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Abstract: The work consists in a classification problem of four classes of vocal pathologies using one Deep Neural 
Network. Three groups of features extracted from speech of subjects with Dysphonia, Vocal Fold Paralysis, 
Laryngitis Chronica and controls were experimented. The best group of features are related with the source: 
relative jitter, relative shimmer, and HNR. A Deep Neural Network architecture with two levels were 
experimented. The first level consists in 7 estimators and second level a decision maker. In second level of 
the Deep Neural Network an accuracy of 39,5% is reached for a diagnosis among the 4 classes under analysis. 

1 INTRODUCTION 

Voice is a sound resulting from a set of events in the 
vocal apparatus and along the vocal tract, with a 
certain force, sound, duration, speed and rhythm, 
subconsciously regulated by the information sent 
from the brain (Panek, Skalski, Gajda, & 
Tadeusiewicz, 2015). 

The vocal acoustic analysis allows quantifying 
some characteristics of a sound signal. Using this 
technique for the study of voice, it is possible, in a 
non-invasive way, to determine and quantify the 
vocal quality of the individual through the different 
acoustic parameters that make up the signal 
(Guimarães, 2004). 

Only the self-parameters obtained with the vocal 
acoustic analysis are not very conclusive, however, if 
they are properly associated with an Artificial 
Intelligence (IA) tool, the results are considerably 
better (Guimarães, 2004; Matuck, 2005; Teixeira J. P. 
et al, 2017) 

The tools of IA are, therefore, an added value to 
take into account, since analyzing a large number of 
data, with several variables, it becomes difficult for 
the human being. After performing the training of an 
IA system, it is expected that the system be able to 
generalize. This means, for a new situation, never 
seen before, the system should be able to make a 
decision based on similar parameters seen before 
(Teixeira F., et al, 2018; Guedes et al, 2019).  

A Deep Learning technic is based on the so-called 
artificial neural network. However, they have a 
greater number of hidden layers in their architecture, 
which helps in the processing of information and it 
can still have different activation functions in each 
hidden layer. The purpose of additional hidden layers 
is to have some more objective but non-final ‘image’ 
of the output. 

In this work it was intended to do the same study 
that Teixeira F. et al (2018) did, however, instead of 
Support Vector Machine, a Deep Learning approach 
is used. 

The main objective of this work is to distinguish 
between pathological and healthy subjects and to 
distinguish the different pathologies under study.  

In this work, three groups of subjects were used. 
Subjects with Dysphonia, Vocal Fold Paralysis and 
subjects with the Laryngitis Chronica  pathology. 
These diseases are the ones that most often cause 
disturbances in the human voice (University, 2018), 
being sometimes undetectable to the human ear. 

Dysphonia is a disorder of the voice, often caused 
by abnormalities that affect the vibration of the vocal 
chords. This affects the ability to speak easily and 
clearly. Dysphonia is characterized by the symptoms 
of hoarseness, weak voice, changes in voice tone and 
it may arise suddenly or gradually (Teixeira J. P. & 
Fernandes P. O., 2015). 

Laryngitis Chronica consists of an inflammation 
that can result from inhalation of irritants or by the 
intensive use of voice. Symptoms include gradual 
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loss of voice, hoarseness, and sore throat (Huche, F., 
& Allali, A., 2005; Kumar et al., 2010). 

Paralysis of the Vocal Folds is the total 
interruption of the nervous impulse. Being this total, 
it happens in the two Vocal Folds, or being partial, 
occurs only in one of the Folds. This situation can 
occur at any age and the problems associated with this 
condition correspond to voice change, respiratory 
problems and swallowing problems. 

For the analysis, the following parameters are 
used: relative jitter, relative shimmer, Harmonic to 
Noise Ratio (HNR), Noise to Harmonic Ratio (NHR), 
Autocorrelation and Mel Frequency Cepstral 
Coefficients (MFCC). These parameters were 
extracted from sustained vowels /a/, /i/ and /u/ in high, 
low and normal tones. The MFCC’s were also 
extracted from continuous speech. 

Next section describes the used methodologies. In 
this section, the parameters are presented, the 
materials used are identified and the methodology, 
based on deep neural network, is also presented. The 
section 3 presents the results and discussion. Finally, 
the last section summarizes the work developed and 
the conclusions. 

2 MATERIAL AND 
METHODOLOGY 

The parameters used in this work combine source 
parameters that are related with vocal folds and 
therefore with low frequency components (jitter, 
shimmer, HNR and Autocorrelation), with 
parameters related with vocal folds and vocal tract, 
spreading a large bandwidth of frequencies (MFCCs). 
The first set of parameters were extracted from a 
sustained speech of vowel. The MFCCs were 
extracted both from the same vowels but also from 
continuous speech. 

