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Abstract: Effective medical tests are essential in supporting correct clinical decisions by medical doctors. But, have 
medical tests to be necessarily invasive and painful to be effective? During last decades, new developments 
of sensors and improvements of data analysis algorithms seem to paying the way to a (more or less near) 
future with completely non-invasive and not painful medical tests. This work aims to furnish a survey on what 
is going on within this frame, with an eye to new possibilities. 

1 INTRODUCTION 

Validated medical tests are essential for medical 
doctors’ decision-making processes effectiveness. 
Medical tests can be highly, moderately, minimally, 
or completely non-invasive. The invasiveness is due 
to instruments and energy that physically enter or 
interact with the patient’s body, and can be not 
painful, relatively painful (e.g. blood sample taking), 
painful (e.g. biopsy), and potentially dangerous (e.g. 
x-ray radiation exposure). 

Of course, ideally we look forward only to 
medical tests which are effective, non-invasive and 
not painful. In addition, the market demands also 
affordability, safety, in-vivo monitoring, etc. 
Answers can come from the rapid evolution of 
electronics and data processing. 

The electronics mainly rely on sensors (such as 
inertial measurement units, optical sensors, electronic 
nose, etc.), while data processing mainly rely on 
pattern recognition (such as Principal Components 
Analysis, Cluster Analysis, Support Vector Machine, 
Artificial Neural Networks, etc.). 

In this work, we aim at investigating the sensors 
in supporting completely non-invasive and not-
painful medical diagnosis and screening, underlining 
their advantages and their limits. Sensors can be of 
two main categories: body contact and body 
contactless ones. 
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2 CONTACT SENSORS 

Body contact sensors can be touch, clip, bandage, 
adhesive patch, tattoo, wearable or a mix of them, for 
a short-term or a long-term usage, and needle-free to 
avoid pain and discomfort. 

2.1 Touch, Clip, Bandage, Patch, 
Tattoo 

Let us start considering body contact sensors for 
diabetes, which represents a global challenge disease 
for more than 400 million people worldwide, and 
requires as-frequently-as possible checks of blood 
sugar levels. Current clinical/personal practice to 
measure glycaemia is mainly by the discomfort finger 
pricking. Conveniently, new non-invasive techniques 
are ongoing based on touch, patch and clip adopting 
solutions. An example comes from the DMT (by 
DiaMonTech, Germany), which detects glucose 
molecules by using a mid-infrared scanning of the 
interstitial skin fluids. The shoebox-sized version has 
the same accuracy as tests strips in preclinical tests, a 
pocket-sized version will be available at the end of 
2020, and a watch-like device will be presumably 
available in 2024. GlucoWise™ (by MediWise, UK), 
an under-developing non-invasive glucose monitor 
solution, is based on low-power high-frequency radio 
waves transmission through a thin body part (between 
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the thumb and forefinger, or earlobe). FreeStyle Libre 
(by Abbott Diabetes Care, UK) is a sensor patch 
useful to measures glucose levels in the interstitial 
fluid between the cells under the subject’s skin. 
GlucoTrack (by Integrity Applications, Israel) is a 
blood sugar level sensor used with an ear clip, based 
on a combination of ultrasonic, electromagnetic and 
thermal waves. 

Body contact-skin sensors can measure different 
bio-parameters, such as pressure, heart-pulse, 
respiration-quality, sweat and local body part 
temperature too. As an example, a touch-type system 
named SensoSCAN® (by Sensogram, USA) has a 
built-in alerting system triggering blood pressure, 
heart rate, and oxygen saturation. A Kapton-based 
flexible sensor can be stuck over the face skin for 
monitoring inhalations/exhalations moistures, aimed 
at evidencing breath anomalies (Caccami et al., 
2018). 

We can continuously measure pH-values from the 
sweat by a tattoo potentiometric sensor (Dang et al., 
2018), or sodium concentration by a sensor belt 
(Schazmann et al., 2010). Chloride amount measured 
by an adhesive patch sensor can lead to an early cystic 
fibrosis diagnosis (Gonzalo-Ruiz et al., 2009). 

