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Abstract: In this work we present a system identification procedure based on Convolutional Neural Networks (CNN)
for human posture control models. A usual approach to the study of human posture control consists in the
identification of parameters for a control system. In this context, linear models are particularly popular due
to the relative simplicity in identifying the required parameters and to analyze the results. Nonlinear models,
conversely, are required to predict the real behavior exhibited by human subjects and hence it is desirable to use
them in posture control analysis. The use of CNN aims to overcome the heavy computational requirement for
the identification of nonlinear models, in order to make the analysis of experimental data less time consuming
and, in perspective, to make such analysis feasible in the context of clinical tests. After testing the performance
of the CNN on validation and test sets, two examples are presented and discussed from the qualitative point
of view: the identification of parameters using data from human experiments and using data of a simulated
model with some differences with respect to the one used to build the training set. Some potential implications
of the method for humanoid robotics are also discussed.

1 INTRODUCTION

Mathematical models of human posture control are
used in the analysis of experiments as well as in the
control of humanoid robots. For this reason system
identification techniques have been developed for the
identification of human balance as dynamic system
with feedback control (van der Kooij et al., 2007;
van der Kooij et al., 2005; van Asseldonk et al., 2006;
Goodworth and Peterka, 2018; Mergner, 2010; En-
gelhart et al., 2014; Pasma et al., 2014; Jeka et al.,
2010; Boonstra et al., 2014). Most of the studies per-
formed on human posture control exploit linear mod-
els such as the independent channel model (Peterka,
2002), and in general assume a linear and time in-
variant behavior for human posture control (Engel-
hart et al., 2016). Linear models have the advantage
of being simple to analyze and relatively easy to be
fit on the data. However, experiments revealed that
human posture control exhibits nonlinearities such as
dead-bands and gain-non-linearity. Nonlinear models
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are more complex to be fit on human data and, in the
general case expensive iterative procedures should be
used. In this work we propose a deep learning system
to identify the parameters of a nonlinear bio-inspired
posture control system, the DEC (Disturbance Esti-
mation and Compensation) System. The obtained set
of parameters represents a concise and expressive rep-
resentation of the outcome of a posture control exper-
iment that can be used for scientific studies and as
a basis of future diagnostic tools for clinicians. The
proposed technique is based on Convolutional Neu-
ral Networks, CNN. Such a deep learning system has
been recently applied with promising result to human
movement analysis, e.g. in (Abdu-Aguye and Gomaa,
2019), but so far it has not been a tool typically used in
posture control analysis. The use of CNN is promis-
ing in this context because it allows to exploit local
features in the time profile of the signals together with
the frequency domain description of the data, as it will
be clear from the description of the input features in
section 2.3
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Figure 1: A scheme of a controller based on the DEC
concept. (A) the sensory inputs are used to reconstruct
the physical disturbances acting on the body. Such distur-
bances are compensated feeding them in the form of an an-
gle equivalent as input to the servo controller. (B) The sin-
gle inverted pendulum model used to simulate human pos-
ture control. The kinematics are described by the sway an-
gle of the center of mass (COM) of the body αBS and by the
support surface tilt αFS. (C) The Pseudo-Random Ternary
Signal, PRTS, used as reference for the support surface tilt.

2 METHODS

2.1 Posture Control Scenario: Support
Surface Tilt

The scenario considered here models a human (or hu-
manoid) balancing on a tilting support surface. The
support surface tilt αFS represents the input of the sys-
tem and it is the same for all the simulations. The
profile of the tilt of the support surface is the pseudo-
random ternary sequence, PRTS, shown in Fig. 1
(C). Such stimulus is used in human experiments be-
cause, thanks to its pseudo-random nature, it is not
predictable for the subject (Peterka, 2002). Further-
more it is composed by a sequence of velocity steps
suitable to excite the dynamics of the system over sev-
eral frequencies. The output of the system is the sway
of the COM αBS.

