LSTM 3.3 Seq 73,9% 5 min
LSTM 3.3 Rand 68,8% 10 min

It will be a matter of future research to improve
the classification performance of the proposed mod-
els, for instance by collecting a larger dataset —
in particular providing more frames for the take–
off/landing classes — or employing data augmenta-
tion techniques in order to extend the available data.
A further improvement could be brought by the in-
troduction of more pre–processing operations, com-
patible with the data type, in order to reduce the dis-
turbing elements in the images and to facilitate the
classification task.

Deep Learning Techniques for Dragonfly Action Recognition

567



Figure 4: Architecture of the CNN + LSTM hybrid model. The images are converted into 224× 224× 3 matrices and
processed separately by replicas of the same CNN model (in blue). The results are then processed by the LSTM layer (in
green). Finally, dense layers (in orange) re–elaborate the information and perform the classification.

Figure 5: Sequential sub–sampling of frames for training the LSTM–based network.

REFERENCES

Andreini, P., Bonechi, S., Bianchini, M., Mecocci, A., and
Scarselli, F. (2018). A deep learning approach to bac-
terial colony segmentation. In International Confer-
ence on Artificial Neural Networks, pages 522–533.
Springer.

Andreini, P., Bonechi, S., Bianchini, M., Mecocci, A.,
Scarselli, F., and Sodi, A. (2019). A two stage GAN
for high resolution retinal image generation and seg-
mentation. ArXiv, abs/1907.12296.

Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe,
A., and Mougiakakou, S. (2016). Lung pattern clas-
sification for interstitial lung diseases using a deep
convolutional neural network. IEEE Transactions on
Medical Imaging, 35(5):1207–1216.

Azuma, A., Azuma, S., Watanabe, I., and Furuta, T. (1985).
Flight mechanics of a dragonfly. Journal of Experi-
mental Biology, 116(1):79–107.

Bonechi, S., Andreini, P., Bianchini, M., Pai, A., and
Scarselli, F. (2019a). Confidence measures for deep
learning in domain adaptation. Applied Science,
9(11):2192.

Bonechi, S., Andreini, P., Bianchini, M., and Scarselli, F.
(2018). Generating bounding box supervision for se-
mantic segmentation with deep learning. In LNCS
11081, pages 190–200. Springer.

Bonechi, S., Andreini, P., Bianchini, M., and Scarselli, F.
(2019b). COCO TS dataset: Pixel–level annotations
based on weak supervision for scene text segmenta-
tion. In LNCS 11729, pages 238–250.

Bonechi, S., Andreini, P., Bianchini, M., and Scarselli, F.
(2019c). Weak supervision for generating pixel-level
annotations in scene text segmentation.

Chollet, F. (2015). Keras. https://github.com/fchollet/keras.
Couceiro, M., Ferreira, N., and Tenreiro Machado, J.

(2010). Modeling and control of a dragonfly-like
robot. Journal of Control Science and Engineering,
2010.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large–Scale Hierarchical
Image Database. In CVPR09.

Donahue, J., Anne Hendricks, L., Guadarrama, S.,
Rohrbach, M., Venugopalan, S., Saenko, K., and Dar-
rell, T. (2015). Long–term recurrent convolutional
networks for visual recognition and description. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 2625–2634.

Faller, W. E. and Luttges, M. W. (1991a). Flight control
in the dragonfly: a neurobiological simulation. In
Advances in Neural Information Processing Systems,
pages 514–520.

Faller, W. E. and Luttges, M. W. (1991b). Recording of si-
multaneous single–unit activity in the dragonfly gan-
glia. J. Neurosci. Methods, 37(1):55–69.

Graves, A. and Jaitly, N. (2014). Towards end–to–end
speech recognition with recurrent neural networks.
In International Conference on Machine Learning,
pages 1764–1772.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

568



the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.

Hu, Z., McCauley, R., Schaeffer, S., and Deng, X. (2009).
Aerodynamics of dragonfly flight and robotic design.
2009 IEEE International Conference on Robotics and
Automation, pages 3061–3066.

Huang, G., Liu, Z., and Weinberger, K. Q. (2016). Densely
connected convolutional networks. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 2261–2269.

Khoreva, A., Benenson, R., Hosang, J., Hein, M., and
Schiele, B. (2017). Simple does it: Weakly supervised
instance and semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 876–885.

Kingma, D. and Ba, J. (2014). Adam: A method for
stochastic optimization. International Conference on
Learning Representations.

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu,
S., Barnes, L., and Brown, D. (2019). Text classifica-
tion algorithms: A survey. Information, 10(4):150.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing systems, pages 1097–1105.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. (2014). Mi-
crosoft COCO: Common objects in context. In Euro-
pean Conference on Computer Vision, pages 740–755.
Springer.

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V–
net: Fully convolutional neural networks for volumet-
ric medical image segmentation. In 2016 Fourth Inter-
national Conference on 3D Vision (3DV), pages 565–
571. IEEE.

Norberg, R. (1975). Hovering flight of the dragonfly
Aeschna Juncea l., kinematics and aerodynamics. In
Swimming and Flying in Nature, volume 2, pages
763–781.

Pereira, S., Pinto, A., Alves, V., and Silva, C. A. (2016).
Brain tumor segmentation using convolutional neural
networks in MRI images. IEEE Transactions on Med-
ical Imaging, 35(5):1240–1251.

Rossi, A., Barlacchi, G., Bianchini, M., and Lepri, B.
(2019). Modelling taxi drivers’ behaviour for the next
destination prediction. IEEE Transactions on Intelli-
gent Transportation Systems.

Rossum, G. (1995). Python reference manual. Technical re-
port, Amsterdam, The Netherlands, The Netherlands.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4510–4520.

Shu, R., Bui, H., Narui, H., and Ermon, S. (2018). A DIRT–
T approach to unsupervised domain adaptation. In In-
ternational Conference on Learning Representations.

Simonyan, K. and Zisserman, A. (2014). Very deep convo-
lutional networks for large–scale image recognition.
CoRR, abs/1409.1556.

Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte, L.
(2016). Breast cancer histopathological image classi-
fication using convolutional neural networks. In 2016
International Joint Conference on Neural Networks
(IJCNN), pages 2560–2567. IEEE.

Stern, U., He, R., and Yang, C.-H. (2015). Analyzing an-
imal behavior via classifying each video frame us-
ing convolutional neural networks. Scientific Reports,
5:14351.

Sturm, B., Santos, J., Ben-Tal, O., Korshunova, I., et al.
(2016). Music transcription modelling and composi-
tion using deep learning. arXiv:1604.08723.

Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to
sequence learning with neural networks. Advances in
NIPS.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception–v4, inception–resnet and the impact
of residual connections on learning. In Thirty–First
AAAI Conference on Artificial Intelligence.

Trnovszky, T., Kamencay, P., Orjeek, R., Benco, M., and
Sykora, P. (2017). Animal recognition system based
on convolutional neural network. Advances in Electri-
cal and Electronic Engineering, 15.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015).
Show and tell: A neural image caption generator. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3156–3164.

Wang, H., Zeng, L., Liu, H., and Yin, C. (2003). Measuring
wing kinematics, flight trajectory and body attitude
during forward flight and turning maneuvers in drag-
onflies. Journal of Experimental Biology, 206(4):745–
757.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017).
Pyramid scene parsing network. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2881–2890.

Deep Learning Techniques for Dragonfly Action Recognition

569


