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Abstract: This paper refers to author’s patented invention that introduces a more efficient statistical (machine) 
learning method. Inspired by neuroscience, the paper combines the synaptic networks and graphs of quantum 
network to constitute interactions as information flow. Hitherto, several machine learning algorithms had 
some influence in business decision-making under uncertainty, however the dynamic cognitive states and 
differences thereof, at different timepoints, play an important role in transactional businesses to derive choice 
and choice-sets for decision-making at societal scale. In addition, deep neural functions that reflect the 
direction of information flow, the cliques and cavities, necessitate a new computational framework and deeper 
learning method. This paper introduces a proactive-retroactive learning technique - a quantified measurement 
of a multi-layered-multi-dimensional architecture based on a Self-Organized Cognitive Algebraic Neural 
Network (SCANN) integrated with Voronoi geometry – to deduce the optimal (cognitive) state, action, 
response and reward (pay-off) in more realistic imperfect and incomplete information conditions. This 
quantified measurement of SCANN produced an efficient and optimal learning results for individuals’ 
transactional activities and for nearest-neighbor, as a group, for which the individual is a member. This paper 
also discusses and characterizes SCANN for those who handle decisions under conditions of uncertainty, 
juxtaposed between human and machine intelligence. 

1 INTRODUCTION 

Human decision making routinely involves choice 
among temporally extended courses of action, 
response and reward, as pay-off, over a broad range 
of time scales depending on cognitive state. Consider 
a traveler deciding to undertake a journey to a distant 
city for work. To decide – go-no-go – the end-benefits 
in terms of reward, as pay-off, of the trip must be 
weighed against the cost. Having decided to go, 
choices must be made at each fragmented “smaller” 
decision e.g., whether the work is worth paying or 
not, whether to fly or to drive, whether arrange a local 
accommodation or stay with friends or relatives. With 
the brute force of computational processes and the 
better understanding of human intelligence – how 
individuals go about solving their problem – some of 
the existing learning technologies may train machines 
for the outcome. Here one would like to make a 
distinction between precision engineering and 
intelligence. One of the fundamental principles in 
precision engineering is that of determinism where 
systemic behavior is fully predictable, even to an 

 
a  https://orcid.org/0000-0001-6436-5998 

individual’s, or atomic-scale, activities. To do the job 
efficiently and correctly, one needs models and 
algorithms, where the basic idea is that machine 
follows a set of rules, cause and effect relationships, 
that are within human ability to understand and 
control and that there is nothing random or 
probabilistic about their behavior. Further, the 
causalities are not esoteric and uncontrollable, but can 
be explained in terms of familiar and precise 
engineering principles. Intelligence, on the other 
hand, as opposed to fact, is stochastic in nature. It 
finds optimal solutions, derives reasons, infers 
actions, recognizes patterns, comprehends ideas, 
solves problems and uses language to communicate, 
from (im)perfect and (in)complete information 
conditions.  

However, some learning methods, where the 
result is the final reward or pay-off, are awfully hard 
to untangle the future information to foresee the 
sequence of actions that will benefit the user at some 
point in future. Some of these infrequent and delayed 
rewards or learnings limit decisions making process 
(Edward, Isbell, Takanishi, 2016). For some 
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combinatorial problems, where all rules and 
information are known to all parties, one may set up 
intermediate positions for them to achieve the optimal 
results where, as in real-life conditions, such learning 
success depends on how well one would fragment a 
“major” decision or an objective into a series of 
multiple “smaller” decisions – the decision journey – 
and actions to measure their progress accurately. 
Unlike many statistical (machine) learning 
techniques, this approach has yielded both 
unreliability in the training process, and a general lack 
of understanding as to how the learning model 
converge, and if so, to what (Barnett 2018). 

2 PROACTIVE-RETROACTIVE 

Most humans or species do not learn by rote or by 
reinforcing the subject into the memory. In fact, the 
growth and maturation of a child’s brain is an 
intricate process taking decades, in which the brain 
grows and adapts to the surrounding world (Aamodt, 
and Wang, 2008). The same research has shown that 
the developing brain has been shaped by thousands of 
generations of evolution to become the most 
sophisticated information-processing machine on 
earth. And, even more amazingly, it builds itself. The 
way the information is processed can be termed as 
dynamic proactive-retroactive learning wherein a 
human (or a system) proactively learn, either through 
instructions or through observations, and then waits 
for some kind of confirmation – either from nearest-
neighbor or trusted source – which retroactively 
reinforce or modify in accordance with the subject 
matter. For example, when a child learns “A for 
Apple, B for Boy and C for Cat” from a book, he or 
she registers only an image of an apple, a boy or a cat. 
These images are retained in memory until, some 
point in future, when he or she physically observes 
the contextual appearance – new information that 
connects the dots – of an apple, or a boy or a cat, and 
confirmed by a trusted source, often parents, with the 
text – the name – associated with those physical 
images. Even most adult brains follow the same 
principle when they observe something new. At the 
time of observation, they retain this new information 
in their memory as postulations – “may be this is a 
peach” (language text) or “may be the boy is playful” 
(causal reasoning) or “may be this is Mr. Smith” 
(personality), until their postulations are confirmed 
by a trusted source, often in the nearest-neighbor. 
These observations and confirmations happen in two 
different time-points. And, sometimes the observed 
postulations are radically altered with the 