2.2 Human and Humanoid Posture
Control: The DEC Model

The DEC concept provides a model of the human pos-
tural control mechanisms (Mergner, 2010; Lippi and
Mergner, 2017). This approach has been applied to

multiple DoF robots (Lippi and Mergner, 2017; Lippi
et al., 2013; Zebenay et al., 2015; Ott et al., 2016;
Lippi, 2018; Hettich et al., 2013; Hettich et al., 2015).
In this work the implications of a modular control ar-
chitecture will not be covered because the proposed
single inverted pendulum (SIP) model consists only
of one control module. A general scheme describ-
ing the DEC control is shown in Fig. 1. In general
a posture control system based on the DEC concept
is implemented as: (1) A servo loop, implemented as
a PD controller (neural controller in Fig. 1). In the
presented 1 DoF case the controlled variable consists
in the body center of mass with sway with respect
to the gravitational vertical passing through the an-
kle joint αBS, where BS stands for Body in Space. (2)
The disturbance estimations are, in general, identify-
ing support surface rotation and translation, external
contact forces and field forces such as gravity . The
sensory channels are shown in Fig. 1 as Vestibular,
Proprioception, and Force. The disturbance estimates
are fed into the servo so that the joint torque on-line
compensates for the disturbances while executing the
desired movements. The lumped delay in Fig. 1 rep-
resents all the delay effects that in humans (but also in
real world humanoids) are distributed (Antritter et al.,
2014; Hettich et al., 2014). The model used in this
work considers gravity and support surface tilt as dis-
turbances. Specifically the estimators are defined as
follows:
Gravity estimator

TG = Ggα
vest
BS (1)

where Gg is a gain associated with the estimator. In
the framework of the DEC control the disturbances
are represented by an angle equivalent, i.e. the body
lean that would produce, in a linear approximation,
the disturbance torque as gravitational torque. This
makes all the values that are summed to obtain the in-
put of the neural controller (error and disturbances)
expressed in radians. In the specific case of the grav-
itational torque the equivalent angle is the body lean
αvest

BS . With an ideal Gg of 1 and a proportional gain
Kp = mgh, where m is body mass, g gravity accel-
eration and h is the height of the COM with respect
to the ankle joint, the gravity would be exactly com-
pensated. When fitting the model to human behavior
the gravity appears to be slightly under-compensated
(Hettich et al., 2014; Assländer et al., 2015). In this
work Gg will be set to 1, and hence the gravity com-
pensation gain will be determined by Kp. The signal
αvest

BS comes from the vestibular system and it is af-
fected by a noise ν(NV ) with frequency power density
N2

v / f , where Nv is a parameter of the system.
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Support surface tilt estimator

αFS =
∫ t

0
fθ

(
d
dt

α
vest
BS −

d
dt

α
prop
BF

)
(2)

where α
prop
BF is the ankle joint angle signal from pro-

prioception. BF stands for Body-to-Foot, FS stands
for Foot-in-Space. In some implementations of the
DEC concept the integral in eq. 2 is implemented as
a leaky integrator (Lippi and Mergner, 2017), in this
work it is set to zero at the beginning of the simula-
tion. The function fθ is a dead-band threshold defined
as

fθ(α) =

 α+θ i f α <−θ

0 i f −θ < α < θ

α−θ i f α > θ

(3)

The threshold function is added to reproduce the be-
havior observed in humans (Mergner et al., 2009;
Mergner et al., 2003). The reconstructed body-in-
space variable used for the servo controller is then

α
servo
BS = αFS−α

prop
BF (4)

affected by the non-linearity introduced by fθ. Con-
sidering that in the present scenario the simulated
agent aims to maintain the upright stance, i.e. the ref-
erence signal is zero, the total torque commanded by
the servo controller is:

τactive =−e−s∆(Kp + sKd)(Tg +α
servo
BS ) (5)

where Kd is the derivative coefficient for the PD con-
troller (for the sake of brevity in this equation and the
following the derivatives, the integrators and the de-
lay are represented using Laplace transform variable
s so that they can be conveniently expressed as a mul-
tiplicative operator, although the rest of the formula
refers to operations in time domain). ∆ is the lump
delay. Notice that the derivative component is acting
also on gravity compensation, representing a sort of
anticipation of the disturbance. There is also a pas-
sive torque acting on the ankle joint defined as:

