An Autonomous Resiliency Toolkit for Cyber Defense Platforms

Fusun Yaman!, Thomas Eskridge2, Aaron Adler', Michael Atighetchil, Borislava I. Simidchieva!,
Sarah Jeter!, Jennifer Cassetti® and Jeffrey DeMatteis?
YRaytheon BBN Technologies, Cambridge, MA, U.S.A.
2Florida Institute of Technology, Melbourne, FL, U.S.A.
3 Air Force Research Lab, Rome, NY, U.S.A.

Keywords:
Protection, User Study.

Abstract:

Grammar Inference, Workflow Learning, Automation, Autonomous Cyber Resiliency, Ontology, Cyber

Cyber defenders need automation tools that are intuitive, trustworthy, non-intrusive, and reusable. The

Behavior-extracting Autonomous Resiliency Toolkit (BART) is such a tool. Its architecture combines existing
results and Al techniques including workflow learning, mutli-agent frameworks, knowledge representation,
and inference. A user study demonstrates that BART significantly shortens the required time to execute a cy-
ber defense. The study also revealed three types of errors that an automated tool such as BART could prevent:
typographical/syntax, procedural, and “hidden.” We also describe an emerging application of BART.

1 INTRODUCTION

The odds in cyber defense are inherently stacked
against the defender. Adversaries only need to find
one vulnerability to exploit a target system, while
defenders need to close all vulnerabilities, including
currently unknown ones. A significant increase in the
amount of automation support may be required in or-
der to make cyber defenders more effective. Yet, cur-
rent tactics, techniques, and procedures show a signif-
icant imbalance in the amount and level of automation
between adversaries and defenders.

Cyber attackers frequently automate much of
their work through management platforms that
enable rapid sharing and reuse of malicious code.
Furthermore, malware has evolved to the point where
botnets and viruses make autonomous decisions, e.g.,
to remain dormant if they detect monitoring or to
intertwine attacks with regular user activities to stay
within the variance of observable parameters.

DISTRIBUTION A. Approved for public release:
distribution unlimited. Case Number 88ABW-
2018- 0228 20180119 Work sponsored by AFRL
under contract FA8750-16-C-0053; the views and
conclusions contained in this document are those
of the authors and not AFRL or the U.S. Govern-
ment.

240

In contrast, many of the activities executed by cyber
defenders are manual in nature, limited in scope due
to staffing constraints, and slow in detection and re-
sponse times. This is not only true for the sophisti-
cated tasks of spotting anomalies in large data sets,
but also for mundane tasks such as installing software
patches and provisioning accounts. This lack of au-
tomation for cyber defensive operations puts many of
today’s computer systems at significant risk of being
compromised. Furthermore, based on our interactions
with cyber defenders in high-stakes industries (such
as electric power transmission system operators and
military) useful automation needs to be (1) intuitive,
(2) trustworthy, (3) non-intrusive, and (4) reusable. To
be intuitive, the system’s representations and meth-
ods must align with operator’s problem-solving ap-
proaches and allow the operator to inspect the justi-
fication of the system’s decisions. To be trustworthy,
the software must work as expected consistently and
flag problems at every stage if it fails, enabling track-
ing by the user. To be non-intrusive, the system must
not require time investment from the operator to boot-
strap (e.g., to build extensive models), instead ideally
it would work with existing tools and would not have
a steep learning curve. To be effective, the system
ought to match or improve performance, such as the
time to complete a task and/or quality of task resolu-
tion. To be reusable, the system should at minimum

Yaman, F.,, Eskridge, T., Adler, A., Atighetchi, M., Simidchieva, B., Jeter, S., Cassetti, J. and DeMatteis, J.

An Autonomous Resiliency Toolkit for Cyber Defense Platforms.
DOI: 10.5220/0009142702400248

In Proceedings of the 12th International Conference on Agents and Atrtificial Intelligence (ICAART 2020) - Volume 2, pages 240-248

ISBN: 978-989-758-395-7; ISSN: 2184-433X

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

An Autonomous Resiliency Toolkit for Cyber Defense Platforms

Cyber Defender On-Top-Of-The-Loop

Cyber Defense
Subject Matter

|, interact
Autonomous Execution

' drive adaptation

WorkflowReasoning

Experts Workflow Template Template
@ Stitcher Extractor Analyzer @
aa aa
[interact ’ Cyber Defense KB interact
Wrappers annotate steps Wrappers
Recording
capture activities
Existing Cyber Defense Control Existing
Tools MIRA Agent Framework Tools

Figure 1: BART functional overview.

work for a specific context, but ideally work in differ-
ent contexts or allow customization for dynamic en-
vironments.