confirmation of new information – “oh no, this is an 
apricot, not peach” (language text) or “no, the boy is 
sarcastic, not playful” (causal reasoning) or “ah, this 
is Mr. David, not Mr. Smith” (personality) – at the 
time of confirmation. In this learning process, the 
former is proactive learning whereas, the latter – 
retroactive learning – changes the original 
postulations or replaces the deep-seated beliefs 
through new information connections, often either 
guided by experience or information from the 
nearest-neighbor or both (Sen, 2017). 

So, what happens to state of the information 
between proactive and retroactive – two different 
time points – in the learning cycle? The neuroscience 
research has shown that in early childhood, and again 
in the teens and subsequently at various stages of 
learning, brains go through bursts of refinement, 
forming and then optimizing the connections in the 
brain. Connections determine what the subject or 
object is, what does it do, and how does it do. Early 
childhood provides an incredible window of 
opportunity with neural connections forming and 
being refined at such an incredible rate, there isn’t a 
certain time when babies are learning – they are 
always learning. Every moment, each experience 
translates into physical trace, a part of the brain’s 
growing network (Bachleda and Thompson, 2018), 
One of the most powerful set of findings concerned 
with the learning process involves the brain’s 
remarkable properties of “plasticity” – to adapt, to 
grow in relation to experienced needs and practice, 
and to prune itself when parts become unnecessary – 
which continues throughout the lifespan, including 
far further into old age than had previously been 
imagined (Skoe and Kraus (2012). The demands 
made on the human learning are key to the plasticity 
– the more one learns, the more one can learn – and, 
therefore required to be included in this architecture 
of artificial neural network for machine learning. 

3 NEURAL NETWORK WITH 
VORONOI REGION 

An effective method for designing neural network 
that derives the stages in-between proactive and 
retroactive learning in two different time points is to 
classify patterns in the multi-dimensional feature 
space. This deep learning architecture introduces a 
multi-dimensional feature space where the 
information waits in certain workspace – the Voronoi 
region – within the neural network based on distance 
to points in a specific subset of the plane. The 
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Voronoi diagram is derived over points in feature 
space which represents teachers’ input in order to 
realize the desired classification. However, to reduce 
the size of the neural network and make the learning 
efficient, clustering procedure that enables the 
subject to manage a number of teachers in a lump is 
implemented (Kenji, Masakazu and Shigeru, 1999). 
Our approaches, however, only utilize point-wise 
cell-membership – as new information – by means of 
nearest-neighbor queries and do not utilize further 
geometric information about Voronoi cells since the 
computation of Voronoi diagrams is prohibitively 
expensive in high dimensions. Therefore, a Monte-
Carlo-Markov-Chain integration-based approach 
(Polianskii and Pokorny, 2019) that computes a 
weighted integral over the boundaries of Voronoi 
cells, thus incorporates additional information – as 
retroactive confirmation – about the Voronoi cell 
structure is established. This dynamic proactive-
retroactive learning method predicts and prescribes 
an action in “expected” response to an activity of 
human (or interchangeably a machine), depending on 
individual’s state, for one or more end-rewards, or 
pay-offs at a given point in time. 

Since most information related to immediate 
relevance including dynamic active cognitive state 
and/or active experiences, hence individuals apply a 
certain set of rules that are associated with either 
sequential monadic (e.g., individual’s state from a to �́� as self-improvement) or paired-comparison (e.g., 
individual’s state x compared with another 
individual’s state y) with nearest neighbor or a group 
where individual is a member. This, in imperfect or 
asymmetric and incomplete information conditions, 
creates “hidden” multi-layered combinations on 
multi-dimensions – functional, non-functional, non-
discriminating and discriminating – features to 
predict and determine the cognitive state (or “state”). 
The group, where individual is a member, may also 
apply a certain set of collective “hidden” information 
associated with either linear-non-linear (e.g., a race-
car driver uses wind direction data while cornering at 
speeds more than 200 mph without informing the 
opponent) or paired comparison (e.g. race car the 
team analyzes data of other racers’ degradation rates 
on the tires and of the health of various mechanical 
components, and recording the drivers’ steering, 
braking and throttle inputs). In imperfect and 
incomplete information conditions, this generates 
aggregated “hidden” multi-layered combinations on 
multi-dimensions features to predict and determine a 
collective state. For example, a trading system 
analyzes data to predict if the state of any trading 
stock and its change with new features, conditions 

and functions – the underlying latent variables – 
affect the price, as an outcome, in the marketplace.  

The hypotheses here are that the dynamic 
proactive-retroactive learning method would derive 
to be a better prediction on the individual’s current 
action for future reward, as final pay-off, over a 
broad range of time and information scales, including 
(im)perfect and (in)complete information conditions. 
For example, if the trading system predicts that the 
state of the product (or service) and its change with 
the underlying latent variables affect price in the 
marketplace, then the expected response of the buyer 
may also likely to change (either to buy immediately 
or defer for the future price), thus may create a 
different reward or pay-off outcome (revenue or 
saving for the trader). 

