
Secure Cloud Storage with Client-side Encryption using a Trusted
Execution Environment

Marciano da Rocha1 a, Dalton Cézane Gomes Valadares2,4 b, Angelo Perkusich3 c,
Kyller Costa Gorgonio4 d, Rodrigo Tomaz Pagno1 e and Newton Carlos Will1 f

1Department of Computer Science, Federal University of Technology, Paraná, Dois Vizinhos, Brazil
2Department of Mechanical Engineering, Federal Institute of Pernambuco, Caruaru, Brazil

3Department of Electrical Engineering, Federal University of Campina Grande, Campina Grande, Brazil
4Department of Computer Science, Federal University of Campina Grande, Campina Grande, Brazil

Keywords: Intel SGX, Data Sealing, File Encryption, Confidentiality, Integrity, Secure Storage, Cloud Storage.

Abstract: With the evolution of computer systems, the amount of sensitive data to be stored as well as the number
of threats on these data grow up, making the data confidentiality increasingly important to computer users.
Currently, with devices always connected to the Internet, the use of cloud data storage services has become
practical and common, allowing quick access to such data wherever the user is. Such practicality brings with
it a concern, precisely the confidentiality of the data which is delivered to third parties for storage. In the home
environment, disk encryption tools have gained special attention from users, being used on personal computers
and also having native options in some smartphone operating systems. The present work uses the data sealing,
feature provided by the Intel Software Guard Extensions (Intel SGX) technology, for file encryption. A virtual
file system is created in which applications can store their data, keeping the security guarantees provided by
the Intel SGX technology, before send the data to a storage provider. This way, even if the storage provider is
compromised, the data are safe. To validate the proposal, the Cryptomator software, which is a free client-side
encryption tool for cloud files, was integrated with an Intel SGX application (enclave) for data sealing. The
results demonstrate that the solution is feasible, in terms of performance and security, and can be expanded
and refined for practical use and integration with cloud synchronization services.

1 INTRODUCTION

Cyber attacks and different cybercrimes are an in-
creasing threat to today’s digital society (Huang et al.,
2018; Khraisat et al., 2019; Singh et al., 2019). In
this context data governance and security is of utmost
importance (Onwujekwe et al., 2019). Reports from
specialized companies and government security enti-
ties indicate a growing number of threats to digital
data, whether from corporations or users. Companies
faced an average of 25 new threats per day in 2006,
up from 500,000 in 2016 (Weafer, 2016) and 61% of

a https://orcid.org/0000-0002-8213-6803
b https://orcid.org/0000-0003-1709-0404
c https://orcid.org/0000-0002-7377-1258
d https://orcid.org/0000-0001-9796-1382
e https://orcid.org/0000-0001-9267-4982
f https://orcid.org/0000-0003-2976-4533

CEOs are concerned with the state of the cyber secu-
rity of their company (PwC, 2016).

Nowadays, users are increasingly using cloud
storage services to keep their files and can access
them from any device connected to the Internet. Such
storage services hold a large set of data from various
users, including sensitive and confidential informa-
tion, due to their reliance on such providers. However,
these storage services do not always guarantee or re-
spect the privacy of their users (Branscombe, 2015;
Cox, 2016; Clover, 2017).

One way to ensure an additional level of security
for users’ sensitive files is to encrypt such data be-
fore sending them to the cloud storage server. One
option that performs such an operation is using a disk
encryption system, which runs in the operating sys-
tem background and encrypts all information that is
stored.

This type of system has some vulnerabilities,

da Rocha, M., Valadares, D., Perkusich, A., Gorgonio, K., Pagno, R. and Will, N.
Secure Cloud Storage with Client-side Encryption using a Trusted Execution Environment.
DOI: 10.5220/0009130600310043
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 31-43
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

31



which can highlight the risk of attacks and improper
access to data. One of these vulnerabilities is the
user’s password choice, which is often weak and can
be discovered using dictionary attacks, default pass-
words, rainbow tables or even brute force. Another
factor is that most of the existing disk encryption sys-
tems keep the encryption key in main memory while
it is running, allowing other malicious applications to
attack and discover the key.

Nowadays the use of reliable trusted hardware
technologies, such as Intel Software Guard Exten-
sions (Intel SGX) (INTEL, 2014) and ARM Trust-
Zone (Pinto and Santos, 2019), has grown. An In-
tel SGX application creates an isolated protected re-
gion of memory, which is called enclave, where data
are securely processed. Among the various features
provided by the SGX technology, there is the seal-
ing of an enclave data in secondary memory. This
process uses a unique key as a basis for the encryp-
tion, which is generated by combining a developer
key and a processor key, and is not stored in mem-
ory: it is generated again to each request, guarantee-
ing that the data will be decrypted only by the enclave
that sealed them, in the platform in which they were
sealed (Anati et al., 2013). Another feature provided
by Intel SGX technology is the encryption of data in a
region of primary memory with a random key that is
generated with each power cycle. This key is known
only by the processor and never goes beyond its limits
(INTEL, 2016).

According to the previous discussion, we estab-
lished the following two research questions to guide
our research:
1. How to improve the security of traditional disk en-

cryption tools?
2. How to decrease the user’s need to trust the cloud

service provider?
In this paper, we propose the use of Intel SGX

features to perform data sealing and processing in
a more secure way, since these operations are per-
formed only inside an enclave, which is supposed to
be protected even against adversaries with high priv-
ileges inside the operating system. We implemented,
as a proof of concept, an application using the Cryp-
tomator, an open source client-side encryption tool
used for cloud files protection. The Cryptomator was
modified, integrated with an Intel SGX application,
in order to use its data sealing feature, which is per-
formed only inside an enclave. With this, the data
encryption/decryption processes are performed in a
more secure way, extending this security also for the
keys, since they are also handled inside the enclave.

The main contributions of this work are listed be-
low:

• The proposal to improve the security of disk/file
encryption process using Intel SGX;

• The implementation of such proposal consider-
ing an Intel SGX application integrated with the
Cryptomator tool;

• The performance evaluation of our proposal im-
plemented, considering six different hardware
combinations.

The remainder of this paper is organized as fol-
lows: Section 2 provides background information
about the cloud storage and disk encryption tech-
niques, as well the Intel Software Guard Extensions
technology; Section 3 presents previous research
closely related to our proposal, in the field of cloud
storage security and the use of Intel SGX in file en-
cryption; Section 4 describes the solution proposed by
this paper; in order to validate the proposed approach,
three prototypes are presented in Section 5 as a proof
of concept; Section 6 presents the performance evalu-
ation of the prototype on six different hardware com-
binations; the threat model as well the security eval-
uation of the Intel SGX technology and the proposal
solution are presented in Section 7; the limitations of
our solution are described in Section 8 and, finally,
Section 9 concludes the paper and presents the future
works.