New adhesive patches provide a continuous and 
point-to-point body temperature mapping by means 
of a radio-frequency identification (RFID) module, 
thanks to a loop antenna and a transponder that 
change their electromagnetic performance according 
to the local skin temperature (Miozzi et al., 2017). 

From an unusual point of view, we can consider 
the smartphone as a sensor, for touch and “wearable” 
passive health sensing (Cornet and  Holden, 2018). 
The digital phenotyping with the smartphone can be 
used, for instance, to define mental health behavioural 
patterns, which can be analysed with the purpose to 
enhancing behaviour and mental health (Onnela and 
Rauch, 2016). 

2.2 Wearables 

Wearable electronic sensors (wearables, hereafter) 
can include sensor(s) embedded in wristbands, 
headband/headwear, necklaces, gloves, rings and 
bracelets, chest belts, stretchable clothing, elastic 
bands, kneepads and socks, all complying with the 
natural gestures and motions of the wearer. 

Some well-known sensory wristbands, such as 
Fitbit Flex, Mi Band, Garmin Vivoactive, for 
instance, and are useful for activity recognition, step 
detection, and distance estimation. 

The sensory headwear (Piscitelli et al., 2019) can 
monitor neck motion handicaps and help in 
evaluating neck functionality rehabilitation. 

Equipped with sensors, the sensory glove can 
measure fingers’ movements (Saggio and Bizzarri, 
2014). The sensors can be of different types, 
including optical fibers (Wise et al., 1990), Hall-
effect based sensors (Portillo-Rodriguez et al., 2007), 
inertial measurement units (IMUs) (G. Saggio et al., 
1995) (Hsiao et al., 2015), piezoelectric (Cha et al., 
2017), stretch (Sbernini et al., 2016), and resistive 
flex sensors (Saggio et al., 2016). The sensory glove 
has been adopted for the analysis of hand tremor in 
Parkinson’s disease patients (Cavallo et al., 2013), for 
determining the fingers’ range-of-motion and the 
fingers’ deformity of arthritic patients (Condell et al., 
2011), for measuring handgrip capabilities (Grandez 
et al., 2010), and for assessing rehabilitation in 
surgery patients (O’Flynn et al., 2013). Moreover, the 
sensory glove has been useful in evaluating hand 
movement capabilities (Hsiao et al., 2015) (Saggio et 
al., 2015), finger muscle therapy effectiveness 
(Hidayat et al., 2015), functional recovery 
improvements after stroke (Merians et al., 2006), and 
hand rehabilitation after traumas (Hsiao et al., 2015). 

SensoRing® (by Sensogram, USA) is a ring with 
built-in biosensors and wireless connectivity, to 
measure (among others) blood pressure, heart rate, 
respiration rate, perfusion index, and oxygen 
saturation. 

The stretchable sensory clothing can non-
invasively measure the 3D trunk movements for 
biomedical applications (Saggio and Sbernini, 2011) 
with an accuracy of the order of one degree 
(Mokhlespour et al., 2017). 

The sensory elastic band system equipped with 
IMUs can be located in whichever human body 
segments. This is to evaluate postural deficit in 
vestibular failure (Alessandrini et al., 2017), enhance 
body standing balance recovery (Costantini et al., 
2018), determine children’s motor impairments 
(Ricci et al., 2019a), assess dyskinesia (Ricci et al., 
2018) and transcranial direct current stimulation 
effectiveness (Ricci et al., 2019b) in Parkinson’s 
disease patients, and gait harmony during walking 
(Gnucci et al., 2018). 

The sensory kneepad (Saggio et al., 2014) 
furnishes useful data of knee motion capabilities to 
trace on-going patients’ motor rehabilitation. 