4 TRAINING DATA 

A self-organized learning method, in accordance with 
the dynamic proactive-retroactive learning method is 
executed to segment a graph network data based on 
bounded diffusion of collective individual 
information interactions. The nearest-neighbor or 
group data is determined from grouping of individual 
transactional data for a group where individual is a 
member. After a certain upper-bound number of 
groups, the system applies a diffusion-limited 
aggregation (“DLA”) – a formation process whereby 
individuals in a group, as particles, and their signals 
– defined as change or the first derivative in an 
individual’s data – of a subject matter undergo a 
stochastic process for clustering together to different 
aggregates (“clusters”) of such individuals. These 
signals and their changes – defined as the second 
derivative in an individual’s data – are used for 
predicting the group’s current state, as described 
above, and applied sheafing method, (or group 
theory) for “grouping” mechanism (Tennison, 2011) 
– depending on the geometry of the growth, for 
example, whether it be from a single point radially 
outward or from a plane or line – of clusters where 
the individual is a member, to determine the state.  

The self-organized learning method presents 
individual’s data, for example, as stimulus, at some 
time t=0 and then presenting a response data at a 
variable time post stimulus on the group. The 
bounded diffusion in DLA, for example, may have 
one additional parameter, the position of the decision 
bound, say A. If at time t of the state data of the 
individual (or subject matter e.g., search for an item) 
is x, the distribution of the state at a future time may 
be s > t, hence the term “forward” diffusion. The 
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backward diffusion, on the other hand, may be useful 
when the individual at a future time s has a particular 
behavior due to past decision, the distribution at time 
is t < s. This may impose a terminal condition, which 
is integrated backward in time, from s to t (hence the 
term “backward” is associated with this). Let g(x) be 
a bounded smooth (twice continuously differentiable 
having compact support) function, and let: 𝑢(𝑡, 𝑥) = 𝐸௫,௧(𝑔൫𝑋(𝑇)൯ ≡ 𝐸(𝑔൫𝑋(𝑇)൯|𝑋(𝑇) = 𝑥  (1)

with the “terminal” condition u(T, x) = g(x). In 
addition, if X(t) has a density p(t, x), then for a 
probability density function μ(·), the probability 
densities satisfy the: 𝜕𝜕𝑡 𝑝(𝑡, 𝑥) = (𝐴∗𝑝)(𝑡, 𝑥)  (2)

where A* is the adjoint operator of A, defined as: 

𝐴∗𝑣(𝑡, 𝑦) = − 𝜕𝜕𝑦 ൫𝑏(𝑦)𝑣(𝑡, 𝑦)൯ 12 𝜕ଶ𝜕𝑦ଶ (𝜎ଶ(𝑦)𝑣(𝑡, 𝑦)  (3)

This behavior may be described as fractal growth, 
as frequently observed in plants like ferns. The 
clusters may include formulating a group associated 
with the group’s current activity as well as the 
nearest-neighbor for the individual where individual 
is a member. 

These state data of individual are used to predict 
the group’s current action where the individual is a 
member, to determine the choice clusters of likely 
action. The action data are further used to predict the 
group’s expected response to formulate choice 
clusters of likely response. And, finally, these 
response data are used to predict the group’s reward 
or pay-offs to derive choice clusters of the reward or 
pay-off in their decision journey. 

5 COGNITIVE ALGEBRAIC 
NEURAL NETWORK 

A multi-layered multi-dimensional Self-Organized 
Cognitive Algebraic Neural Network (“SCANN”) 
learning method is formulated, in accordance with 
the dynamic proactive-retroactive learning method 
and self-organized learning method. This is required 
to arrange information and determine undefined rules 
based on a cognitive structure for the individual (or 
the subject matter). This may include choices and 
maximum likelihood estimation of each choice for 
the activity of the individual. A set of data in activity, 
for example, is determined for each individual (n) and 
more individuals are added to the activity content that 

form choices and different choice sets. The features 
(or attributes) of these choices and choice-sets may or 
may not be causal factors that influence a choice. A 
choice set attribute may comprise one or more 
attributes, for example, of the item such as 
combination of sensory attributes, (taste, looks, etc.), 
rational (price, ingredients, etc.) and emotional (feel 
good, lifestyle, etc.). In the formation of a group with 
different clusters, based on activity and/or factors 
thereof, each choice set becomes a function of 
activity and interactions within a group, where the 
individual is a member.  One or more common 
contact individual and/or individual’s activity content 
between individuals may exist in a group. Further, 
this indicates a “hub” contact with “cross” features 
and attributes for individual and/or individual’s 
activity content between individuals in a group, thus 
forms a graph structure of the network.  

 
Figure 1: Multi-Layered Multi-dimensional Self-Organized 
Cognitive Algebraic Neural Network (SCANN). 