2 BACKGROUND

This Section presents a brief description of important
concepts used in this work, such as cloud storage, disk
encryption and the Intel Software Guard Extensions.

2.1 Cloud Storage

Nowadays, more users are using cloud storage ser-
vices, either explicitly to keep their personal files, or
implicit through applications that make use of such
background services to maintain backups or history
of user data. The benefits inherent in cloud data stor-
age are virtually unlimited storage, version history for
each file, and access to data at any time from any de-
vice connected to the Internet.

But there is always a concern regarding the se-
curity of data stored in the cloud, especially as the
number of constant cyber attacks intensifies. One of
the most promising defenses for the cloud is encryp-
tion, which offers robust protection in both data stor-
age and transit. Encryption is available in two main
security configurations: client- and server-side.

With server-side encryption, the cloud storage
provider manages encryption keys along with their

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

32



data, and many cloud storage providers use this
method. This limits the complexity of the environ-
ment while maintaining the isolation of your data, but
there are several risks of keeping the encryption key
and data encrypted by it in the same place. In ad-
dition, the cloud provider itself can access keys and
hence data in plain text.

In client-side encryption, the user is responsible
for keeping their keys, accessed with a password,
which is a user-centric approach to keep control of
the data. This configuration limits the risk of external
access to sensitive information, by unauthorized en-
tities, since encryption is ideal for confidential data.
Most client-side encryption methods involve encrypt-
ing data for storage in a cloud service that does not
support natively.

The user can determine which data to encrypt and
which data to store in the cloud in plain text. The
user can encrypt only certain files, or create an entire
encrypted file container or storage folder. This can
be done even when using server-side encryption ser-
vices, adding an extra layer of security to extremely
sensitive data.

2.2 Disk Encryption

Many people and companies have sensitive informa-
tion stored on the most diverse types of devices. In
this context, Full Disk Encryption (FDE) has emerged
as a solution to ensure the security of these infor-
mation in cases of theft or loss of devices that store
them, since mechanisms such as passwords and bio-
metric blocking do not prevent the storage media from
being accessed when installed on another machines.
FDE is an effective method of protecting data from
unauthorized access, because it consists of encrypt-
ing entire volumes/partitions or disks, ensuring that
information can not be accessed without the mech-
anism and key used for encryption. Existing mecha-
nisms can be classified into firmware-level encryption
(hardware-based solutions) and kernel-level encryp-
tion (software-based solutions).

Hardware-based FDE engines are called Self-
Encrypting Drives (SEDs), in which encryption is
performed by the disk controller and the encryption
keys are not present in the CPU neither in the main
memory of the computer. In addition, the MBR (Mas-
ter Boot Record) is also encrypted, preventing manip-
ulation attacks. This type of FDE is present in some
specific storage media models, such as Intel SSD 320
and 520 drives, and requires a previous boot envi-
ronment with a screen available for entering the ac-
cess password. According to (Meijer and van Gas-
tel, 2019), some Solid State Drive (SSD) models have

failures in the encryption process, allowing the stored
data to be extracted from the drive without knowing
the key used to perform the encryption.

Software-based FDE engines are applications run
at the kernel level by the CPU, in which data and
used keys are stored in the main memory. This type
of FDE consists of intercepting all operating system
(OS) requests and encrypting the data before stor-
age, or fetching encrypted data on storage media and
returning OS-readable information. Software-based
FDE do not encrypt the MBR, which allows manipu-
lative attacks on it. This kind of solution has been on
the market since the 2000s, beginning with the launch
of Cryptoloop (Hölzer, 2004) for Linux, which was
the predecessor of Dm-Crypt (Broz, 2015), released
in 2003.

Linux based operating systems commonly imple-
ment the LUKS (Linux Unified Key Setup) disk-
encryption specification. LUKS is a platform-
independent standard on-disk format based on a two
level key hierarchy, protecting the master key using
PBKDF2 (Network Working Group, 2000) as key
derivation function, with an anti-forensic splitter (AF-
splitter) to solve the problem of data remanence, that
inflates and splits the master key before storing it on
disk (Fruhwirth, 2011; Bossi and Visconti, 2015).

In addition to these, other disk encryption sys-
tems are also widely used by end users, such as Cryp-
tomator, that uses a virtual file system to create a file
container, where the encrypted data are stored (Cryp-
tomator, 2019).

2.3 Intel SGX

Intel SGX technology compiles a set of instructions
and mechanisms for creating and accessing a pro-
tected region of memory, ensuring the confidential-
ity and integrity of sensitive application data. The
first version of SGX was added to Intel Core proces-
sors from the 6th generation (Skylake) and allows an
application to start a protected container, called en-
clave. In this context, two significant features have
been added in Intel’s x86 architecture: a change in
the enclave memory access and the protection of ap-
plication address mappings (INTEL, 2014; McKeen
et al., 2013).

An enclave is a fixed-size protected area in the ap-
plication’s address space, which allows a portion of
the application code to be run confidentially and se-
curely, ensuring that other software can not access
these information, even if it has high running privi-
lege or if it is running within other enclaves (INTEL,
2014). Attempts to gain unauthorized access to the
contents of an enclave are detected and prevented, or

Secure Cloud Storage with Client-side Encryption using a Trusted Execution Environment

33



the operation is aborted. While the enclave data are
being processed between the registers and other in-
ternal blocks of the processor, it uses internal access
control mechanisms to prevent unauthorized access to
these data. When data are transferred to main mem-
ory, they are automatically encrypted and stored in a
reserved region, called Processor Reserved Memory
(PRM).

Memory encryption is done using a 128-bit time-
invariant AES-CTR encryption algorithm and con-
taining protections against replay attacks. The en-
cryption key is stored in internal registers of the pro-
cessor, not being accessible to external components,
and is randomly changed at each hibernation or sys-
tem restart event. Memory probes or other techniques
that attempt to modify or replace these data are also
avoided, and the fact of connecting the memory mod-
ule to another system will only give access to the data
in an encrypted form (Aumasson and Merino, 2016;
Intel, 2016).

Intel SGX technology ensures the confidentiality
and integrity of the data while inside an enclave. In
general, when the enclave is destroyed, all informa-
tion is lost. To preserve these information, SGX tech-
nology provides a mechanism that allows the enclave
to seal them using a key called Sealing Key, so the
information can be safely stored on disk. The seal-
ing key is a unique key generated by the CPU for that
enclave and on that particular platform, and it is not
necessary to store it for unsealing the data. Sealing
and unsealing are the operations involved in the data
protection process on disk (INTEL, 2016). The AES-
GCM algorithm is used for data sealing and the AES-
CMAC algorithm is used for key derivation (Aumas-
son and Merino, 2016).