τpassive =−(K pass
p + sK pass

d )
(
α

prop
BF
)

(6)

In order to show the role of all the parameters
(listed in Table 1, here highlighted in blue) the total
torque can be written as:

τankle = τactive + τpassive

=−e−s∆(Kp + sKd)(
αvest

BS +αFS− 1
s fθ

(
s(αvest

BS +ν(Nv))+ sα
prop
BF
))

−(K pass
p + sK pass

d )
(
α

prop
BF
)

(7)

2.3 The Training Set

The training and the validation set for the neural net-
work have been generated with random parameters
from uniform distributions (the range is shown in Ta-
ble. 1). A set of parameters is used as a sample only
if the behavior it produces is stable: simulations with
αBS amplitude larger than 5◦ are not considered realis-
tic balancing scenarios and are discarded. Most of the
stable simulations obtained with such random sam-
pling were associated with a relatively small COM
sway, the amplitude distribution is shown in Fig. 2
in blue. In order to obtain a data-set including larger
oscillations, representative of a relaxed human behav-
ior, the data-set was enriched with samples that were
produced repeating the simulations with larger out-
puts ( > 0.05rad) with parameters subject to a rela-
tively small modification (≈ 10% of the range). The
resulting enriched data-set is shown in Fig. 2 in or-
ange. The performance of the neural network on the
two sets was almost the same and hence only the en-
riched data-set is considered. The distribution of a
realistic human data-set is discussed more in detail in
section 4. The resulting data-set included 12766 sam-
ples. Half of the samples are used for training, the
other half divided equally between validation set and
test set.

The neural network is trained to identify the sim-
ulation parameters on the basis of body sway profiles.
The Target for the training is represented by the vector
of parameters, centered with respect to the mean nor-
malized by the standard deviation (both computed on
the training set). The Input is a convenient representa-
tion of the output. The simulation was performed with
a fixed integration step of 1 ms and produced 12100
αBS samples with a resolution of 10 ms. In order to
adapt the signal to the convolutional network used the
input was transformed into a two channel image, with
the channels representing, respectively, the modulus
and the phase of the FFT of the signal computed on
non overlapping time windows. Empirical tests have
shown that the best performance was achieved with
a time window of 110 samples resulting in a square
110×110 two-channel image (Fig. 3 above).
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Figure 2: Peak-to-peak body sway amplitude distribution.
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Table 1: Simulation parameters with an overview of their distributions in the examples used as training and validation set. min
and max represent the minimum and the maximum values of the uniform distributions used to generate the samples. Mean
and std (standard deviation) are computed on the selected simulations that resulted in a stable behavior (i.e. maximum αBS
oscillation under 5◦) and included the enrichment (see text).

Parameter Symbol min max mean std unit

Active proportional gain Kp 503.3943 1258.4857 811.2951 338.0956 N·m
rad

Active derivative gain Kd 125.8486 377.5457 284.5640 122.7999 N·m·s
rad

Passive stiffness Kppass 62.9243 377.5457 312.2075 102.1054 N·m
rad

Passive damping Kdpass 62.9243 188.7729 174.3144 68.5447 N·m·s
rad

Vestibular noise gain NV 0 1.0000 0.4695 0.2928 1

Foot rotation velocity threshold θv f s 0 0.0052 0.0003 0.0124 rad/s

Lumped delay ∆ 0 0.2400 0.1210 0.0672 s

Time

Fr
eq

u
en

cy

Input 110x110x2

1   Image Input           110x110x2 images with 'zerocenter' normalization
2   Convolution           64 3x3x2 convolutions with stride [1  1] and padding 'same'
3   Batch Normalization   Batch normalization with 64 channels
4   ReLU ReLU
5   Average Pooling       2x2 average pooling with stride [2  2] and padding [0  0  0  0]
6   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
7   Batch Normalization   Batch normalization with 64 channels
8   ReLU ReLU
9   Average Pooling       2x2 average pooling with stride [2  2] and padding [0  0  0  0]