The graph structure of the SCANN is a pair (N, 
g), where g is a network on the set of nodes N. A 
relationship between two nodes i and j, represented 
by 𝑖𝑗 ∈  𝑔, is referred to as a link or edge. Thus, g 
will sometimes be an 𝑛 ×  𝑛 adjacency matrix, with 
entry 𝑔 denoting whether i is linked to j and may 
also include the intensity of that relationship. The 
neighbors of a node i in a network (N, g) are denoted 
by Ni(g). The degree of a node i in a network (N, g) 
is the number of neighbors that i has in the network, 
so that 𝑑(g)  = |𝑁(g)|. Many naturally occurring 
multi-layered multi-dimensional networks (Erdös, 
and Renyi, 1960), as represented in this Fig 1, 
explicitly incorporate multiple channels of 
connectivity and constitute the natural environment 
to describe systems interconnected through different 
categories of connections: each activity content 
module (signals, states, actions, responses and 
rewards) may be represented by a layer and the same 
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node or entity may have different kinds of 
interactions (set of nearest-neighbors in each layer).  

The latent feature structure, as depicted in Fig. 1 
above, is abstracted from variables to render 
microstate probabilities of each (dis)satisfied 
individual’s choice-set attributes and latent causal 
variables, accessible by mere combinatorial, 
(im)perfect and (in)complete information conditions 
much in the same way as graph probabilities, become 
accessible in random graph. At an atomic level, for 
each individual, the structure finds the optimal 
choice-set of latent variables that has causal effect on 
the expected outcome or reward or pay-off (Sen, 
2015). The interaction variables that are available for 
individuals to exercise preference, or any variable 
involving an interaction of the individual for a good 
or service.  The coefficients are predetermined and 
represented a diminishing level of satisfaction, for 
example, over time. In addition, the latent learning 
represents that, in cognitive decision, despite their 
non-equilibrium and irreversible nature, the evolving 
network is mapped into an equilibrium Bose-Einstein 
(“BE”) condensation nodes corresponding to energy 
levels, and links representing the individual’s activity 
contents, as particles (Bianconi and Barabási, 2001). 
The existence of a state transition, phase to a BE 
condensate, the outcome distribution g(ϵ) = C ∈ఏ 
where 𝜃  is a free parameter and the energies were 
chosen from  ϵ ∈ (0, 𝜖௫)  with normalization 
C= 𝜃 + 1/(𝜖௫ఏାଵ ).  For this class of distributions, the 
cognitive state for a Bose condensation is determined 
as: 𝜃 + 1(𝛽𝜖௫)ఏାଵ න 𝑑𝑥 𝑥ఏ𝑒௫ − 1ఉఢೌೣఉఢ(௧) < 1  (4)

The active strand of the study in this direction is 
to study individualized ensembles with fixed degree 
sequences, or degree distributions following, for 
instance, a power-law. This is the probability that a 
randomly chosen node in the network has exactly 𝑙 
links, is proportional to 𝑙ି௬ for some y .  

The choices for individuals (or interchangeably 
machines) in N have action spaces Ai. Let A = 𝐴ଵ, … 𝐴 at every stage in their decision journey. In 
this, the action spaces are finite sets or subsets of a 
Hilbert space. Generally, decision making is not 
necessarily associated with a choice of just one action 
among several simple given options, but it involved 
a choice between several complex options for 
actions. The elementary prospect (en) is the 
conjunction of the chosen modes, one for each action 
from the intended action. To each elementary 
prospect en, there corresponds the basic state |𝑒⟩, 

which is a complex function 𝐴ே →  𝐶 , and its 
Hermitian conjugate ⟨𝑒|. The structure of a basic 
state is ⟨𝑒𝑛| =⨂𝑖=1𝑁 |𝐴𝑖𝑣𝑖  (5)

The cognitive or mind space is the closed linear 
envelope 𝑀 ≡ span {|𝑒⟩} = 𝑁⨂𝑖 = 1𝑀  (6)

To each prospect πj, there corresponds a state ห𝜋ൿ  ∈  𝑀  that is a member of the mind space. ห𝜋ൿ = ∑ 𝑎 |𝑒⟩. This applies a quantum decision 
theory as an intrinsically probabilistic procedure. The 
first step consists in evaluating, consciously and/or 
subconsciously, the probabilities of choosing 
different prospects from the point of view of their 
usefulness and/or appeal to the choosing agent. If the 
mapping from a state parameter w to the conditional 
probability density p(y|x, w) is one-to-one, then the 
model is identifiable, i.e. if the product in service is 
in its lowest state then the likelihood of that product 
to fail is significantly high. Otherwise, it is non-
identifiable. In other words, this model is identifiable 
if and only if its parameter is uniquely determined 
from its state and/or cognitive behavior.  