In order to share information, protected in a run-
ning enclave, with other enclaves, the security must
be ensured at the destination and also during the trans-
mission process. To this end, Intel SGX technology
provides a feature called attestation, which allows an
enclave to prove to third parties that it is legitimate,
unadulterated and correctly loaded, allowing the cre-
ation of a secure channel for communication between
them. Intel SGX technology provides mechanisms
that enable two forms of attestation: local attestation
and remote attestation (INTEL, 2016).

Local attestation is performed when two enclaves
on the same device need to securely exchange infor-
mation with each other. In this case, one enclave must
prove its identity and authenticity to the other in order
to begin the communication. This form of attestation
uses a symmetric key system, with the enclave asking
the hardware a credential, which should be forwarded
to the other enclave who will verify that the credential

was generated on the same platform. The used key is
embedded in the hardware platform, and only known
by the enclaves running on that platform.

Remote attestation is performed when enclaves
are running on separate devices and need to securely
exchange information with each other or when a third
party needs to securely send data to an enclave. This
form of attestation requires the use of asymmetric
encryption, a special Intel-provided enclave called
the Quoting Enclave, and a CPU-produced creden-
tial called QUOTE. The QUOTE credential is gener-
ated by replacing the Message Authentication Code
(MAC) of the reports generated by local enclaves with
a signature created using an asymmetric key using
the Intel Enhanced Privacy ID (EPID). To ensure the
security of the Intel EPID key, only the instantiated
Quoting Enclave has access to it (Anati et al., 2013;
INTEL, 2016).

3 RELATED WORK

This Section contains related works that also consider
cloud storage security and privacy, and disk encryp-
tion using the Intel SGX technology.

3.1 Cloud Storage Security and Privacy

The security and privacy of files stored in the cloud
are a central concern because such data are being de-
livered to third parties. Several works in the litera-
ture present different techniques and mechanisms to
guarantee or increase the security of users’ files and
maintain their confidentiality.

One of the features widely used by cloud storage
providers to improve storage utilization is deduplica-
tion, which aims to eliminate duplicate copies of re-
peating data. Deduplication can also optimize the net-
work data traffic by reducing number of bytes that
must be sent, but can also be used as a side chan-
nel technique by attackers who try to obtain sensi-
tive information of other users’ data. In order to miti-
gate this vulnerability, client-side encryption schemes
are proposed that allow data deduplication and audit
while prevent leakages (Shin and Kim, 2015; Youn
et al., 2018).

Audit operations can also characterize a point of
failure, allowing encryption key exposure. To deal
with this problem, in (Yu and Wang, 2017), the au-
thors point out that cloud storage auditing scheme
with key-exposure resilience has been proposed, but
valid authenticators can still be forged later than the
key-exposure time period, if the current secret key of
the data owner has been obtained. Then, the authors

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

34



propose a new kind of cloud storage auditing and de-
sign a concrete scheme where the key exposure in one
time period does not affect the security of cloud stor-
age auditing in other time periods.

A relationship between secure cloud storage and
secure network coding is also demonstrated by (Chen
et al., 2016), what originates a systematic way to con-
struct secure cloud storage protocols based on any se-
cure network coding protocol. The authors also pro-
pose a publicly verifiable secure cloud storage proto-
col that support user anonymity and third-party public
auditing.

Also, (Gopinaath and Kiruthika, 2017) presents a
server-side encryption approach with federation shar-
ing for cloud storage using a hybrid environment. An
approach to split the data and distribute them along
different cloud servers is described in (Li et al., 2017),
to prevent cloud service operators from directly ac-
cessing partial data. The authors also present an alter-
native approach to determine whether the data packets
need a split to shorten the operation time.

Hardware-based security mechanisms are also
used to provide security and privacy in cloud storage
services. In (Crocker and Querido, 2015), the authors
describe a two factor encryption architecture that in-
corporates the use of a hardware token. A proof of
concept was developed with a middleware that can be
used with any cloud storage provider that makes use
of the OAuth 2.0 protocol for authentication and au-
thorization.

In (Valadares et al., 2018), Trusted Execution En-
vironments (TEEs) are proposed to increase the se-
curity and privacy of data storage and processing in
cloud/fog-based IoT applications. The authors pro-
pose an architecture that applies authentication and
authorization for the participants, and cryptography
for the generated data. These data must be decrypted
and processed only inside a TEE application. A proof
of concept using Intel SGX was implemented and
evaluated, presenting an acceptable communication
latency when compared to an application that did not
apply any security mechanism.

3.2 Disk Encryption with Intel SGX

Intel SGX technology has been used in a wide range
of applications and in several areas. One of these ar-
eas is disk encryption, in which Intel SGX provides an
additional layer of security for the storage of sensitive
files.

In (Richter et al., 2016) the authors introduce the
concept of isolating kernel components from the oper-
ating system into enclaves in order to prevent vulner-
abilities in certain modules from completely compro-

mising the system. Due to the restrictions of the Intel
SGX technology, the enclave can not be executed di-
rectly by the kernel, so the authors had to include a
daemon running in user mode to communicate with
a Loadable Kernel Module (LKM). As proof of con-
cept, the authors created an LKM that registers a new
mode inside the kernel encryption API (Application
Programming Interface), allowing to carry out the en-
cryption process within an enclave, that can be used
for disk encryption.

The proposal presented by (Burihabwa et al.,
2018) is to include the data encryption within a
file system based on the FUSE1 (Filesystem in
Userspace), using the Intel SGX technology to ensure
that the stored data are secure. File requests made to
the operating system through the virtual file system
are intercepted by the FUSE library and sent to an en-
clave, which performs the process of encrypting and
decrypting the data using the native data sealing fea-
ture provided by the Intel SGX technology.

The paper (Ahmad et al., 2018) focuses on de-
creasing the chances of success in a side channel at-
tack on a file system based on the Intel SGX technol-
ogy. It consists of a library that has a file system run-
ning within an enclave, and an application running in
another enclave making requests to that file system.
Communication between the enclave library and the
enclave application is performed through a queue of
messages sent by encrypted communication channels
between the processes.

4 CLIENT-SIDE ENCRYPTION
USING TEE

This work proposes the inclusion of the data sealing
feature, provided by the Intel SGX technology, inte-
grated to a Disk/File Encryption Tool. In order to
validate our proposal, we are considering the Cryp-
tomator software. Cryptomator works with file con-
tainer encryption, providing the user’s operating sys-
tem with a virtual file system where data are read and
written elsewhere.

Cryptomator is designed to be used as a client-side
file encryption service and can work with any cloud
data synchronization software (Horalek and Sobeslav,
2018). In addition, Cryptomator provides the user
with a transparent service by encrypting the files indi-
vidually, allowing the cloud storage service to main-
tain a file update history. Another feature provided by
Cryptomator is directory structure obfuscation (Cryp-
tomator, 2019).