The parameter used were just retrieved from the 
cured database (Fernandes, J. et al, 2019) with the 
parameters extracted from the Saarbrucken Voice 
Database (SVD) as detailed below. This cured 
database contains only the subjects diagnosed with 
just one pathology/condition, been rejected all 
subjects with more than one pathology/condition. 

The speech samples were classified into 4 classes 
(3 pathologies/conditions and control) using one 
Deep Artificial Neural Network with architecture 
projected for this specific purpose. 

 
 
 

2.1 Parameters 

For this work, it was necessary to extract a set of 
parameters from acoustic speech files to build the 
cured database of speech parameters (Fernandes, J. et 
al, 2019). These parameters are relative jitter, relative 
shimmer, HNR, NHR, Autocorrelation and 13 
MFCC’s. 

The jitter analysis for a speech signal is the mean 
absolute difference between consecutive periods, 
divided by the mean period and expressed as a 
percentage (Eq. 1). 

ݎ݁ݐݐ݆݅ ൌ

1
ܰ െ 1∑ | ௜ܶାଵ െ

ேିଵ
௜ୀଵ ௜ܶ	|

1
ܰ∑ ௜ܶ

ே
௜ୀଵ

ൈ 100, (1)

where Ti is the length of the glottal period i, and N 
the number of glottal periods. 

The relative shimmer is defined as the mean 
absolute difference between magnitudes of 
consecutive periods, divided by the mean amplitude, 
expressed as a percentage (Eq. 2). 
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where Ai is the magnitude of the glottal period i, 
and N the number of glottal periods. 

The HNR is a parameter in which the relationship 
between harmonic and noise components provides an 
indication of overall periodicity of the speech signal 
by quantifying the relationship between the periodic 
component (harmonic part) and aperiodic (noise) 
component. The overall HNR value of a signal varies 
because different vocal tract configurations imply 
different amplitudes for harmonics. HNR can be 
given by Eq. 3. 

ܴܰܪ ൌ 10 ൈ ଵ଴݃݋݈
ܪ

1 െ ܪ
	, (3)

where H is the normalized energy of the harmonic 
components and 1-H is the remaining energy of signal 
considered the non-periodic components (noise). 

In the autocorrelation function, the similarity of 
periods along the signal is evaluated. The greater the 
similarities, the greater the autocorrelation value 
(Guedes et al, 2019). 

According to (Fernandes J. et al, 2018), 
mathematically the autocorrelation can be determined 
in 3 steps. 

In the first step (equation 4), having a signal x(t) 
uses a segment of the same signal of duration T, 
centered on tméd. From the selected part, the average 
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of μx is subtracted and the result is multiplied by a 
window function w(t) to obtain a signal window: 

ܽሺݐሻ ൌ ൬ݔ ൬݉ݐé݀ െ
1
2
ܶ ൅ ൰ݐ െ ሻ, (4)ݐሺݓ൰ݔߤ

The window function w(t) is symmetrical around t 
and 0 everywhere outside the time interval [0, T]. 
(Boersma, 1993) mentions that the window must be a 
sine or Hanning window, given by equation 5. 

(5) ܶݐߨ2ݏ݋ܿ 12−12=ݐݓ

Then the normalized autocorrelation ra(߬) of the 
selected signal part is calculated (equation 6). This is 
a symmetrical function of delay τ: 

ra	ሺτሻ ൌ ra	ሺെτሻ
׬ ܽሺݐሻܽሺݐ ൅ 	τ	ሻdt
୘ିத
଴

׬ ܽଶ
்
଴

ሺݐሻ݀ݐ
 (6)

Finally, it is necessary to calculate the normalized 
autocorrelation rw(τ) of the window function used. 
Using the Hanning window, autocorrelation is 
obtained through equation 7. 
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To estimate the autocorrelation rx(τ) of the 
original signal segment, the autocorrelation ra(τ) of 
the signal window is divided by the autocorrelation 
rw(τ) of the window used (Eq.8). 
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	, (8)

where ra(t) is the normalized autocorrelation of 
the signal and rw(t) is the normalized autocorrelation 
of a window used. 

Therefore, the autocorrelation function of a 
sustained speech signal displays the local maxima for 
multiples of τ, so it is only necessary to identify the 
first local maxima, which will correspond to the 
harmonic part. 