However, in non-identifiable cases, as depicted in 
Fig. 1, actions are more dynamic and remain in active 
workspace of the individual as they “wait” – the 
Voronoi region – for more signals in transactional 
data to make the connection for action (best matching 
nearest-neighborhood action cells). For these non-
identifiable cases of actions, a new set of information 
is required, as new cell, ∁ , and a local counter 
variable 𝜏∁   that constrains the number of input 
signals for which the action has best-matching unit 
(Fukushima, 2013). Further, introduction of a new 
signal data, as a new cell, ∁, with a local counter 
variable 𝜏∁  and since the cells are slightly moving 
around, more recent signals may be weighted 
stronger than previous ones. An adaptation step, for 
example, may be formulated as: a) choose an input 
signal data according to the probability distribution 𝑃(𝜉), b) locate the best matching unit 𝑐 = ∅௪(𝜉); c) 
increase matching for 𝑐  and its direct topological 
neighbors ∆𝑤 = 𝜀(𝜉 − 𝑤) ; d) Increment the 
signal counter of 𝑐, as new signal data gets added, 
either via another activity, e.g., a call from a friend, 
or  an ‘autonomous’ message: “how about going out 
for lunch” : ∆𝜏 = 1; e) decrease all signal counters 
by a fraction 𝛼 : ∆𝜏∁ = −𝛼𝜏∁  (not shown in the 
diagram) which is uniquely determines the change in 
action due to new signal data that influenced its state 
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and/or cognitive behavior. The relative signal 
frequency of a cell ∁  is: ℎ = 𝜏/ ∑ 𝜏∈ . A high 
value of ℎ , therefore, indicates a good position to 
insert a new latent variable, as cell, because the new 
latent variable, cell, is likely to reduce this high value 
of action to a certain degree. The insertion of new 
cells leads to a new Voronoi region, F, in the input 
space. At the same time, the Voronoi regions of the 
topological neighbors of ∁  are diminished. This 
change is reflected by an according redistribution of 
the counter variables 𝜏∁. 

 
Figure 2: Self-Organized Cognitive Algebraic Neural 
Network (SCANN) With Voronoi Region. 

There are also many conditions where the 
individual and/or individuals in a group choose 
actions without fully knowing with whom they will 
interact and what would be their response. Instead of 
a fixed network, individuals are now unsure about the 
network that will be in place in the future, but have 
some idea of the number of interactions that they will 
have. To fix ideas, the individual and/or a group 
where individual is a member and their action data 
may choose to find expected response that is only 
useful in interactions with other individuals who has 
the same product as well, but without being sure of 
with whom one will interact in the future. In 
particular, the set of individuals N is fixed, but the 
network (N; g) is unknown when individuals choose 
their actions. An individual i knows his or her own 
degree di, when choosing an action, but does not yet 
know the realized network. Individuals choose 
actions in {0,1}, individual i has a cost of choosing 
action1, denoted ci. Individual i’s payoff from action1 
when i has di neighbors and expects them each 
independently to choose 1 with a probability x is: 𝑣 (𝑑, 𝑥) − 𝑐 and so action1 is an expected response 
for individual i if and only if 𝑐 ≤  𝑣(𝑑, 𝑥) .  The 
payoff to the individual from taking action1 compared 
to action0 depends on the number of neighbors who 
choose action1, so that 𝑠𝑖𝑔𝑛 ቀ 𝑢൫1, 𝑎ே(g)൯ − 𝑢൫0, 𝑎ே(g)൯ቁ =𝑠𝑖𝑔𝑛൫∑ 𝑎∈ே(g) − ∑ 1 − 𝑎∈ே(g) ൯                            (7) 

If more than one half of i's neighbors choose 
action1, for example, then it is best for individual i to 
choose 1, and if fewer than one half of i’s neighbors 
choose action1 then it is best for individual i to choose 
action0. There may be multiple equilibria in this 
situation. In non-identifiable cases of expected 
response may be dynamic and/or in active workspace, 
as the expected response data of the individual 
“wait” for more signal data or action data to make 
connection for expected response or lack of 
confidence (best matching neighborhood action cells) 
on the existing signal data. The prospect probability 
may be defined as: 𝑝൫𝜋, 𝜏൯ = Τ𝑟ఘෝ(𝜏)𝑃(𝜋) . 
The interaction of the decision maker with the group 
may ensure that the individual keeps distinct identity 
and personality while, at the same time, possibly 
changing state of mind. In other words, the 
surrounding group does influence the individual’s 
state, but does so in a way that does not suppress the 
person making own decisions. This corresponds to 
the behavior of a subsystem that is part of a larger 
system that changes the subsystem properties, while 
the subsystem is not destroyed and retains its typical 
features.  