1https://github.com/libfuse/libfuse

Secure Cloud Storage with Client-side Encryption using a Trusted Execution Environment

35



The application is divided into three main mod-
ules, namely:

• Cryptomator: graphical interface that provides
the user with control of the containers;

• CryptoFS: library that implements a virtual file
system and is responsible for reading and writing
data within the containers, through the operating
system, providing the file system with decrypted
data and encrypting the received data before stor-
ing them on a secondary media;

• CryptoLib: library that provides functions for the
encryption and decryption of the files, which are
handled by the CryptoFS module.

The process of reading the files provided by the
application can be described in 12 steps, as shown in
Fig. 1. These steps are explained below:

1. The user requests the operating system to open a
file;

2. The operating system requests FUSE for file data.
FUSE allows the userspace applications export a
filesystem to the Linux kernel, with functions to
mount the file system, unmount it and communi-
cate with kernel;

3. FUSE forwards this request to the Cryptomator,
using the CryptoFS library;

4. Cryptomator requests the operating system to
have the file data fetched from the storage device;

5. The operating system locates the data;

6. These data are loaded into the main memory;

7. The operating system provides these data to the
Cryptomator;

8. The CryptoFS library sends the encrypted data to
the CryptoLib library;

9. The CryptoLib library decrypts the received data
and returns them to CryptoFS library;

10. The CryptoFS library sends the decrypted data to
FUSE;

11. FUSE forwards such data to the operating system;

12. Finally, the operating system provides the user
with the decrypted file.

The data writing process is similar to the reading
process, but with the plain data being sent to the Cryp-
toLib library before, and then they are forwarded to
the operating system for recording in the storage de-
vice. The files stored in the local device are also syn-
chronized with a cloud storage service, already in en-
crypted form, and a second layer of encryption can be
applied by the cloud storage provider.

Cryptomator 
CryptoLib

Operating 
System

Storage Device with Cloud Synchronization

Virtual File 
System

Cryptomator
CryptoFS

User
1 2

3 9

5

7

6

810

12 11

4

Figure 1: Workflow for Reading and Decrypting Stored
Data with Cryptomator.

In this sense, we propose to include the data seal-
ing mechanism provided by Intel SGX technology
within the CryptoLib library, in parallel with the ex-
isting AES encryption, and to change the CryptoFS
library to use this modified implementation. The pro-
posed change ensures, through the use of existing
AES encryption, that the CryptoLib library can still
be used in environments where Intel SGX technology
is not available, thereby maintaining project compati-
bility with changes in the main design.

5 PROOF OF CONCEPT

Cryptomator is designed to support multiple encryp-
tion modes, without any of them affecting the im-
plementation of the others or requiring changes to
the main project to support them. The CryptoLib li-
brary is composed of a Java interface (API), which de-
scribes all the classes and methods that each encryp-
tion mode must implement to be used by the software,
and an implementation of the AES encryption based
on the described interface, which is called v1 within
the library.

Our implementation consists of creating a new
mode called sgx, implementing all classes and meth-
ods requested by the library interface, and changing
the CryptoFS library to use sgx mode instead of v1.
It was also necessary to create a C++ library for com-
munication with the SGX enclaves, called SgxLib.

The sgx mode has a Java class with 4 main meth-
ods used by all other classes of the mode, namely:

• InitializeEnclave: Handles the initialization of
the SGX enclave;

• SgxEncryptBytes: Encrypts an array of bytes;

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

36



• SgxDecryptBytes: Decrypts an array of bytes;

• DestroyEnclave: Destroys the enclave when it is
no longer needed.

These 4 methods are only used to invoke the cor-
responding methods within the SgxLib library. In or-
der to handle the communication between Java meth-
ods and the SgxLib library, it was necessary to create
a Java Native Interface (JNI), containing the 4 main
methods of the Java class. This interface has the pur-
pose of receiving the Java application data, converting
them to the C++ language, performing the process im-
plemented by the method and then converting its re-
sults and sending them to Java.

Fig. 2 describes the process of sending and receiv-
ing data between CryptoFS and CryptoLib libraries,
which includes two additional steps for communica-
tion between the CryptoLib library and the SGX en-
clave. The shaded box indicates a trusted execution
environment (SGX in this case), where the key is ma-
nipulated and the data are encrypted and decrypted.
The communication flow is explained below:

1. CryptoFS library calls encrypt/decrypt functions
in CryptoLib library, which contais AES and SGX
modes;

2. In SGX mode, CryptoLib library creates an en-
clave and sends to it each data block to perform
the encrypt/decrypt process;

3. Encrypt/decrypt blocks are send back to Cryp-
toLib;

4. Encrypt/decrypt data forward to CryptoFS library.

Cryptomator
CryptoLib

Cryptomator
CryptoFS

1

2

4

3

SGX Mode

Enclave SGX

AES Mode

Figure 2: Workflow Performed for Data Encryption and
Decryption through the Cryptomator with the Inclusion of
Data Sealing Feature Provided by Intel SGX Technology.

6 PERFORMANCE EVALUATION

To evaluate the proposal based on the implemented
proof of concept, performance tests were carried out

comparing four modes of data storage, and are as fol-
lows:

• Without Encryption: Data read and write oper-
ations on storage media without any type of en-
cryption;

• LUKS: Data read and write operations on storage
media using native cryptographic mode in Ubuntu
with LUKS (Linux Unified Key Setup);

• Cryptomator: Data read and write operations on
the storage media using the original Cryptomator
application;

• Cryptomator-SGX: Data read and write opera-
tions on the storage media using the implemented
solution, which integrates the SGX data sealing
with the Cryptomator application.

For each mode described above, four different
tests were performed, two for data read operations and
two for data write operations. The tests considered the
transferring of a single file and also multiple files in
sequence. For the task, the DVD ISO image of the
CentOS 7 operating system (CentOS, 2019), which
has a size of 4.27 GB, was used as the data set for
the single file transfer, as well as the files and folders
obtained when extracting the same image, using the
recursive transfer of directories, were used character-
izing the transfer of several files.

The RSync (Ubuntu, 2012) tool was used to per-
form data transfer, using -avhh modes for single file
and -rvhh for multiple files (directories as execution
parameters). Further details on the parameters used
are outlined below:

• -a: Single file copy mode;

• -r: Recursive copy mode of directories, in which
all sub-directories and files are copied too;

• -v: Option to print what is running at the com-
mand prompt;

• -h: Mode to display a better format to read num-
bers. This causes large numbers to avoid us-
ing larger units, considering a suffix K, M, or G.
With this option specified once, these units are K
(1000), M (1000 * 1000) and G (1000 * 1000
* 1000); with this option repeated, the units are
powers of 1024 instead of 1000.