The Behavior-extracting Autonomous Resiliency
Toolkit (BART) (Atighetchi et al., 2016) automati-
cally learns workflows by observing operators, ex-
tracts fragments that can be reused and customized
for different contexts, and autonomously executes
learned workflows (Figure 1). BART increases the
effectiveness and efficiency of cyber defense through
increased speed, equal or higher accuracy, signifi-
cantly lower cost, and increased coverage. We claim
that BART has all four characteristics of a useful cy-
ber defense automation tool. We conducted a user
study to measure the effectiveness of BART, which
demonstrated a significant reduction in execution time
and errors compared to manual execution of tasks.

The rest of the paper describes BART s underlying
technologies, the experiment design and results of the
user study, related work, and finally conclusions and
future work.

2 BART ARCHITECTURE

BART (Figure 1) is composed of multiple integrated
components that together provide workflow learn-
ing, multi-agent frameworks, and knowledge repre-
sentation. BART components communicate through
the Cyber Defense Knowledge Base (CDKB) us-
ing the Learnable Task Modeling Language (LTML)
(Burstein et al., 2009a). CDKB, a semantic web triple
store developed by us to contain both the workflow
building blocks and representations, as well as the
cyber defense domain ontology, serves as a shared

knowledge library.

The BART component interlingua, LTML, com-
bines features of the Web Ontology Language (OWL)
(van Harmelen and McGuinness, 2004), OWL for
Services (OWL-S) (Martin et al., 2004), and the Plan-
ning Domain Definition Language (PDDL) (Fox and
Long, 2003), using a clear, compact syntax to create
human-readable representations of web-service pro-
cedures and hierarchical task models. LTML was de-
signed to support tools that could learn procedures by
demonstration (see Section 4).

2.1 Cyber Defense
Cyber Defense Tools

BART currently supports recording and executing
workflows associated with Metasponse, PowerShell,
and other tools. Metasponse is an incident-response
framework developed by AIS Inc., and used by the
Government (AIS Inc, 2019). Metasponse manages
a set of computers on a network by collecting in-
formation and remotely effecting actuators. Power-
Shell is a task-based command-line shell and script-
ing language specifically designed for Microsoft Win-
dows system administrators and power-users. Lastly,
BART can support any tool that provides a web-
service interface, e.g., the ArcSight Security Informa-
tion and Event Management (SIEM) tool (ArcSight,).

Cyber Defense Control

In order to monitor and manage existing tools
like Metasponse, BART deploys software wrappers
around the tools. Using these wrappers, BART
can transparently intercept interactions and pass on

241

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

WEB

SERVICE '\

|
Response

Request

JSON
ot

_/
Web Service
- — Request
/ : Auditor

.\, METASPONSE - JSON triples __|
SHELL (job trace)
-\ . -

PowerShell
Input/Output
Wrapper

JSON
o 1,

triples
(job trace)

TRACE
(LTML)

(job trace)

Figure 2: BART records operator behavior from multiple sources.

commands to be executed. BART’s Cyber Defense
Control component builds on the Mission-aware In-
frastructure for Resilient Agents (MIRA) (Carvalho
et al., 2015) distributed agent framework to integrate
wrapped tools.

MIRA integration requires the wrappers to pro-
vide an agent interface, a capabilities description, and
a sensor/actuator interface. The agent interface pro-
vides a common API that connects the wrapper to the
framework. This enables the specification of meth-
ods to monitor and control the operational aspects
of the tool. The capabilities description is an ontol-
ogy (in OWL) describing the capabilities provided by
the wrapper. This enables MIRA to determine ap-
propriate actions based on a semantic understanding
of sensor or actuator capabilities. Finally, the sen-
sor/actuator interface code links the semantic descrip-
tions with the executable code (e.g., written in Java or
any other language) that effects changes in the tool’s
configuration.

2.2 Trace Recording

As cyber defenders use Metasponse and other tools to
complete their assigned tasks, BART records their ac-
tivities to produce a trace (in LTML), i.e., a sequence
of observed steps. BART wrappers collect the op-
erator input and program output for each tool and a
MIRA agent puts the information into a standardized
form. The BART Recorder Interface Agent allows ac-
cess to the previously observed operations in a stan-
dardized way, facilitating the addition of new tools. A
overview of the integration is shown in Figure 2.