The NHR parameter quantifies the relationship 
between the aperiodic component (noise) and the 
periodic component (harmonic part). Although it is 
the inverse of HNR, it is not measured in the 
logarithmic domain, so the values are not the inverse 
(Fernandes, J. et al, 2018). The NHR parameter can 
be given by equation 9. 
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The MFCC’s parameters are based in the 
spectrogram of the signal. The extract process can be 
divided in 7 steps (Lindasalwa Muda, 2010). 

The first step (Pre-Emphasis) is to emphasize the 
higher frequencies by increasing the signal energy at 
these same frequencies. The calculation for Pre-
Emphasis is given by equation 10 where x[n] is the 
speech signal. 

ሾ݊ሿݕ ൌ ሾ݊ሿݔ െ 0, 	ሾ݊ݔ95 െ 	1ሿ, (10)

The second step (Framing) consists of dividing the 
signal into small frames, where it is advised that each 
frame should be between 20 and 40 milliseconds. The 
third step (window) is to multiply a window function 
by each frame of the signal. 

In the fourth step, it is necessary to convert the N 
samples of each frame from the time domain to the 
frequency domain, using the discrete Fourier 
transform (Lindasalwa Muda, 2010). 

Equation 11 is used for its calculation, where X(k) 
are the spectral coefficients, x(n) the signal frame. It 
should be noted that the values of n and k must be 
greater than or equal, to zero and less than or equal, 
to N-1. 
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The fifth step serves to make the transformation to 
the Mel scale. 

To make this transformation, equation 12 is used. 
In this process, triangular filters are applied to the 
spectrum to make the conversion. 
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700

൅ 1൰, (12)

In the sixth stage comes the discrete cosine 
transform, which consists in transforming the Mel 
spectrum into the time domain. This transformation 
can be referred to as Mel Frequency Cepstrum 
Coefficient, where the lowest order coefficients 
represent the vocal tract shape and the higher order 
coefficients represent the waveform periodicity 
(Lindasalwa Muda, 2010; Tiwari, V., 2010). 

Finally, in the last step the signal energy of a signal 
is calculated for a segment at time t1 to time t2 using 
equation 13. 

(13) [ݐ]2ݔ=y݃ݎ݁݊ܧ

In this work 13 MFCC were used, and the first 
coefficient is the energy of the signal. 
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2.2 Materials 

In this work, we used the German Saarbrucken Voice 
Database (SVD) (Barry, W.J., Pützer, n.a.) to extract 
the parameters associated with the various subjects 
used for the study. In this database is possible to find 
more than 2000 subjects. For each subject it is 
available a recording for 3 sustained vowels (/a/, /i/, 
/u/) in three different tones. There is also the German 
phrase: ”Guten Morgen, wie geth es Ihnen?” (Good 
morning, how are you?). The sampling frequency of 
voice signals is 50 kHz. The file size is between 1 and 
3 seconds with a resolution of 16 bits. 

Subjects with Dysphonia, Laryngitis Chronica and 
Vocal Fold Paralysis were used because they are the 
pathologies with higher number of subjects. Subjects 
with more than one pathology/condition were 
rejected. 

The parameters were extracted for 473 subjects, 
according to the groups shown in table 1.  

In the work of (Teixeira J. P. et al., 2018) it was 
proved that there is no difference between the male 
and female gender for the parameters relative jitter, 
relative and absolute shimmer, HNR, NHR and 
autocorrelation for control subjects and Laryngitis 
Chronica subjects. Therefore, there was no separation 
made by gender.  

The subjects available in SVD limited the size and 
mean age of each pathological group. 

Table 1: Dataset ages by each pathologic group and control 
group. 

Groups 
Sample 

size 
Average 

age 

Standard 
deviation 
of ages 

Control 194 38,1 14,4 
Dysphonia 69 47,4 16,4 
Laryngitis 
Chronica 

41 49,7 13,5 

Vocal Fold 
Paralysis 

169 57,8 13,8 

Total 473   

For every subject the parameters were extracted 
from sustained vowels, and the MFCC’s parameters 
were also extracted from the continuous speech 
sentence. Three groups of parameters were organized. 
The first group contains only parameters related with 
the source. This group I, actually was structured into 
group I(a) and I(b). 

Group I(a) contains the parameters Jitter, Shimmer 
and HNR for the 9 vowels by subject, in a total of 27 
features.  

The group I(b) contains the parameters Jitter, 
Shimmer, HNR, NHR and Autocorrelation for the 9 
vowels by subject, in a total of 45 features. 

The group II contains the 13 MFCC’s extracted 
from the 9 sustained vowels, in a total of 117 features 
by subject.  

The group III contains 13 MFCC’s extracted from 
50 overlapped segments of the continuous speech, in 
a total of 650 features by subject.  