6.1 Experimental Setup

Tests were run in custom PC, motherboard with a
Z390 chipset, 16 GB 2666 MHz RAM, SGX enabled
with 128 MB PRM size, running Ubuntu 16.04.6 LTS,
kernel 4.15.0-51-generic. Intel TurboBoost, Speed-
Step, and HyperThread extensions were disabled, to

Secure Cloud Storage with Client-side Encryption using a Trusted Execution Environment

37



get stable results. We used the Intel SGX SDK 1.7 for
Linux and set the stack size at 4 KB and the heap size
at 1 MB.

In order to measure the CPU contribution to the
performance impact of the encryption task, two dis-
tinct CPUs were used:
• CPU 1: Dual-core 3.8 GHz Intel Pentium G5500;
• CPU 2: Octa-core 3.6 GHz Intel i7 9700K.

We also used three distinct storage devices to per-
form the tests, each one containing different charac-
teristics regarding performance for data reading and
writing:
• Device 1: HDD Samsung ST1000LM024, 1 TB

storage size, 5400 RPM spin speed, 145 MB/s
maximum data transfer rate, 8 MB buffer DRAM
size;

• Device 2: SSD SanDisk PLUS, 240 GB storage
size, 530 MB/s sequencial read, 440 MB/s se-
quencial write;

• Device 3: SSD NVMe M.2 Samsung 970 EVO
Plus, 250 GB storage size, 3500 MB/s sequencial
read, 2300 MB/s sequencial write.
In all devices, an Ext4 file system partition was

used. Since one of the storage devices has high per-
formance (SSD M.2), and the highest performance
in a data transfer between two devices is defined by
the medium with lower performance, a RAMDisk was
used to perform the recording tests, as data source and
target for the read tests. This way, there was no speed
limitation by the source or destination of the data.

Each test was performed 10 times, aiming to ob-
tain the average transfer rate in each scenario consid-
ered. Another set of tests was also performed to anal-
yse the reading performance of data previously stored
in each of the devices. The single file reading and a
set of different files were tested.

6.2 Results and Discussion

The results obtained in the single file read, on the
three storage devices using the Intel Pentium G5500
CPU, can be seen in Fig. 3. The performance of
Cryptomator-SGX solution is higher than its origi-
nal implementation, with the exception of the hard
disk, where the throughput was slightly below that
observed in the unmodified Cryptomator implemen-
tation, but still very close to that. It is also observed
that, in this scenario, the proposed solution obtained
transfer rates very close to or even above those pre-
sented by LUKS, except in storage device M.2.

Similarly, the results obtained using the Intel Core
i7 9700K CPU, for the three storage devices consid-
ering a single file read, can be seen in Fig. 4. In

 0

 100

 200

 300

 400

 500

HD SSD M.2

T
ra

ns
fe

r 
R

at
e 

(M
B

/s
)

Storage Device

Without Encryption

16.08

451.96
498.69

LUKS

9.26

145.33

353.21

Cryptomator

9.47

118.32 118.64

Cryptomator-SGX

9.22

185.31 209.72

Figure 3: Transfer Rate Reading a Single File with Intel
Pentium G5500 CPU.

this scenario, the Cryptomator application achieved
throughput rates close to or higher than LUKS, with
the Cryptomator-SGX solution achieving better per-
formance than both in the three storage devices tested.

 0

 100

 200

 300

 400

 500

HD SSD M.2

T
ra

ns
fe

r 
R

at
e 

(M
B

/s
)

Storage Device

Without Encryption

16.57

447.58
498.69

LUKS

9.25

187.09
115.54

Cryptomator

9.35

172.81
223.06

Cryptomator-SGX

9.43

230.66
272.68

Figure 4: Transfer Rate Reading a Single File with Intel
Core I7 9700K CPU.

When considering the reading of multiple and dif-
ferent files, using the Intel Pentium G5500 CPU, the
good performance of the proposed solution is also
noted, except in the use of the SSD storage device,
in which a drop of about 15% in the transfer rate was
obtained, as shown in Fig. 5.

 0

 100

 200

 300

 400

 500

HD SSD M.2

T
ra

ns
fe

r 
R

at
e 

(M
B

/s
)

Storage Device

Without Encryption

15.25

242.01

460.17

LUKS

9.15

98.21

324.54

Cryptomator

7.28

87.47 110.67

Cryptomator-SGX

8.44
74.92

176.07

Figure 5: Transfer Rate Reading Multiple Files with Intel
Pentium G5500 CPU.

Using the Intel Core i7 9700K CPU, the
Cryptomator-SGX solution outperforms the original
application on all three storage devices tested, when
reading multiple files, as showed in Fig. 6.

In order to evaluate the Cryptomator-SGX per-
formance on writing operations, we repeat the previ-
ous tests, but reading data from RAMDisk and writ-
ing in the storage device. The first analysis per-
formed concerns the single file recording using the
Intel Pentium G5500 CPU, with results presented in

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

38



 0

 100

 200

 300

 400

 500

HD SSD M.2

T
ra

ns
fe

r 
R

at
e 

(M
B

/s
)

Storage Device

Without Encryption

15.62

317.12

447.02

LUKS

9.14

157.85
105.86

Cryptomator

7.52
60.42 62.32

Cryptomator-SGX

8.54

95.97
144.97

Figure 6: Transfer Rate Reading Multiple Files with Intel
Core I7 9700K CPU.

Fig. 7. Analyzing these results, we can note that
the transfer modes using the multi-threaded capability
achieved higher transfer rates, relative to Cryptoma-
tor and Cryptomator-SGX, which are limited to using
only one thread.

 0
 50

 100
 150
 200
 250
 300
 350
 400

HD SSD M.2

T
ra

ns
fe

r 
R

at
e 

(M
B

/s
)

Storage Device

Without Encryption

73.36

151.18

373.22

LUKS

56.31
93.16

301.14

Cryptomator

53.34
80.77 88.80

Cryptomator-SGX

53.45
99.35

130.28

Figure 7: Transfer Rate Writing a Single File with Intel Pen-
tium G5500 CPU.

Besides, there is a better performance of the
Cryptomator-SGX solution over the original imple-
mentation of Cryptomator, as the first uses the na-
tive cryptographic functions of the processor as well
the execution within the enclave is from native code,
written in C++, and optimized by the compiler. Al-
though the data transfer operations through the JNI
interface, for the communication with the enclave,
and the context changes, generated by the enclave en-
try and exit, have a considerable computational cost,
these two overheads are totally suppressed by the gain
obtained in the data sealing operation.

Fig. 8 presents the results obtained with the In-
tel Core i7 9700K CPU in the same scenario: single
file writing. As can be seen, Cryptomator and Crypto-
mator-SGX perform significantly lower than the other
two modes, because they do not utilize the multipro-
cessing features available on the CPU.