The recording agents do more than capturing
mouse clicks or text typed into a terminal. The agents
map such low-level events to a higher level of ab-
straction, providing useful information for workflow
learning. For example, instead of the mouse click
location or that a “TCPDump” button was pressed,

242

the recorder indicates that a NetworkDataCollection
event was triggered. The NetworkDataCollection
concept and its connection to the “TCPDump” but-
ton is represented in an ontology. A set of high-
level activity definitions in LTML is shared between
BART learning and recording components to estab-
lish a common understanding.

BART employs two modes for contextual trace
generation, batch and manual mode. Batch mode is
triggered by special user-generated events in a tool
explicitly signaling the beginning and end of record-
ing. This leads to a non-intrusive yet constrained trace
generation process. To achieve good learning accu-
racy in this mode, all captured activity must be rele-
vant and error free. Otherwise, the learned workflow
may contain irrelevant or redundant activities. Man-
ual Mode involves displaying all captured activity to
the user and letting the user pick and reorder events
that will form the trace through a Graphical User In-
terface (GUI) (Figure 3). This mode requires opera-
tor’s time and attention but leads to traces with fewer
ITOrS.

Metasponse Trace Builder

Trace Rationale

User Commands New Trace

,,,,,,,,

NE 1=

‘SendTrace [

w
Figure 3: GUI support for activity trace generation.

2.3 Workflow Reasoning

The BART workflow reasoning component uses the
Workflow Inference from Traces (WIT) algorithm
(Yaman et al., 2009) in the Workflow Stitcher sub-
component to learn a workflow given a set of observed
traces (Figure 4). WIT uses grammar inferencing (GI)
techniques (specifically model merging) to transform
the input sequences into a more general graph con-
taining branches and loops. The learned workflow
can generate (in the sense that a grammar is gener-
ative) both the demonstrated and unseen sequences.
A strength of the GI approach is that it can general-
ize both from a single trace and multiple traces, en-
abling learning and adaptation over time. As new
traces are recorded, BART can incorporate them nat-
urally and create deviations in already existing work-
flows. Workflow learning is a powerful technique that
enables the system to be intuitive, non-intrusive, and
effective. The WIT algorithm has four steps (Fig-
ure 5); data dependency analysis, context inference,
step generalization and decomposition. The context
inference step identifies similar actions in the trace
by looking at the type of the action and the types
of the data dependencies. This step essentially dis-
covers which of the actions in the trace correspond
to the same generalized node in the workflow, e.g.,
two lookup actions will be different if they get inputs
from different survey activities. Similarity detection
is the mechanism that allows WIT to generalize from

Trace Workflow

Fetch
PCA File
Fetch
PCAP File
Parse HTTP }
Requests

Parse HTTP
Run Network }

Run Network

Classifier

Compare H1, H*
Processashes

Add Firewall
Rule for H1

W

Requests
Classifier

fCompare H2, H* ‘

Procesa Hashes

(Compare H3, H*\‘

\Procesi Hashes |

Add Firewall
Rule for H3

ﬂ—/

traces.

Compare H, H*
Process Hashes

Add Firewall
Rule for H

Workflow Stitcher

Figure 4: Workflow Stitcher generates workflows from

An Autonomous Resiliency Toolkit for Cyber Defense Platforms

Context
(Dependencies)

Background Knowledge:
M1, M2, M3 in network N

ey

Install ‘ Install | [Install ‘

[Logout | (Logout“ Logout J
M1 2) L

- L M3

‘ Logout ‘ v ?

‘;— Login | - Login M ‘
M2 /—Z i\

‘ Install Install ‘

- -
Figure 5: After the data dependency analysis (top), WIT

performs context inference and generalization loops (bot-
tom).

a single trace containing multiple executions of the
same task. Step generalization starts with a very spe-
cific workflow that can only generate the input traces
and then iteratively merges the nodes that are identi-
fied as similar in the context inference step. It also
merges nodes (representing the same type of actions)
that satisfy certain proximity constraints (e.g., nodes
that have the same immediate predecessor). The sec-
ond type of merging is inspired by GI algorithms that
learn a class of regular grammars using only positive
examples from the language. It is possible to infer
more similarities at the end of step generalization so
context inference and step generalization steps are in-
terleaved until the set of similarities and the learned
graph converges.