Introduction of a new signal data, as in Fig 2, or 
action data as a “new” cell, ∁, with a local counter 
variable 𝜏∁  and since the cells are slightly moving 
around, more recent signals may be weighted 
stronger than previous ones. Here, the changes of the 
signal and action counters as redistribution of the 
counter variables may be seen as ascribing to the new 
cell. This new cell is connected to the existing 
expected response cells in such a way that may again 
a structure consisting only of k-dimensional 
simplices: ∆𝜏∁ = ห𝐹∁ே௪ − 𝐹∁ௗหห𝐹∁ைௗห   (8)

A new Voronoi region exists now. As much input 
signals and/or actions as it would have received if it 
had existed since the beginning of the process. In the 
same way the reduction of the counter variables of its 
neighbors may be motivated by making more 
information available to all. In such network 
interactions the possible outcomes of the D and C to 
two basis vectors |𝐷⟩ and |𝐶⟩ in the space of a two-
state condition, e.g., either coffee (A) or juice (B), the 
state of the situation may be described by a vector in 
the product space which could be spanned by the 
basis |𝐶𝐶⟩,|𝐶𝐷⟩,|𝐷𝐶⟩ and |𝐷𝐷⟩, where the first and 
second entries refer to A’s and B’s states, 
respectively. This may denote the responses initial 
state by |𝜓⟩ = 𝐽መ|𝐶𝐶⟩, where 𝐽መ is a unitary operator 
which may be known to both individuals. For fair 
response, 𝐽መ must be symmetric with respect to the 
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interchange of the two individuals. The strategies are 
executed on the distributed pair of state situations in 
the state |𝜓⟩ . Strategic moves of two individuals, 
for example, A and B are associated with unitary 
operators 𝑈 and 𝑈, respectively, which are chosen 
from a strategic space S. The independence of the 
individuals dictates that 𝑈  and 𝑈  operate 
exclusively on the states in A’s and B’s possession, 
respectively. The strategic space S may therefore be 
identified with some subset of the group of unitary 2 
x 2 matrices. Having executed their moves, which 
leaves the situation in a state ൫𝑈⨂𝑈൯𝐽መ|𝐶𝐶⟩, A and 
B forward their states for the final measurement 
which determines their payoff. The only strategic 
notion of a payoff may be the expected payoff. A’s 
expected payoff may be given by $ = 𝑟𝑃 + 𝑝𝑃 + 𝑡𝑃 + 𝑠𝑃  (9)

where 𝑃ఙఙᇱ = ห⟨𝜎𝜎′ห𝜓ൿห is the joint probability 
that the channels 𝜎 and 𝜎′. A’s expected payoff $A 
not only depends on her choice of strategy 𝑈, but 
also on B’s choice 𝑈. 

Individual i’s reward or payoff function may be 
denoted ui: 𝐴 ×  𝐺(𝑁)  →  ℝ . A given individual's 
payoff depends on the group where the individual is 
a member or other individuals' actions, but only on 
those to whom the individual is (directly) linked in 
the network. In fact, without loss of generality the 
network may be taken to indicate the payoff 
interactions in the group. More formally, individual’s  
payoff may depend on ai and {𝑎}∈ே(g)  so that for 
any i, ai, and g: 𝑢(𝑎, aି,g) = 𝑢(𝑎, áି,g) whenever 
a =  á for all 𝑗 𝜖 𝑁(g). Unless otherwise indicated 
the equilibrium, may be a pure strategy Nash 
equilibrium: a profile of actions a ∈  𝐴 =  𝐴ଵ ×… 𝐴 , such that 𝑢(𝑎, aି,g) ≥ 𝑢(𝑎ప́ , aି,g) for all �́� ∈ 𝐴. In the case with large fluctuations in input of 
expected response with large-scale networks, 
however, the weights increase without limits due to 
the diffusion effect if weight constraints are absent. 
Nevertheless, the choice probability of a network 
with diverging weights asymptotically approaches 
matching behavior. A weight-normalization 
constraint may be imposed for the diffusion effect to 
become more evident than in cases without 
normalization.  

However, in non-identifiable cases of reward 
may be in dynamic and/or active workspace, as the 
reward data of the individual “waits” for more signal 
data or action data or expected response data to make 
connection for reward or lack of confidence (best 
matching neighborhood action cells) on the existing 
signal data.  

Introduction of a new signal data, or action data 
or expected response data as a new cell, ∁, with a 
local counter variable 𝜏∁  and since the cells are 
slightly moving around, more recent signals may be 
weighted stronger than previous ones. Here the main 
characteristic of the model could be that several 
adaptation steps may sometimes be followed by a 
single insertion. One may note the following 
feedback relation between the two types of action: a) 
every adaptation step may increase the signal, action 
and response counters of the best-matching unit and 
thereby increases the chance that another cell will be 
inserted near this cell; b) insertion near a cell ∁ 
decreases both the size of its Voronoi field 𝐹∁ and the 
value of the signal or action or expected response 
counter. The reduction of the Voronoi field makes it 
less probable that ∁ will be best-matching unit for 
future input signals.  

Networks are then analyzed in terms of groups of 
nodes that are all-to-all connected, termed as cliques. 
The number of neurons in a clique determines its size, 
or more formally, its dimension. In directed graphs it 
is natural to consider directed cliques, which are 
cliques containing a single source neuron and a single 
sink neuron and reflecting a specific motif of 
connectivity (Song, Sjöström, Reigl, Nelson and 
Chklovskii, 2005), wherein the flow of information 
through a group of neurons has an unambiguous 
direction. The manner in which directed cliques bind 
together can be represented geometrically. When 
directed cliques bind appropriately by sharing 
neurons, and without forming a larger clique due to 
missing connections, they form, termed as, cavities 
(“gaps,” “voids” or “unknowns”) in this geometric 
representation, with high-dimensional cavities 
forming when high-dimensional (large) cliques bind 
together. Directed cliques describe the flow of 
information in the network at the local level, while 
cavities provide a global measure of information flow 
in the whole network. Using these naturally arising 
structures, we established a direct relationship 
between the structural graph and the emergent flow 
of information in response to stimuli, as captured 
through time series of functional graphs (Reimann, 
Nolte, Scolamiero, Turner, Perin, Chindemi, Dlotko, 
Levi, Hess and Markram, 2017).  