The second data recording analysis considers sev-
eral files of different sizes, trying to identify the im-
pact caused by the file system when performing op-
erations to construct the references to such files. For
this scenario, the files contained in the previously pre-
sented ISO image were extracted, and all contents
were copied, as already mentioned. The results for
the Intel Pentium G5500 CPU are shown in Fig. 9.

Although the Cryptomator-SGX solution presents

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

HD SSD M.2

T
ra

ns
fe

r 
R

at
e 

(M
B

/s
)

Storage Device

Without Encryption

67.59

141.05

410.37

LUKS

56.60
92.08

355.14

Cryptomator

23.27 18.58 19.32

Cryptomator-SGX

44.05 37.44 58.86

Figure 8: Transfer Rate Writing a Single File with Intel
Core I7 9700K CPU.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

HD SSD M.2

T
ra

ns
fe

r 
R

at
e 

(M
B

/s
)

Storage Device

Without Encryption

66.61
115.84

434.63

LUKS

57.54
103.30

341.95

Cryptomator

11.13 30.64
56.97

Cryptomator-SGX

9.29 29.85 36.62

Figure 9: Transfer Rate Writing Multiple Files with Intel
Pentium G5500 CPU.

a substantial performance overhead when using the
M.2 storage device, the transfer rates achieved were
close to 80% when compared directly to the original
Cryptomator implementation.

Fig. 10 presents the results obtained using the
Intel Core i7 9700K CPU for multiple files writing.
In this scenario there is a considerable decrease in
performance, both in the original implementation of
Cryptomator and in the proposed Cryptomator-SGX,
due to the single-thread programming model used by
Cryptomator. Nevertheless, the results obtained with
the use of Cryptomator-SGX show little difference
compared to unmodified Cryptomator.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

HD SSD M.2

T
ra

ns
fe

r 
R

at
e 

(M
B

/s
)

Storage Device

Without Encryption

63.09
110.82

399.67

LUKS

54.51
90.52

369.47

Cryptomator

7.81 14.43 16.26

Cryptomator-SGX

7.25 16.72 16.15

Figure 10: Transfer Rate Writing Multiple Files with Intel
Core I7 9700K CPU.

7 SECURITY EVALUATION

Another point that users consider when choosing an
application for data encryption is the security it pro-
vides and its vulnerabilities. This section is intended
to present the threat model, the security analysis of

Secure Cloud Storage with Client-side Encryption using a Trusted Execution Environment

39



Intel SGX technology and the security analysis of the
implemented solution.

7.1 Threat Model

In the threat model we consider that the adversary
aims to access confidential information stored on the
user’s computer hard disk or cloud storage service,
and that he/she has physical access to these platforms
for such task. The attacker can even remove the hard
disk from user’s computer and install it on another
machine with greater computing power, in order to
apply techniques to find out the password used in key
generation, or even the encryption key itself. In addi-
tion, it is assumed that the attacker has installed some
malicious software on the user’s computer in order to
obtain the encryption key through a memory dump-
ing, or to obtain the password used to open the con-
tainer by capturing the data entered into the keyboard
through a keylogger.

It is considered that Intel SGX technology works
properly and according to its specifications, and that
the proposed solution development environment is re-
liable.

7.2 Intel SGX Technology Security
Evaluation

To build a system that is considered secure, the
Trusted Computing Base (TCB) should be kept as
small as possible in order to reduce the chances of
success in an attack. In Intel SGX technology, the
TCB is composed of the CPU and its internal ele-
ments, such as hardware logic, microcode, registers
and cache memory, and some software elements used
in remote attestation, such as quoting enclave.

In the implemented solution, the responsibility of
the data encryption was delegated entirely to the en-
clave. Thus, all warranties provided by the Intel SGX
technology are in use during data encryption. Some
of these guarantees are:

• The cryptographic key never goes outside the pro-
cessor boundaries;

• The memory in which it is running, PRM, is en-
crypted and has mechanisms against direct mem-
ory attacks;

• Protection against external enclave attacks, even
if these attacks come from components with high
execution privilege, such as BIOS or hypervisor,
as specified in Section 2.3.

However, even though the Intel SGX technology
have multiple data protection mechanisms, there are

some forms of attacks that it is susceptible to. In-
tel documentation lists technology limitations, speci-
fying that SGX is unable to prevent side-channel at-
tacks, exploiting cache and data access patterns, or
physical attacks against the CPU such as fault injec-
tion or reprogramming of machine code functional-
ities (Brasser et al., 2017; Wang et al., 2017; Chen
et al., 2018).

The Intel SGX technology is also susceptible
to the speculative execution attack, called Spectre
(Kocher et al., 2019). The exploitation of Spectre vul-
nerabilities to infer secrets contained in an enclave
is demonstrated by (Chen et al., 2019), where the
authors show that an enclave’s code execution pre-
diction could be influenced by applications outside
the enclave, which could temporarily change enclave
control flow to execute instructions that lead to ob-
servable cache state changes, and, thus, an adversary
can use to learn secrets from the enclave memory or
its registers.

One of these problems was addressed by (Ah-
mad et al., 2018), in which the authors propose a
way to reduce the chances of success in a syscall
and page fault-based side channel attacks by using an
ORAM protocol in conjunction with the Intel SGX.
But both side-channel and speculative execution at-
tacks are complex to perform practically.

In addition to the vulnerabilities described by In-
tel, an SGX enclave may be compromised in cases
where the enclave development environment has been
compromised, or if the SDK used is not the newest
version provided by Intel through its official channel.
Enclave security also depends on the developer, since
the developer must take precautions when manipulat-
ing data within the enclave, thus avoiding problems
with data leaks when manipulating pointers or calls
outside the enclave.

7.3 Cryptomator-SGX Solution
Security Evaluation

In order to validate the security of the implementa-
tion, the Intel SGX technology was considered as se-
cure, being validated only the change made in the
Cryptomator.

When considering that the Intel SGX technology
is secure, it is guaranteed that the data can only be
decrypted on the platform where it was encrypted,
or if the attacker is able to obtain the decryption key
through a brute-force attack. In this scenario, we must
ensure that only the data owner has access to them on
the platform where they were encrypted, so the pass-
word used to open the container has been maintained
and is used to encrypt the files name.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

40



In this way, even if an attacker gains physical ac-
cess to the media and the platform used, he/she will
still need the password to access the data. If he/she
does not have access to the platform, he/she will need
the user’s password and also the key used by the en-
clave to encrypt the data. In a computer memory at-
tack, the key used by the enclave will not be available
since it never goes beyond the processor limits. How-
ever, with this attack mode, it is possible to obtain the
password used by the user to open the container.

This scenario also ensures data confidentiality
even if the cloud storage provider is compromised as
data sent to it are previously encrypted on the user’s
local platform. The client-side encryption, allied with
the encryption provided by the cloud storage provider,
adds an extra layer of security to user data and repre-
sents a new obstacle for the attacker to overcome.