The jitter and shimmer parameters were extracted 
using the algorithm developed by Teixeira and 
Gonçalves (2016). The HNR, NHR, Autocorrelation 
and MFCC’s parameters were extracted with the 
work developed by Fernandes J. et al (2019). 

2.3 Deep Learning Architecture 

The basic structure of the developed architecture is to 
have two levels. The first level consists in a set of 
multi-layer-perceptron neural networks (NN). Each 
one will give a guess if the sample corresponds to the 
class 1, class 2 or none (3 output classes). The 4 
classes (3 pathologies and control) were combined 
into 6 NN. One additional NN were considered to 
classify between control/pathologic, only with binary 
classification. Therefore, the first level consists into 7 
NN, presented in Table 2. The organizations of NN 
with 3 classes were used to allow the use of the all 
dataset to trains each NN. 

The second level consists in a NN with 7 nodes in 
the input, hidden layers, and one output. The input 
receives the output of the 7 NN of first level. The 
output is the classification of one of the 4 classes. 

Figure 1 presents a representation of the Deep NN 
developed.  

It is expected that each NN of first level be 
specialized in the classification between two 
pathologies. The second level would receive the 
guess of this 7 specialized NN and take a final 
decision. 

Table 2: Neural Networks for first level of Deep Learning. 

N N 1 Healthy / Pathological 
N N 2 Healthy / Dysphonia / Other 
N N 3 Healthy / Laryngitis / Other 

N N 4 Healthy / Paralysis / Other 

N N 5 Dysphonia / Paralysis / Other 

N N 6 Dysphonia / Laryngitis / Other 

N N 7 Laryngitis / Paralysis / Other 
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Figure 1: Deep Learning architecture. 

For each parameters group, different NN 
Architectures were experimented. 

The best architecture for the second level was 
achieved experimentally. It has 7 nodes in input layer 
(outputs of first level), 75 nodes in hidden layer and 
the training function is Levenberg-Marquardt 
(Marquardt, D., 1963). 

The second level of Deep- Learning is responsible 
for classify the pathology of each subject. It is 
possibel classify between four classes, three 
pathological and one healthy. 

The number of hiddden layer were also 
experimented. One architecture with 2 hidden layer, 
where the second layer had 4 nodes has expected to 
achieve better acuracy, suposing that each of this 4 
nodes will classify one of the 4 classes. But the 
experimental result did’t show what was expected. 

3 RESULTS AND DISCUSSION 

The “leave-one-out” method has implemented to train 
the Deep-NN. This method consists of testing all 
subjects, performing as many training sessions as 
subjects exist in the sample size. In N session of 
training, N-1 subjects were used to train and the 
remaining used to test. At the end, the all subjects 
were tested and never were used in the train process. 
This methodology is a time consuming process but 
allows using larger number of subject to train and to 
test. 

The result presented was measured for the subject 
in the test. 

3.1 First Level 

Table 3 show the results for the NN of the first level 
to classify between control/pathologic, using the tree 
groups of parameters. Acc is the Accuracy, Pre is the 
Precision, Sen corresponding to Sensibility, Spe is the 
Specificity and F1 corresponding to F1-Score. It can 
be seen that the higher accuracy is 72.7% using the 
parameters of group I(a). 

Table 4 shows the results obtained in one of the 
remaining 6 NN of first level as example 
(Healthy/Paralysis/Others). The result for the 
remaining 5 NN has similar numbers. The measures 
are presented grouping the 3 output classe into groups 
of two classes to allow the determination of the all 
measures presented. 

It can be seen that parameters of group I(a) achive 
again, generally, higher accuracy. 

Table 3: Measured values to classify healthy / pathological 
subjects. 

Group of 
Parameters

I(a) I(b) II III 

Acc (%) 72.7 72.3 67.2 71 
Pre (%) 69.6 68 53 57.2 
Sen (%) 65.9 65.7 61.7 67.3 
Spe (%) 78 77.2 70.3 73 

F1 67.7 66.8 57 61.8 
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Table 4: Obtained values for classification between Healthy/Paralysis/Others with the different parameter groups. 