Finally the decomposition step recursively identi-
fies loops and branches in the learned graph and re-
places them with a single node representing a com-

243

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

posite action. At the end of this step we end up with
a hierarchy of parametric workflows. The decompo-
sition algorithm is based on structural graph analysis
and domain independent heuristics specifically for the
purpose of identifying loops. The algorithm can de-
compose the workflow correctly if the workflow does
not have any nested loops or the nested loops have sin-
gle entry and exit points, i.e., each loop iteration starts
with a unique activity and ends with another unique
activity.

Workflow Execution

BART is able to execute a sequence of operator ac-
tions (specified in the learned workflow) in multiple
environments in an intuitive, non-intrusive, effective,
and reusable manner (see Figure 6). Workflow ex-
ecution interleaves steps of workflow interpretation
and interactions with wrapped actuators. The com-
munication with the actuators is done with LTML
which provides a communication standard from the
execution engine to the wrapper; the wrapper converts
LTML to actuator-specific commands. The BART
Execution Engine is responsible for interpreting the
higher level logic (such as sequences, branches and
loops), handling the data flow (such as passing the
output of an activity as an input to another one) and
gathering the inputs from the user through the GUIL

The actuation system structure is the reverse of the
recording system structure. It starts with HTTP oper-
ation requests received by the BART Replayer Inter-
face Agent from the Execution Engine. This agent
determines the type of execution needed for the op-
eration and dispatches the request to an operation-
specific replayer agent (i.e., Metasponse, Powershell,
and Web Service as shown in Figure 6).

2.4 Graphical User Interface

BART’s GUI allows reusing and auditing of work-
flows through visualized traces and workflows, trig-
gering execution, and tracking execution status. The
main screen (Figure 7) displays three panels: the trace
on the left, the workflow BART learned in the mid-
dle, and the execution instance on the right. In order

) commands_ IISJI{NINS
SHELL

Execution
Engine
.

| output
| Request WEB
y‘_/ SERVICE

Response

Figure 6: BART can replay actions in several environments.

244

Behavior-extracting Autonomous Resiliency Toolkit (BART)

St T
Frished [ioiiciiSi56421b-bc

wcon

G
X :w'/

| p—— Wortons
St comrlfom Show da Sow.

[y

St v St vt

Trace. Workflow ‘

Figure 7: Displaying a trace and workflow data dependen-
cies.

to build user trust in the system, the GUI contains in-
tuitive views with useful, non-intrusive information.
The GUI provides visibility into the data- and control-
flow links, and into the links between a workflow, its
traces, and its executions.

At the top right of the screen, a table provides
visibility into workflow execution status: “Running,”
“Waiting,” “Finished,” and “Error.” When user input
is needed during execution, the status in the table will
change to “Waiting,” alerting the user to needed in-
formation in a non-intrusive manner. User input is
provided via an overlay pane on top of the execution
panel. The user is prompted for a data value that can
be type checked (e.g., making sure a properly format-
ted IP address is provided). Once the user provides
the information, execution continues. Feedback on
execution progress is provided by showing progress
for steps, branches, and loops using colors and show-
ing percentage completion estimates.

3 USER STUDY

We conducted a user study to collect data demon-
strating how the workflows created by BART affect
the performance of operators conducting typical “cy-
ber hunting” missions on multiple networks. Par-
ticipants were divided into two conditions. In the
first condition, the participants used the Metasponse
and PowerShell tools provided by AIS, Inc. to per-
form a series of tasks looking for tainted processes
on three different computer networks. In the sec-
ond condition, participants were also trained to use
BART to construct workflows that allowed for retar-
geting and replay. Upon completion of the training,
the participants executed the test problem, which in-
volved running a hunting operation for unknown pro-

Tool | Commands

Explanation

M var hosts="10.0.0.0/23" Identify the target subnet, e.g., 10.0.0.0/23.

M use collectors/autoruns Create a Metasponse job for collecting information
use transports/mswmi on the list of processes start running automatically
use transports/smb at start up.

set job.rhost=Shosts
job rename autorun-1
schedule now

Schedule it to run immediately
Check for status and save the output of the

job status autorun-1 collection.
job pickup autorun-1
M use collectors/hashproc Create a Metasponse job for collecting information

use transports/mswmi
use transports/smb
set job.rhost=$hosts Schedule it to run immediately

job rename hashproc-1 Check for status and save the output of the
schedule now collection.

job status hashproc-1
job pickup hashproc-1

on the list of processes that are currently running.