Due the Cryptomator software is developed in
Java and is separated into three main modules, an at-
tacker can make use of the CryptoLib library and im-
plement its own solution and bypass existing security
mechanisms within Cryptomator. Thus, a second se-
curity layer is necessary in the CryptoLib, in order to
authenticate the request to open the sealed data. This
proposal is set out in future work.

8 LIMITATIONS OF THE
SOLUTION

The solution implemented consists in encrypting only
the data of the files that are stored inside the container
created through the application. Because of this, some
limitations were identified in the application.

Because data sealing adds 560 bytes per encrypted
block, since it includes authentication data (AES-
GCM), the final file size within the container will al-
ways be larger than the original file size. Thus, the
deployed solution always use more disk space for the
same files over other storage modes. As 32KB size
blocks are used, the ratio of file size increase is about
1.7%.

To perform the encryption process for each file,
Cryptomator stores a file with encrypted name inside
the container, which corresponds to the source file. In
this scenario, the implemented solution could not be
used to encrypt the name of the files inside the con-
tainer by an operating system limitation, as Linux sys-
tems impose a maximum filename length of 255 char-
acters for most filesystems and sealing the filename
would add 560 bytes to it. To circumvent this limi-
tation, the file name encryption was maintained using
the existing AES mode, with the key generated from a
password chosen by the user. This limitation eventu-

ally added an extra layer of protection in the solution
by preventing the opening of the container data, on
the platform where data were encrypted, without the
user’s password being informed.

The limitation that has been addressed in Section
6 regarding application performance is due to the fact
that it uses only one core for processing. Because of
this, only one enclave is used in the process of en-
cryption and decryption of the data, reducing the per-
formance of the system. Another point analyzed was
the constant need to convert the data between the Java
language and the C++ language through the JNI in-
terface, generating a high cost of processing. Chang-
ing the architecture of the solution to make better use
of available resources within the system will be the
subject of future work. However, the need for conver-
sion between languages can not be removed due to the
need to use native code to execute the SGX enclave.

Sealing the data using the sealing key can cause
inconvenience, since the data will only be accessible
if the application is executed through the processor
that was used for sealing them. One way to circum-
vent this limitation is to create a mechanism within
the application for secure data transfer between two
platforms on which it is running, allowing remote ac-
cess and data backup whenever necessary. If the pro-
cessor used to seal the data is lost in the event of a
malfunction or other occurrence, the data cannot be
unsealed either, as the sealing key is derived from a
unique processor key. This requires mechanisms to
securely back up data to be read on another platform
or to use another key derivation scheme. Such mech-
anisms will also be subject of future work.

Using sealing key also makes file sharing difficult
through the cloud storage provider. Such a situation
can also be circumvented by using remote attestation,
or by using another CPU-independent key derivation
scheme for file encryption. Finally, the proposed solu-
tion, as well as client-side encryption itself, may hin-
der the application of current data deduplication tech-
niques, being necessary to deploy mechanisms in con-
junction with the cloud storage provider, as described
in (Yan et al., 2018).

9 CONCLUSION AND FUTURE
WORK

This work proposed the use of Intel SGX technology
for data encryption in an open-source software, to add
an extra layer of security to data stored at a cloud stor-
age provider, ensuring data confidentiality even if the
storage server leak the data.

From the performance analysis presented in Sec-

Secure Cloud Storage with Client-side Encryption using a Trusted Execution Environment

41



tion 6, we have identified that, in most cases, the
implemented solution has achieved superior perfor-
mance compared to the original application for both
data read and write. The increase in performance can
be attributed to the fact that the encryption process
was carried out directly by the processor, while in
the original application it was run through the Java
Virtual Machine. When comparing the solution with
the multithreading solutions, we have identified that
the implemented solution and the original applica-
tion have much lower performance on high perfor-
mance media, indicating a limitation on the part of
the project implementation.

Considering the security guarantees provided by
Intel SGX technology, which are described in Sec-
tion 2.3, the developed solution offers an extra level
of security by sealing the data using the sealing key
in conjunction with the user’s password to open the
containers. Thus, in an attack on the encrypted data,
the attacker will need to discover the user’s password,
and also the sealing key or gain physical access to the
processor used for sealing.

In order to avoid that a user’s password can be ob-
tained in a memory attack, it is necessary to change
the software so that the password is stored inside the
enclave and does not leave its limits. Just as it was
possible to seal user file data using Intel SGX technol-
ogy, it can also seal configuration data. Such change
requires adjustments to the structure of the CryptoFS
library and may remove compatibility with the main
project, and it will be the subject of future work.

Also, it is possible to use a similar approach to
(Richter et al., 2016), encrypting the data within the
boundaries of the enclave, but using a derived key
from an user password, and manipulating that key
only within the enclave. Such approach makes the
data decryption independent of the processor that
encrypted them. Also, the current solution can be
changed to use the remote attestation feature and al-
low container data transfer between two machines
running the application over secure channels.

Finally, better performance can be achieved by
using all processing cores available on the platform.
Such implementation demands a change in the main
structure of the application, which treats the requests
coming from the operating system, being necessary to
add the use of queues and parallel processing, thus al-
lowing one block to be processed by the enclave while
another is read or written to the storage device.

The source code of the presented solution
is available at https://github.com/utfpr-gprsc/
cryptomator-sgx.

REFERENCES

Ahmad, A., Kim, K., Sarfaraz, M. I., and Lee, B. (2018).
Obliviate: A data oblivious file system for Intel SGX.
In Proceedings of the 25th Network and Distributed
System Security Symposium, San Diego, CA, USA. In-
ternet Society.

Anati, I., Gueron, S., Johnson, S., and Scarlata, V. (2013).
Innovative technology for CPU based attestation and
sealing. In Proceedings of the 2nd International Work-
shop on Hardware and Architectural Support for Se-
curity and Privacy, Tel-Aviv, Israel. ACM.

Aumasson, J.-P. and Merino, L. (2016). SGX secure en-
claves in practice: Security and crypto review. In Pro-
ceedings of the Black Hat, Las Vegas, NV, USA. Black
Hat.

Bossi, S. and Visconti, A. (2015). What users should
know about full disk encryption based on LUKS. In
Proceedings of the 14th International Conference on
Cryptology and Network Security, Marrakesh, Mo-
rocco. Springer.

Branscombe, M. (2015). Has microsoft been looking at user
files to find the 75tb onedrive hoarders?

Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K.,
Capkun, S., and Sadeghi, A.-R. (2017). Software
Grand Exposure: SGX cache attacks are practical. In
Proceedings of the 11th USENIX Workshop on Offen-
sive Technologies, Vancouver, BC, Canada. USENIX.