These structural graphs are analyzed at different 
timepoints. As time progresses, for example, the 
parameters in rules associated with active experience 
or historical or neither may change and/or eliminated, 
and thereby change prediction and prescription that 
determine the action data for the action indicator. As 
time progresses, at each step of determining the state 
data, the action data, the expected response data, and 
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the reward data also change optimal controls for the 
individual and groups. The Voronoi region 𝐹∁ , for 
example, by an n-dimensional hypercube with a side 
length equal to the mean length 𝑙∁̅  of the edges 
emanating from ∁ with 𝑙∁̅ computed by 𝑙∁̅ = 1 𝑐𝑎𝑟𝑑 (𝑁∁)ൗ  ‖𝑤∁ − 𝑤‖∈ே∁   (10)

From the above, it is evident that it would be very 
helpful to know the true dimensionality of the data, 
meaning the smallest dimensionality t, such, that a t-
dimensional sub-manifold of V may be found 
containing all (or most) input data. Then t-
dimensional hyper-cubes may be used to estimate the 
size of the Voronoi regions. However, to figure out 
the value of t, especially because the mentioned sub-
manifold may not have to be linear but could be 
randomly twisted. Therefore, even analyses of the 
signal, state, expected response and reward data may 
not, in general, reveal their true dimensionality and 
remain “unaided”, but gives only (or at least) an 
upper bound. However, the method of training for 
machine to learn and, therefore, gives some general 
rules for choosing such an estimate that do work well 
for all activities that may be encountered 
subsequently.  

Moreover, as time progresses, the learning 
system may accelerate or decelerate the speed of 
information flow between signal and state and action, 
and expected response and reward. This may support 
the two structural update operations: a) insertion of a 
cell, as a neuron; b) deletion of a cell, as a neuron. 
These operations may be performed such that the 
resulting structure consists exclusively of multi-
dimensional structure ℋ . Although such a data 
structure may already be sufficient in this example, a 
considerable search effort may be needed to make 
consistent update operations. The removal of a cell 
may also require other neurons and connections are 
removed to make the structure consistent again. 
Simple heuristics as, for example, to remove a node 
remove all neighboring connections and the node 
itself may not work properly. For this purpose, a 
tracking mechanism of all the ℋ may be introduced 
in the current network. Technically, a new data type 
simplex may be created, an instance of which 
contains the set of all nodes belonging to a certain ℋ. 
Furthermore, with every node associated to the set of 
those ℋ  the node may be part of. The two update 
operations can now be formulated as: a) a new node 
r may be inserted by splitting an existing edge qf. The 
node r may be connected with q, f, and with all 
common neighbors of q and f. Each ℋ  containing 
both q and f (in other words, the edge being split) may 

be replaced by two ℋ each containing the same set 
of nodes as ℋ except that q respectively f may be 
replaced by the new node r. Finally, the original edge 
qf may be removed. The new ℋ may be inserted in 
the sets associated with their participating nodes. b) 
to delete a node, it may be necessary and sufficient to 
delete all ℋ the node may be part of. This may be 
done by removing the ℋ  from the sets associated 
with their nodes. The same may be done with nodes 
having no more edges. This strategy may lead to 
structures with every edge belonging to at least one ℋ and every node to at least one edge. Therefore, the 
resulting k-dimensional structures may be consistent, 
that is, contain only k-dimensional ℋ.  

 
Figure 3: Optimal Learning of SCANN With Voronoi 
Regions Derive Choice-sets. 

Fig. 3 above illustrates an optimization method of 
multiple-layered multi-dimensional with dynamic 
expansion and contraction of SCANN structure – the 
plasticity – where the individual activity content, as 
structured in the learning system, are optimized with 
dynamic programming method to minimize statistical 
errors. A relational clique  is constructed of a 
clique over all activities at various locations on a 
trajectory, which has an activity of one or more 
individuals.  Each clique C is associated with a 
potential function 𝜙(𝑣)   that maps a tuple (values 
of decisions or aggregations). These evolutionary 
structures may establish a relationship between the 
structural graph and the emergent flow of information 
in response to activity content, as captured over time 
of functional graphs. The activity content and 
likelihood of (K-1) dimensional simplex 𝑆  in the 
network structure may find multi-nomial distribution, 
which could be denoted as Mult(𝑝ଵ, … 𝑝;  𝑛), in a 
discrete distribution over K dimensional non-
negative integer vectors 𝐱 ∈ ℤା where ∑  𝑥ୀଵ  =  𝑛. 
Here, 𝒑 =  (𝑝ଵ; … ; 𝑝) in an element of 𝑆 and 𝑛 > 1. Together they may provide a) activity-content, b) 
probability mass function as expressed, 
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𝑓(𝑥ଵ, … , 𝑥; 𝑝ଵ, … 𝑝, 𝑛) = Γ(𝑛 + 1)∏ Γ(𝑥 + 1)ୀଵ ෑ 𝑝௫
ୀଵ  (11)

to optimize activity content for the individual with 
minimized errors. For example, the buyer’s system in 
a buyer-seller-trader network optimizes the product 
information workspace that may wait for additional 
information to formalize specific rules, say “predict”, 
and minimize errors. 