  Healthy / Paralysis / Others 
 Parameters Group I (a) Group I (b) Group II Group III 

H
ea

lt
hy

 / 
O

th
er

s Accuracy (%) 61,3 58,2 54,6 59 

Precision (%) 41,2 32,5 36 46,9 

Sensibility (%) 74,8 80,8 62,5 65,5 

Specificity (%) 55,6 51,7 51,2 55 

F1 53,2 46,3 45,8 54,7 
    

P
ar

al
ys

is
 / 

O
th

er
s Accuracy (%) 63,7 60,8 59,2 60,5 

Precision (%) 60,1 71,1 67,4 63,1 

Sensibility (%) 45 37,9 35,5 38,5 

Specificity (%) 81,2 84,2 82,8 80 

F1 54,5 49,4 46,5 47,8 
    

O
th

er
s 

/ (
H

ea
lth

y 
+

 
P

ar
al

ys
is

) 

Accuracy (%) 49 43,6 45,3 49,8 

Precision (%) 60,9 69,1 63,6 55,5 

Sensibility (%) 26,2 24,9 25,7 26,4 

Specificity (%) 78,4 78,9 76,5 76,1 

F1 36,6 36,6 36,7 35,8 
 

3.2 Complete Deep-NN 

As mentioned previously, “Leave-one-Out” method 
has used, therefore, each subject was classify by eight 
neural networks (seven in first level and one in second 
leve), this process was repeat 473 times (number of 
subjects). 

Table 5 presents the accuracy of the complete 
Deep-NN using three alternatives for the number of 
nodes in the hidden layer of the second level. It also 
presents the time consuming to train and test the all 
dataset using the “Leave-one-out” method. This 
values was obtained with processor Intel ® TM i5-
3337u CPU@ 1.80GHz. 

Table 5: Accuracy obtained and time consuming for the 
Deep-NN. 

Nodes in 
hidden layer 

Accuracy (%) Time (minutes) 

50 30.4 141.1 
75 39.5 168.5 
80 36.4 116.4 

 

Table 5 shows the best accuracy to classify 
between the 4 classes is 39,5% using 75 nodes in the 
hidden layer. 

Table 6 presents the confusion matriz for the best 
classification situation. The column of ‘Target’ 
corresponding the real situation of the subject, in 
‘Classification’ line is mentioned the Deep-NN 
classification. The diagonal line has the number of 
subjects correctly classified. Where H is the Healthy 
subjects, D the Dysphonia, L the Laryngitis and P 
corresponds to Paralysis. 

The confusion matriz shows that there is no 
problem with unbalance of the dataset. 

Table 6: Confusion matrix. 

 
Classification 

H D L P 

T
ar

ge
t H 98 62 27 7 

D 20 21 13 15 
L 9 13 8 11 
P 24 38 47 60 
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3.3 Discussion 

Although several methodologies was tried, this article 
only contain the best results achieved. 

The results shown that the neural network is a 
promising tool for voice pathology classification. In 
the work presented in (Teixeira F,, Fernandes J., 
Guedes V., Junior A., & Teixeira J. P., 2018) the 
Support Vector Machines (SVM’s) was used to 
classify between control/pathologic with the same 
dataset with best results about 70% accuracy. 
Comparing with present results of the first level NN 
an accuracy of about 73% was achieved, 
demonstrating the improvements introduced using 
ANN. 

Guedes et al, 2019 developed a system to classify 
between the same 4 classes but using parameters from 
continuous speech and using transfer-learning 
technics to do the classification. Very similar results 
was achieved, with F1-score of 40% for classify 
between four categories. 

No separation by gender was used because for 
Laryngitis Chronica it was reported in (Teixeira J. P. 
et al., 2018) no gender difference for the relative 
jitter, relative and absolute shimmer, HNR, NHR and 
Autocorrelation. Anyhow, other conditions like 
Dysphonia and Vocal Fold Paralysis was used, and 
maybe some gender difference can exist for these 
subjects. Therefore, it is recommended to experiment 
a gender separation in future work. 

4 CONCLUSIONS 

This article describes the experience of using neural 
networks for diagnosis between healthy subjects and 
subjects with one of the three pathologies under study 
(Laryngitis Chronica, Dysphonia or Vocal Fold 
Paralysis). The parameters used in this analysis were 
extracted from sustained vowels or from a sentence. 

A Deep NN was developed in two levels to 
classify between 4 classes. 

The best results in the first level between 
control/pathologic subjects were an accuracy of 73%. 

The best results between the 4 classes in the 
second level was an accuracy of about 40%. 

The best results, in some cases, were not obtained 
with the same parameters group, however generally 
de parameters of group I(a) demonstrate the best 
results in higher number of cases. Therefore, for the 
uniformity reasons it was considered that group I(a) 
is the best group of parameters experimented. These 
parameters are relative jitter, relative shimmer and 
HNR. 

As a final conclusion, the accuracy of about 40% 
to make the identification between healthy subjects 
and 3 pathologies still below the requirements to 
became a real application. These results demand more 
research on this type of classification, experimenting 
different models of classification, different type of 
features, more subjects and maybe gender separation. 
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