P d/ Make sure you are in the top directory

P cd autorun-1 Go into the results of autorun-1 job.

P Senabled = dir | 7 { 3_IsEnabled | Filter the processes that are enabled.

P Sunknown = Senabled | ?{$_MD5}| | Find the enabled processes that are not
Get-Artifact -Unknown recognized.

P cd.. Get out of autorun-1 job.

P cd hashproc-1 Go into the results of hashproc-1 job.

P unknownHashproc = Sunknown | % { | Find the hash of all unknown processes that auto-
Sautorun=$_; dir -HostIP started.

Sautorun.HostIP | ? {$_.FilePath -eq
Sautorun.ImagePath}}

P SknownBad = SunknownHashProc | ? Find the hash of all the unknowns that is not
{-Not $_.IsSigned} | ? {-Not signed or signed by not trusting entity.
$_.IsSignedTrusted}

P SknownBad | Add-Artifact -Blacklist

Add untrusted process hashes into the black list.

Figure 8: Steps for finding suspicious software on a target
subnet and adding them into a black list. M - Metasponse,
P- Powershell

cesses, provided as part of the test materials. Provid-
ing the steps to be executed for the test tasks success-
fully de-emphasized the skill level of the participants.
The study measured the time needed for training, for
workflow learning and execution, and for overall exe-
cution time. Our hypothesis was that participants us-
ing BART+Metasponse would show a significant de-
crease in total task time.

Figure 8 shows the general steps required to find
the unknown processes. This operation requires ex-
ecuting several Metasponse jobs and processing their
output in PowerShell to determine whether or not the
process should be blacklisted. This completed the
task for the selected network. The participant then
repeated the hunting process on the two remaining
networks. In the second condition, after completing
the hunting task on the first network, participants pro-
vided the trace to BART so it could learn the hunting
workflow. Then the second and third networks could
be investigated by replaying the learned workflow in
BART.

Figure 9 shows the experimental setup for a par-
ticipant in the second condition. The top of the fig-
ure shows the BART GUI as described in Section 2.4.
Below that are command windows for PowerShell
and Metasponse, and a video recording of the partic-
ipant during the experiment. The entire interface was
recorded and used for later coding according to the
timing and mistake metrics defined in the study.

An Autonomous Resiliency Toolkit for Cyber Defense Platforms

Behavior-extracting Autonomous Resiliency Toolkit (BART)

Nome: Neme
Showccemifow S ot S Show ccomt o Show o B

Figure 9: User study experimental setup, showing user
video, PowerShell, Metasponse, and the BART workflow
created.

3.1 Results

The participants in the study were 26 students from
the Florida Institute of Technology with an average
age of 26. The students came from a variety of back-
grounds beyond computer science, including mechan-
ical engineering and meteorology. Participants were
randomly placed into the Metasponse only condition
(n = 12), where they used only the Metasponse and
PowerShell tools to perform a set of three tasks, or in
the Metasponse+BART condition (n = 14), where the
Metasponse and PowerShell tools were augmented
with BART. Table 1 shows results for these partic-
ipants. Both conditions require training to use the
Metaponse and PowerShell tools, but the BART con-
dition includes additional training in using the BART
interfaces for trace creation and workflow building
and execution.

The time and effort requirements for Task 1 are
identical between the two experimental conditions,
and therefore we expect no significant differences in
the time to complete Task 1 (one-sided F-test, P-value

245

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

0.4848, not significant at p < 0.01). For later tasks
in both conditions, we expect there to be a signifi-
cant time savings in executing the needed commands.
In the Metasponse only condition, operators can re-
use previously created jobs and cycle through pre-
viously typed commands to re-execute them. In the
Metasponse+BART condition, the reuse of a work-
flow requires only inputing the parameters needed to
instantiate a workflow for execution, which averaged
just 32 seconds during the experiment (the balance
of time in Tasks 2 and 3 is the execution time of the
workflow using the provided inputs). With increased
experience using the convenient functionality of the
BART interface, we expect that time to dramatically
decrease to very close to the minimum possible run-
time for the workflow. The results showed the an-
ticipated speedup for Metasponse+BART participants
in Tasks 2 and 3. The observed time for Task 3 is
just slightly over the minimum execution time for the
workflow of 2.31 minutes!. While there was no sig-
nificant difference in the times between conditions for
Task 1, the differences in times between conditions
for Tasks 2 and 3 were significant (one-sided F-test,
Task 2 P < 0.00001, Task 3 P < 0.00001, significant
at p < 0.01).