The Sensory Socks (by SensoRia, USA) can 
provide ongoing monitoring of plantar pressure in 
diabetic foot complications, so to early evidence 
diabetic foot ulcers, aiming at reducing part of the 
over 15 million of amputations in the world. 
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Gyrocardiography (GCG) is a new term coined 
for recordings of electrocardiography (ECG) based 
on heart motion assessment through a gyroscope. 
This allows obtaining reliable information on systolic 
and diastolic time intervals (Jafari et al., 2017). 

3 CONTACTLESS SENSORS 

As body contactless sensors, we refer to proximity 
sensors and interacting with body’s fluids sensors. 

3.1 Image Processing 

Image acquisition and processing has been allowing 
the development of non-contact and non-invasive 
devices, for the evaluation of different health statuses 
and the assessment of different clinical conditions. 

We can start mentioning a work devoted to 2D 
image acquisition for monitoring and evaluating 
sleeping behavioural patterns (Papakostas et al., 
2015). 

Imagine techniques, such as hyperspectral, plantar 
and photographic ones, and data analysis, allow 
detection of early developing feet and legs’ ulcers 
(Toledo et al., 2014). 

The image gathered by a webcam in front of a 
subject during typing can be useful to extract 
physiological signs of face-skin colour changes to 
determine the heart rate (Ariyanti et al., 2016). 

Heart and respiratory rates can be measured by 
time-lapse imaging acquired from a camera, and data 
processing of the images can result with rates with an 
accuracy higher than 90% (Takano and Ohta, 2007). 

Imaging methods were usefully exploited to 
evidence the melanin pigment concentration 
distribution map of a specific area of the subjects’ 
skin (Stamatas et al., 2004). Malignant melanoma can 
be detected by smartphone-captured images: Lubax 
(lubax.com) send pictures to a data lake for visual 
inspection of dermatologists; an automatic solution is 
based on algorithms for evaluation of colour variation 
and border irregularity (Thanh-Toan et al., 2014). 

Chronic fatigue syndrome can be revealed, 98% 
in accuracy, by means of hybrid facial features 
gathered from face pictures acquired by a camera 
(Chen et al., 2015). 

A non-invasive detection modality for breast 
tumour relies on thermography, able to reveal heat 
patterns and blood flow in tissues (Ng, 2009). 

Camera-smartphone based picture acquisitions 
can estimate wounds’ conditions considering sizes 
and tissue classifications. Apps related to the wound 
size are Wound Tracker, Wound Analysis, and 

WoundMAP. Apps related to the assessment of 
wound conditions are WoundMAP, MOWA, Wound 
Analyzer, and AWAMS. 

Elaboration of data gathered from digital photos 
were used to quantifying conjunctival pallor useful as 
screening test for anaemia (Collings et al., 2016) 

The image processing can be related not only to 
visible light-waves, but to microwaves too. So, a non-
invasive microwave head imaging system was 
adopted to detect and localize intracranial 
haemorrhage (Mobashsher et al., 2016). Microwave 
Doppler radar images were useful for rapid detection 
of fall events, so to alarm for interventions (Mercuri 
et al., 2013). 

3.2 e-nose and e-tongue 

As bio-inspired sensors, the electronic nose (e-nose) 
and the electronic tongue (e-tongue) sense the aroma 
and the taste of different compounds. When those 
compounds are related to human, e-nose and e-tongue 
sensing combined with pattern recognition have been 
used to assess pathologies. 