10   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
11   Batch Normalization   Batch normalization with 64 channels
12   ReLU ReLU
13   Average Pooling       2x2 average pooling with stride [2  2] and padding [0  0  0  0]
14   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
15   Batch Normalization   Batch normalization with 64 channels
16   ReLU ReLU
17   Average Pooling       2x2 average pooling with stride [2  2] and padding [0  0  0  0]
18   Convolution           128 3x3x64 convolutions with stride [1  1] and padding 'same'
19   Batch Normalization   Batch normalization with 128 channels
20   ReLU ReLU
21   Average Pooling       2x2 average pooling with stride [2  2] and padding [0  0  0  0]
22   Convolution           256 3x3x128 convolutions with stride [1  1] and padding 'same'
23   Batch Normalization   Batch normalization with 256 channels
24   ReLU ReLU
25   Average Pooling       2x2 average pooling with stride [2  2] and padding [0  0  0  0]
26   Dropout               20% dropout
27   Fully Connected       7 fully connected layer
28   Regression Output     mean-squared-error with response 'Response'

Figure 3: (Top) Example of the appearance of an input sam-
ple. The image has two channels, red and green, associated
to the modulus the phase of the FFT of the body sway over
a time window, respectively. (Bottom) Neural network ar-
chitecture.

2.4 The Neural Network

The neural network architecture is shown in Fig 3,
where the layers are listed. The structure of the net-
work with its hyperparameters was tuned on the ba-
sis of the performance on the validation set. The
network has been implemented with Deep Learning
ToolboxTM. Such network is not designed for 1-D
convolution and hence the input is transformed into
an image. The filters of convolutional layers apply the
same weight to different parts of the input. The axis
of the input image can be seen as time and frequency.
This means that the convolutional filters allow the net-
work to recognize pattern translated in time (horizon-
tal) and in frequency (vertical). While the former in-
variance has the understandable meaning that the net-
work is able to recognize the same movement patterns
appearing at different times, as expected from 1-D
CNN applied to time series, the latter has no straight-
forward physical explanation. An example of the ac-
tivation of the filters in the first layers is shown in Fig.
4. The network has been trained using stochastic gra-
dient descent with momentum as policy. The training
was set to a limit of 100 epochs. The data-set is di-
vided in three subsets: 6383 samples used as train-
ing set, 3192 as validation set, and 3191 as test set
respectively. The loss function is the Mean Squared
Error MSE, coherently for the regression task. The
evolution of the MSE through the training iterations
is shown in Fig. 5.
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Figure 4: Graphic rendering of the first convolutional layer
of the network. Each image in the 8× 8 grid represent the
response of one of the 64 filters to the input image. Lighter
pixels are associate with a larger activation than darker pix-
els.
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Figure 5: Training and validation loss through the iterations.

3 RESULTS

3.1 Validation Set and Test Set

The loss function used for the training was half the
MSE. The loss on the validation set is 0.2851, the
loss on the test set is 0.2775. They are comparable to
the loss obtained for the training set which is 0.2250.
Figure 5 shows how the loss function is stable for sev-
eral iteration on both training set and validation set.
Thanks to the availability of a large enough number
of samples the system is not showing signs of large
over-fitting. This was reflected by the fact that there
was no early stop due to validation error. An exam-
ple of the output obtained using a specific sample is
shown in Fig. 6.
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Figure 6: The CNN applied to a specific sample: (Top) net-
work output and target sample, and (Bottom) the associated
αBS.

3.2 Double Inverted Pendulum Case

The system is now applied to DIP data produced with
a simulation with default parameters (Hettich et al.,
2013). In Fig. 7 the control parameters for the ankle
module used in the simulation are compared with the
ones identified by the CNN. The accuracy of the result
is, as expected slightly worse than the one obtained
using the validation set. with a SE (Squared Error) for
the normalized parameters of 10.4783, as compared
to the smaller validation set MSE of 0.5702.