Table 1: Timing results from the user study showing mean
and standard deviation (in parentheses) in minutes for train-
ing, testing, and learning the workflow in BART.

Activity Type Metasponse Metasponse+BART
Training Metasponse 11.59 (8.22) 12.64 (5.16)
Training BART N/A 20.94 (9.26)

Test Task 1 15.85 (4.18) 15.92 (5.97)

Test Task 2 9.24 (4.33) 3.04 (1.31)

Test Task 3 6.36 (1.32) 2.47 (0.51)
Learning Trace N/A 2.30 (2.13)
Learning Workflow N/A 1.23 (0.60)

3.2 Discussion

While a principle benefit of BART is the increased ef-
ficiency in executing tasks, another benefit identified
by this study is the reduction of operator mistakes,
which in turn contributes to a reduction in the time to
complete tasks. During this study, we were interested
to find that the errors we observed users making were
easily classified into one of three common categories,
namely: (1) syntax errors and typos, (2) procedural
errors, and (3) errors we identify as “hidden.” Typo-
graphical and syntax errors are simple to correct once

"Workflow execution proceeded serially in the BART
implementation used for the user study. This minimum
time could be further reduced with workflow optimization
for parallel execution, but that would not realistically reflect
how a human operator performs the workflow.

246

identified, but there is still a time penalty for going
back to correct a misspelling or looking up the cor-
rect syntax. Procedural errors can be drastically more
time-consuming than typographical or syntax errors
because they may not be identified until the the par-
ticipant investigated the task’s results and determined
that an incorrect set of jobs was executed to com-
plete the task. “Hidden” errors are commands that
are almost, but not quite, correct. For example, a
variable misspelling from “$knownBad” to “$know-
Bad” will be executed by PowerShell without any
complaint, but this will result in a null value being
used for computation, which can be time-consuming
to discover, investigate, and debug. Since BART can
“replay” a workflow it has seen once and learned, all
of these errors are much less likely to occur in the
Metasponse+BART experiment condition.

Lastly, as is clear from Table 1, the use of BART
greatly speeds up the execution of workflows after the
first time, but it also provides a helpful guide in re-
minding the user what the next step ought to be (or
giving them a choice if there are multiple options),
which helps the user to remember and retain the work-
flow better without having to look up the correspond-
ing Metasponse history or the scenario documenta-
tion they were following. In fact, workflow replay
and execution show great promise as a training aide
for learning new cyber protection tactics, techniques,
and procedures. We can envision replaying certain
learned workflows in BART that are considered fun-
damental as a tutorial or practice course for new cyber
protection operators. Sharing and tagging capabilities
in BART also enable the rapid sharing of newly de-
veloped workflows between different cyber protection
teams. Thus, a corpus of relevant workflows could be
compiled into different syllabi for the explicit purpose
of training.

4 RELATED WORK

The concept underlying BART relates to a number of
prior and ongoing research efforts in machine learn-
ing, workflow modeling, and cyber security decision
making.

4.1 Workflow Learning

Learning of workflows from observable behavior has
been an active topic in machine learning. Work-
flow mining (Van der Aalst et al., 2004; Herbst,
2000) describes the concept of assembling workflows
from log data about their execution. Other learning
algorithms ranging from grammar induction (Cook

Table 2: Comparison of candidate languages for CDKB

/=yes X=no —=somewhat.
Candid Expressivity| Verbosity | Standards| Mai Tools
OWL-S v X v X -
PDDL X v v v v
LTML v v - - v
Little-JIL - v X - v
BPEL - — v v v
BPMN - - v v v
TAEMS v v X X X

and Wolf, 1995) to bayesian model merging (Herbst
and Karagiannis, 1998) are also employed in learn-
ing action patterns. Our previous work on Plan Or-
der Induction by Reasoning from One Trial (Burstein
et al., 2009b) research project and associated se-
mantics of the Learnable Task Modeling Language
(LTML) (Burstein et al., 2009a) provide a founda-
tional framework for learning workflows from single
observations of traces. Specifically two complemen-
tary one-shot workflow learning algorithms emerged
from this effort: WIT (Yaman et al., 2009) and ReCy-
cle (Haigh and Yaman, 2011). While these efforts fo-
cus on creating a generic workflow learning capabil-
ity with minimum number of examples, BART aims
to build a specific workflow learning capability that is
custom tailored to execution of cyber defense work-
flows. These capabilities necessitated many exten-
sions to the original framework to support workflow
execution, operational integration (learning from live
observations), knowledge representation for the cy-
ber defense domain, and sharing and modifying work-
flows, among others.