Broz, M. (2015). DMCrypt.
https://gitlab.com/cryptsetup/cryptsetup/-
/wikis/DMCrypt.

Burihabwa, D., Felber, P., Mercier, H., and Schiavoni, V.
(2018). SGX-FS: Hardening a file system in user-
space with Intel SGX. In Proceedings of the 10th
IEEE International Conference on Cloud Computing
Technology and Science, Nicosia, Cyprus. IEEE.

CentOS (2019). CentOS Project. https://www.centos.org/.
Chen, F., Xiang, T., Yang, Y., and Chow, S. S. (2016). Se-

cure cloud storage meets with secure network coding.
IEEE Transactions on Computers, 65(6).

Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., and Lai,
T. H. (2019). SgxPectre: Stealing Intel secrets from
SGX enclaves via speculative execution. In Proceed-
ings of the 4th IEEE European Symposium on Security
and Privacy, Stockholm, Sweden. IEEE.

Chen, G., Wang, W., Chen, T., Chen, S., Zhang, Y., Wang,
X., Lai, T.-H., and Lin, D. (2018). Racing in hyper-
space: Closing hyper-threading side channels on SGX
with contrived data races. In Proceedings of the 39th
IEEE Symposium on Security and Privacy, San Fran-
cisco, CA, USA. IEEE.

Clover, J. (2017). Hackers using icloud’s find my iphone
feature to remotely lock macs and demand ransom
payments.

Cox, J. (2016). Hackers stole account details for over 60
million dropbox users.

Crocker, P. and Querido, P. (2015). Two factor encryption
in cloud storage providers using hardware tokens. In
Proc. of the Globecom Workshops, San Diego, CA,
USA. IEEE.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

42



Cryptomator (2019). Cryptomator system architecture.
https://cryptomator.org/security/architecture.

Fruhwirth, C. (2011). LUKS on-disk format specification
version 1.2.3.

Gopinaath, C. and Kiruthika, C. (2017). A server side en-
cryption for cloud storage with federation sharing in
hybrid cloud environment. In Proceedings of the 7th
International Conference on Technical Advancements
in Computers and Communications, Melmaurvathur,
India. IEEE.

Hölzer, R. (2004). Cryptoloop HOWTO.
https://www.tldp.org/HOWTO/Cryptoloop-HOWTO.

Horalek, J. and Sobeslav, V. (2018). Analysis of the use of
system resources for cloud data security. In Proceed-
ings of the 15th International Conference on Mobile
Web and Intelligent Information Systems, Barcelona,
Spain. Springer.

Huang, K., Siegel, M., and Madnick, S. (2018). Systemat-
ically understanding the cyber attack business: A sur-
vey. ACM Computing Surveys, 51(4).

INTEL (2014). Intel Software Guard Extensions Program-
ming Reference.

INTEL (2016). Intel Software Guard Extensions Developer
Guide.

Intel (2016). Intel Software Guard Extensions SDK for
Linux OS Developer Reference. Intel Corporation.

Khraisat, A., Gondal, I., Vamplew, P., and Kamruzzaman, J.
(2019). Survey of intrusion detection systems: tech-
niques, datasets and challenges. Cybersecurity, 2.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas,
W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,
Schwarz, M., and Yarom, Y. (2019). Spectre attacks:
Exploiting speculative execution. In Proceedings of
the 40th IEEE Symposium on Security and Privacy,
San Francisco, CA, USA. IEEE.

Li, Y., Gai, K., Qiu, L., Qiu, M., and Zhao, H. (2017). In-
telligent cryptography approach for secure distributed
big data storage in cloud computing. Information Sci-
ences, 387.

McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V.,
Shafi, H., Shanbhogue, V., and Savagaonkar, U. R.
(2013). Innovative instructions and software model
for isolated execution. In Proceedings of the 2nd In-
ternational Workshop on Hardware and Architectural
Support for Security and Privacy, Tel-Aviv, Israel.
ACM.

Meijer, C. and van Gastel, B. (2019). Self-encrypting de-
ception: weaknesses in the encryption of solid state
drives (SSDs). In Proceedings of the 40th IEEE Sym-
posium on Security and Privacy, San Francisco, CA,
USA. IEEE.

Network Working Group (2000). PKCS #5: Password-
based cryptography specification version 2.0.

Onwujekwe, G., Thomas, M., and Osei-Bryson, K.-M.
(2019). Using robust data governance to mitigate the
impact of cybercrime. In Proceedings of the 3rd Inter-
national Conference on Information System and Data
Mining, Houston, TX, USA. ACM.

Pinto, S. and Santos, N. (2019). Demystifying ARM Trust-
Zone: A comprehensive survey. ACM Computing Sur-
veys, 51(6).

PwC (2016). Global economic crime survey 2016: Ad-
justing the lens on economic crime. Technical report,
PwC.

Richter, L., Götzfried, J., and Müller, T. (2016). Isolating
operating system components with Intel SGX. In Pro-
ceedings of the 1st Workshop on System Software for
Trusted Execution, Trento, Italy. ACM.

Shin, Y. and Kim, K. (2015). Differentially private client-
side data deduplication protocol for cloud storage ser-
vices. Security and Communication Networks, 8(12).

Singh, M., Singh, M., and Kaur, S. (2019). Issues and chal-
lenges in DNS based botnet detection: A survey. Com-
puters & Security, 86.

Ubuntu (2012). rsync.
https://help.ubuntu.com/community/rsync.

Valadares, D. C. G., da Silva, M. S. L., Brito, A. E. M.,
and Salvador, E. M. (2018). Achieving data dissem-
ination with security using FIWARE and Intel Soft-
ware Guard Extensions (SGX). In Proceedings of the
23th IEEE Symposium on Computers and Communi-
cations, Natal, RN, Brazil. IEEE.

Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bind-
schaedler, V., Tang, H., and Gunter, C. A. (2017).
Leaky cauldron on the dark land: Understanding
memory side-channel hazards in SGX. In Proceedings
of the 24th ACM SIGSAC Conference on Computer
and Communications Security, Dallas, TX, USA.
ACM.

Weafer, V. (2016). Report: 2017 threats prediction. Techni-
cal report, McAfee Labs.

Yan, H., Li, X., Wang, Y., and Jia, C. (2018). Centralized
duplicate removal video storage system with privacy
preservation in IoT. Sensors, 18(6).

Youn, T.-Y., Chang, K.-Y., Rhee, K.-H., and Shin, S. U.
(2018). Efficient client-side deduplication of en-
crypted data with public auditing in cloud storage.
IEEE Access, 6.

Yu, J. and Wang, H. (2017). Strong key-exposure resilient
auditing for secure cloud storage. IEEE Transactions
on Information Forensics and Security, 12(8).

Secure Cloud Storage with Client-side Encryption using a Trusted Execution Environment

43