Human skin emanations (odour, sweat) and 
excreted materials (breath, saliva, urine, seminal 
fluids, faeces), are the result of complex volatile 
organic compounds (VOCs), which offer unique 
insights into ongoing biochemical processes. VOCs 
can be successfully analysed through spectroscopy, 
chromatography and spectrometry, such as the gas 
chromatography-mass spectrometry (gold reference), 
the proton transfer reaction-mass spectrometry, the 
selected ion flow tube-mass spectrometry, the ion 
mobility spectrometry, and the laser spectrometry. 
Inconveniently, those techniques are quite expensive, 
time-consuming, cumbersome, and requires 
specialized personnel, so that cannot represent 
widespread procedures. Conversely, the e-nose joints 
the non-invasive approach to an easy handling, low-
cost, rapid and mass procedure, well suited for its 
high sensitivity, specificity, repeatability and 
reproducibility (Wojnowski et al., 2019). The term e-
nose, coined in 1994 (Gardner and Bartlett, 1994), 
refers to an array or a matrix of sensors, individually 
sensitive to different VOCs thus providing multiple 
detection, for a sort of “smell-signature”. The e-nose 
can be made using different approaches, surface 
acoustic wave (SAW) (Wang et al., 2008), chemi-
resistor (Peng et al., 2009), organically functionalized 
gold nanoparticles (GNPs) (Peng et al., 2010), and 
quartz microbalances (D’Amico et al., 2010), among 
others. Then, pattern recognition algorithms relate the 
“smell-signature” to a particular pathology.  

Are Sensors and Data Processing Paving the Way to Completely Non-invasive and Not-painful Medical Tests for Widespread Screening and
Diagnosis Purposes?

209



Some commercially available e-noses are (Fig. 1) 
the Cyranose® 320 (by Sensigent LLC, USA), the 
Aeonose™ (by The eNose Company, The 
Netherlands), the PEN (Portable Electronic Nose, by 
Airsense Analytics, Germany), the Lonestar VOC 
Analyzer (by Owlstone, UK), the zNose® (by 
Electronic Sensor Technology, USA). 

     
(a)        (b)               (c) 

Figure 1: (a) Cyranose® 320 by Sensigent LLC; (b) 
Aeonose™ by The eNose Company; (c) zNose by 
Electronic Sensor Technilogy Inc. Pictures are reprinted 
with kind permissions. 

The first work reporting breath analysis dates 
1972 by the double Nobel Prize winner Linus 
Pauling. Since then, the e-nose applied to the exhaled 
breath has been discriminating a number of 
pathologies. We can start mentioning the lung cancer, 
which causes more than 1 million deaths per year 
worldwide (Saalberg and Wolff, 2016), invasively 
revealed by bronchoscopy or by spectrometry, with 
the aforementioned drawbacks. The usage of the e-
nose allows discriminating 90% of patients from 
controls (Dragonieri et al., 2009), a classification 
accuracy as high as 80% (McWilliams et al., 2015), a 
91% of specificity, and a sensitivity up to 92.8% 
(D’Amico et al., 2010). Other e-nose applications 
about tumour revelations were breast cancer (Peng et 
al., 2010), skin cancer (Kwak et al., 2013), thyroid 
cancer (Guo et al., 2015), ovarian cancer (Amal et al., 
2015), head-and-neck cancer (Hakim et al., 2011), 
and bronchogenic carcinoma (Machado et al., 2005). 

Colorectal cancer is a leading cause of cancer 
death worldwide. Current gold standard test method 
is the colonoscopy, but it is time consuming, 
expensive and does not allow mass screening. 
Another method is the faecal immunochemical blood 
testing, but presents a high variation in sensitivity. 
The e-nose was successfully adopted to reveal VOC 
content of urine obtaining 78% of sensitivity 
(Westenbrink et al., 2015), and promising results are 
reported in a work reviewing analysis of VOC in the 
faecal headspace (Di Lena et al., 2016). In addition, 
e-nose has been successfully adopted for revealing 
fungal infections (Acharige et al., 2018), tuberculosis 
(Saktiawati et al., 2019), sclerosis multiplex (Ionescu 

et al., 2011), allergic rhinitis (Saidi et al., 2015), and 
wound odour quantification (Akhmetova et al., 2016). 