3.3 Identification of Human Posture
Control Parameters

The CNN is here applied to human data. A single
trial from one subject is used. Like in the previous ex-
ample, the experiment does not include any device to
block the hip so that the center of mass sway is influ-
enced by the ankle-hip coordination. The identified
parameters and the simulated body sway are shown
in Fig. 8. The peak-to-peak sway amplitude exhib-
ited by the human subject was 2.8533◦. This exam-
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Figure 7: The CNN applied to a sample produced with a
double inverted pendulum (DIP) model: (Top) network out-
put compared with the parameters applied to the control of
the ankle in the DIP model. The hip has also its set of pa-
rameters, not displayed. In (Bottom) the αBS trajectory pro-
duced by the DIP is compared with the one of a SIP using
the parameters predicted by the CNN.

ple suggests that it is beneficial to include larger body
sway examples in the training-set. The result in Fig.
8 shows a good, although not perfect, similarity be-
tween the simulation and the original data.

4 CONCLUSIONS AND FUTURE
WORK

In this work we presented a method for posture con-
trol parameter identification based on CNN. The sys-
tem provides an efficient way to fit a model of the
non-linear bio-inspired control system DEC on exper-
imental data. This represents an advantage with re-
spect to previous solutions relying on iterative meth-
ods. With the used training set noisy by design and
because noise power is one of the parameters, the sys-
tem provides an average error that is non-zero. The
obtained parameters can be used as a description of

K p K d

K p pa
ss

K d pa
ss N V vfs

0

200

400

600

800

1000

1200
Prediction

0 20 40 60 80 100 120 140

Time [s]

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

B
S

[°
]

Prediction
Data (Human)

Figure 8: The CNN applied to data from a human experi-
ment. (Top) The identified parameters are shown. (Bottom)
The original input is compared with the input produced by
the simulation using the parameters identified by the CNN.

the analyzed data, as guideline for more accurate fit-
ting procedures and as features for further analysis
algorithms, for example a diagnostic tool could be
implemented using SVM trained with the parameters
vector as input. In general the envisaged applica-
tion of the presented approach is to provide a way to
integrate non-linear posture control models in diag-
nostics tools and decision supporting tools for clini-
cians(Exarchos et al., 2015; Rammazzo et al., 2016).

The training set is produced with parameters from
uniform distributions, filtered with the constraint,
checked empirically, so that they produce a stable
simulation. In order to obtain more human-like ex-
amples the data-set has been enriched with samples
producing larger body sways. Future work may intro-
duce preliminary studies on the distribution of human
data, generating some training samples from sam-
ples obtained by fitting the model on the experimental
data. The CNN can also be tested a posteriori com-
paring the distribution of the parameters it produces
on the validation set with the expected distribution on
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real data. This can help the process of choosing be-
tween different possible network hyperparameter sets
as shown in (Sforza et al., 2011; Sforza and Lippi,
2013).

The SIP model used in this work proved to be suit-
able to describe the analyzed posture control scenario,
this even in the sub-optimal case of identifying the
control parameter of the ankle joint in a DIP model.
Future work will aim to the design of a solution that
identifies also the parameters controlling the hip joint,
which is known to have a relevant function in balanc-
ing (Hettich et al., 2014; Horak and Nashner, 1986;
Park et al., 2004).

The modeling and the analysis of human pos-
ture control and balance provides and get inspirations
from the study of humanoid robots control, e.g. (Choi
and Kim, 2007; Abedi and Shoushtari, 2012; Zebenay
et al., 2015; Mergner and Lippi, 2018), or can be used
to improve the design of assistive systems and devices
(Chugo et al., 2019; Mergner and Lippi, 2019). The
proposed deep-learning-based tool will be also pub-
lished as a tool to benchmark humanoids and wear-
able devices (Torricelli et al., 2020), within the frame-
work of the COMTEST project (Lippi et al., 2019)
that aims to make a posture control testbed available
for the humanoid robotics community.
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