4.2 Knowledge Representation and
Workflow Definition

There are a number of modeling frameworks used
to model workflows (Martin et al., 2004; Fox and
Long, 2003; Burstein et al., 2009a; Cass et al., 2000;
Andrews et al., 2003; White, 2009; Decker, 1996).
We considered these candidates for representing the
knowledge in CDKB from the perspective of expres-
sivity (ability to express complex workflows), ver-
bosity (human readability), tools (supporting tools
such as parsers or reasoners), community (an active
developer community), and standards (based on a
standard) before deciding on LTML. Table 2 summa-
rizes our assessment.

An important note is that selecting LTML ac-
complished two goals: having a workflow definition
language with a rigorous enough semantics to sup-
port learning and execution, but also having a direct
and easy connection to an extensible cyber ontology
knowledge base represented in the OWL. LTML is a
surface language, which encompasses the features of

An Autonomous Resiliency Toolkit for Cyber Defense Platforms

OWL and OWL-S, making integration with the cyber
knowledge base seamless.

4.3 Autonomous Cyber Operations

Related work in automating cyber defense includes
use of cognitive reasoning to select defensive actions
(Benjamin et al., 2008) and the use of strategies and
tactics to implement an adaptive defense (Atighetchi
et al., 2004). Our work provides an end-to-end in-
tegrated system that learns from observed behavior
only. Finally, work on analyzing specific cyber de-
fense workflows (D’Amico and Whitley, 2008) pro-
vides context for learning workflows in the cyber de-
fensive operations domain. Such results complement
our assessment of useful cyber defense automation
characteristics.

In penetration testing circles, automation frame-
works such as Metasploit (Maynor, 2011; Kennedy
et al., 2011) are a popular time-saving aide and thus
widely used; unfortunately, Metasploit has also be-
come widely used by cyber attackers to script together
ever more sophisticated attacks out of pieces of mali-
cious code.

Orchestrators and intrusion-detection systems can
also perform simple automated incident response
tasks, such as automatically shutting down certain
ports when an attempted attack is detected. Such
systems can be used as building blocks for BART to
learn, and later replay, as sophisticated cyber hunting
and protection workflows. Therefore a side-by-side
comparison of such tools with BART is impractical
because of divergent goals and scope.

5 CONCLUSION

BART leverages workflow learning, multi-agent
frameworks, knowledge representation, and inference
to automatically learn, replay, and adjust workflows
for cyber defense. This is accomplished in a man-
ner that is intuitive, trustworthy, non-intrusive, effec-
tive, and reusable. The user study demonstrated that
BART significantly shortens execution cycles and in-
dicated multiple types of errors that BART can help
prevent. While BART workflows may help to prevent
cyber crime by providing timely and effective inci-
dent response, it is important to note that the goal of
the BART framework is to automate some of the more
straightforward responses in order to free the human
operators to perform tasks that require new skills, new
workflows, or creative combinations or adaptations
of existing workflows. Therefore, evaluating BART’s
standalone effectiveness at cyber defense was out of

247

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

scope for the experiments and user study presented
here and would be an interesting avenue of future pur-
suit.

Since conducting this user study, we have en-
hanced BART’s workflow optimization capabilities to
leverage concurrent execution when possible, which
further increases speed. We plan to conduct more ex-
tensive experimentation to validate the optimizations.
The focus of our future work is to transition BART
into active use by cyber defenders (both military and
civilian).

ACKNOWLEDGMENTS

Many thanks to AIS, Inc. for their technical sup-
port and for providing the Metasponse and Powershell
tools used in the BART user study.

REFERENCES

AIS Inc (2019). Metasponse user’s guide.

Andrews, T., Curbera, E., Dholakia, H., Goland, Y., Klein,
J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte,
S., et al. (2003). Business process execution language
for web services.

ArcSight. Enterprise Security Manager.