Any new or update on activity content may 
initiate signals in activity, which may form the 
maximum likelihood estimate (“MLE”) of the signal 
and noise (e.g. data not immediate relevance) for 
imperfect or incomplete information condition 
parameters may train machine to learn as a signal, as 
well as the MLE of the noise parameters may be 
trained to be learned as noise. The ratio of these two 
quantities may be taken and compared with upper and 
lower thresholds until a decision may be made, based 
on two properties desirable in a continuous sequential 
detection which may have no analogue in fixed-
sample detection, or even in sequential detection, and 
optimized content as in 

𝜉(𝑡) =  𝑐బ,௦ ∅బ,(𝑡)ଶೕబିଵ
ୀ +   𝑑,௦ଶೕିଵ

ୀ 𝜓,(𝑡)ஶ
ୀబ   (12)

First, the likelihood ratio could be a continuous 
function of the length of the observation interval for 
fixed parameter estimates; second, the MLEs could 
also be continuous functions of the observation 
interval.  

Each individual signal data, as quantum 
candidate, are aggregated into groups as a function of 
one or more of attributes and features including time, 
location, transition and constraints. The grouping 
included an aggregation of each individual’s 
decisions into groups, based on sheafing methods 
used earlier for the aggregation into groups for 
systematically tracking each individual’s signal data, 
with various attributes and features, attached to open 
sets of a topological space.  We fix a set Λ of values 
for a latent variable. A latent-variable model ℎ over Λ assigns, for each 𝜆 ∈ Λ and ∁ ∈  ℳ, a distribution ℎ∁ఒ  ∈  𝒟ℛℰ(∁) . It also assigns a distribution ℎஃ  ∈𝒟ℛ(Λ) on the latent variables. This may obtain the 
map ℰ(𝑋) ⟶ ∏∁∈ℳ𝒫(ℰ(∁)) . We may use the 
isomorphism ෑ 𝒫(𝑋ఢூ ) ≅ 𝒫(ሡ 𝑋ఢூ )  (13)

 
which may take the limit of the cohomology 

groups of the neural network system as 

𝐻({𝑈 → 𝑈}, 𝐹) = ker (Hom൫⨁ 𝑍, 𝐹൯ ⇉Hom ቀ⨁, 𝑍,ೕ , 𝐹ቁ =  Hom൫Z{ି}, 𝐹൯                     (14) 

The groups determined by grouping methods use 
prediction activities and optimization of content 
operation for the groups.  Based on the predictions for 
the group, an optimal set of choices may be 
determined for the group.  For example, in the trading 
system of buyer-seller-trader network optimizes the 
product information workspace for the aggregated 
group to “forecast” price of nearest-neighbor, predict 
maximum likelihood of forecasted price of the 
nearest-neighbor and minimize errors to formalize 
specific rules and optimal policies for various 
features and attributes that drive forecast. 

This abstraction of dynamic and active 
workspace, as layer, created for each optimized 
signal data including “wait” data and “new cell” 
data, as explained above, parallel connections 
between any cliques and cavities as described above, 
as sigma cell in the layer (l) and the output of any 
data, as neuron, in the layer (l -1) may be generated. 
The number of these parallel connections is equal to 
the number of activation functions in the layer (l). 
Therefore, in the layer (l) an activation function along 
with all sigma cells or equivalently the sigma blocks 
are considered as a single multi-dimensional data or 
neuron, as shown by dashed line in Fig. 3.  

6 CONCLUSIONS 

Multi-layered and multi-dimensional SCANN 
networks explicitly incorporate multiple channels of 
connectivity and constitute the natural environment to 
describe decision-making system interconnected 
through different categories of connections: each 
channel (relationship, activity, category) is 
represented by a layer and the same node or entity 
may have different kinds of interactions (different set 
of neighbors in each layer).  

In addition, when SCANN is used, a smaller error 
rate of about 0.32% can be acquired with a much 
smaller number of reference vectors, if the SCANN is 
combined with tune-up Voronoi region (Vr). The 
computational cost of this method is smaller not only 
for deep learning but also for the pattern recognition 
due to smaller number of reference vectors. 

The future research will study the interaction 
structures of economic or knowledge networks 
accounts for cognitive intelligence, if any, that require 
SCANN methods. The study will emphasize the 
properties of perfect and complete information; the 
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interaction of potential use of SCANN; and the 
exponentiality of the deeper neural network. 
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