Atighetchi, M., Pal, P, Webber, F., Schantz, R., Jones, C.,
and Loyall, J. (2004). Adaptive cyberdefense for sur-
vival and intrusion tolerance. IEEE Internet Comput-
ing, 8(6):25-33.

Atighetchi, M., Yaman, F., Simidchieva, B., and Carvalho,
M. (2016). An autonomous resiliency toolkit - needs,
challenges, and concepts for next generation cyber de-
fense platforms. In MILCOM 2016 - 2016 IEEE Mili-
tary Communications Conference, pages 1-6.

Benjamin, D. P., Pal, P, Webber, F., Rubel, P., and
Atigetchi, M. (2008). Using a cognitive architecture
to automate cyberdefense reasoning. In Bio-inspired
Learning and Intelligent Systems for Security, 2008.
BLISS’08. ECSIS Symposium on, pages 58—63. IEEE.

Burstein, M., Goldman, R. P., McDermott, D. V., McDon-
ald, D., Beal, J., and Maraist, J. (2009a). LTML—a
language for representing semantic web service work-
flow procedures. In Proceedings ISWC workshop on
Semantics for the Rest of Us.

Burstein, M. H., Yaman, F., Laddaga, R. M., and Bo-
brow, R. J. (2009b). POIROT: Acquiring workflows
by combining models learned from interpreted traces.
In Proceedings of the Fifth International Conference
on Knowledge Capture, K-CAP 09, pages 129-136,
New York, NY, USA. ACM.

Carvalho, M., Eskridge, T. C., Ferguson-Walter, K., and
Paltzer, N. (2015). MIRA: a support infrastructure for
cyber command and control operations. In Resilience
Week (RWS), 2015, pages 1-6. IEEE.

248

Cass, A. G., Staudt Lerner, B., McCall, E. K., Osterweil,
L. J., Sutton Jr, S. M., and Wise, A. (2000). Little-
JIL/Juliette: A process definition language and inter-
preter. In ICSE ’00: Proc. 22nd Int. Conf. Softw. Eng.,
pages 754-757.

Cook, J. E. and Wolf, A. L. (1995). Automating process dis-
covery through event-data analysis. In Proc. of ICSE
'95, pages 73-82, New York, NY, USA.

D’Amico, A. and Whitley, K. (2008). The real work of
computer network defense analysts. In VizSEC 2007,
pages 19-37. Springer.

Decker, K. (1996). Taems: A framework for environment
centered analysis & design of coordination mecha-
nisms. Foundations of distributed artificial intelli-
gence, pages 429-448.

Fox, M. and Long, D. (2003). PDDL2.1: An exten-
sion to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research
(JAIR), 20:61-124.

Haigh, K. Z. and Yaman, F. (2011). RECYCLE: Learning
looping workflows from annotated traces. ACM Trans.
Intell. Syst. Technol., 2(4):42:1-42:32.

Herbst, J. (2000). A machine learning approach to workflow
management. In ECML, volume 1810, pages 183—
194. Springer.

Herbst, J. and Karagiannis, D. (1998). Integrating machine
learning and workflow management to support acqui-
sition and adaptation of workflow models. In Proc.
of DEXA 98, Washington, DC, USA. IEEE Computer
Society.

Kennedy, D., O’Gorman, J., Kearns, D., and Aharoni, M.
(2011). Metasploit: the penetration tester’s guide. No
Starch Press.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDer-
mott, D., Mcllraith, S., Narayanan, S., Paolucci, M.,
Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and
Sycara, K. (2004). OWL-S: Semantic markup for web
services. W3C Member Submission.

Maynor, D. (2011). Metasploit Toolkit for Penetration
Testing, Exploit Development, and Vulnerability Re-
search. Elsevier.

Van der Aalst, W., Weijters, T., and Maruster, L. (2004).
Workflow mining: Discovering process models from
event logs. IEEE Transactions on Knowledge and
Data Engineering, 16(9):1128-1142.

van Harmelen, F. and McGuinness, D. L. (2004). OWL
web ontology language overview. W3C recommen-
dation, W3C. http://www.w3.0org/TR/2004/REC-owl-
features-20040210/.

White, S. A. (2009). Business process modeling notation
(BPMN). Technical Report formal/2009-01-03, Busi-
ness Process Management Initiative (BPMI).

Yaman, F., Oates, T., and Burstein, M. (2009). A context
driven approach to workflow mining. In Proceedings
of IJCAI-09.