The e-tongue operates in liquid mediums to 
recognize a particular sample tasting it, similarly as it 
occurs for the human taste buds. The first work 
reporting a sensor matrix in liquid media dates 1985 
(Otto and Thomas, 1985). Currently, the e-tongue is 
mainly used in food industry for determining types, 
quality, and freshness of olive, apples, spices, sauces, 
honeys, water, wine, vinegar, tea, milk, oil, etc. More 
rarely, the e-tongue is used for healthcare, for 
obtaining the “taste fingerprint” of urine, or for 
assessing prostate cancer “sensing” prostatic or 
seminal fluids (Bax et al., 2018), or for the evaluation 
of saliva metabolome for providing a sort of measure 
of stress and anxiety (Fitzgerald and Fenniri, 2017). 

3.3 Voice 

It has been largely demonstrated that, if we purge the 
voice sound from emotions, confidence and feelings, 
what we get are parameters linked to the health 
conditions of the speaker. The voice production 
depends on four main parts: the lungs that provide air 
with energy content; the vocal chords that produce 
sound vibrating accordingly to the amount of air; the 
cavities (mouth, nose, chest, ear) that produce 
resonations; the articulators (lips, tongue, teeth) that 
shape the sound. In turn, these parts depend on the 
brain that coordinates. When one or more of these 
parts are subjected to alterations or infections, the 
resulting disease affects the voice production system 
to a significant and measurable extent. 

We can report how voice features were correlated 
to upper respiratory diseases (Bothe, 2017), lung 
tuberculosis (Saggio and Bothe, 2016) and chronic 
obstructive pulmonary disease (Mohamed et al., 
2014). Benign thyroid disease (Pernambuco et al., 
2015) and level of asthma (Walia and Sharma, 2016) 
were found to be related to some voice parameters.  

For brain related diseases, data analysis of the 
voice can lead to around 90% in accuracy for 
Parkinson’s disease in early stages (Bocklet et al., 
2011) and in overt conditions too (Jeancolas et al., 
2017). Vocal parameters can be translated into 
markers of Alzheimer's disease (Meilan et al., 2018), 
and bipolar disease (Guidi et al., 2015). 

Some voice features were related to diabetes 
(Chitkara and Sharma, 2016), and some others 
exceeded 97% of correlation with blood pressure 
values (Sakai, 2015). From speech analysis, it was 
observed the presence and severity of amyotrophic 
lateral sclerosis with an accuracy of 92% in (Suhas et 
al., 2019). By reflecting the loss of articulatory 
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processing, children with Down syndrome speak with 
less distinction between vowels with respect to 
individuals without (Moura et al., 2008). The work 
(Alves et al, 2019) reviews at which extent the 
dehydration conditions affect the voice performances. 

According to (Manfredi et al., 2017), in a near 
future, the possibilities of early detection of an 
amount of pathologies via voice analysis can be 
obtained directly via smartphones’ microphones, 
leading to new tele-health-check possibilities. 

Currently, Sonde Health Inc. (sondehealth.com) is 
developing a voice-based technology platform to 
monitoring and diagnosing physical health; 
BeyondVerbal (beyondverbal.com) is developing 
voice-enabled artificial intelligence to create vocal 
biomarkers for healthcare screening; VoiceWise 
(voicewise.eu) processes voice samples by means of 
machine learning algorithms for medical diagnosis 
and health screening purposes. 

Apart from the voice, the “sound” of the breath 
furnishes elements too. SpiroSmart is a smartphone 
app by which the user has to forceful exhaling the 
breath in the direction of the phone’s microphone. 
Audio data are analysed to calculate the exhaled flow 
rate, with a mean error of 5.1% in comparison to 
measure of lung functionality (Larson et al., 2013). 

4 CONCLUSIONS 

Data gathered by body contact and body contactless 
sensors represent a more and more evolving tool for 
non-invasive and not-painful medical tests. Data 
analysis by means of machine learning algorithms 
furnish a new paradigm for personalized medicine. 

Since it is not possible to represent all the 
pathologies and because more and more possibilities 
enhance rapidly, this work cannot represent the entire 
picture of the status-of-art of the completely non-
invasive medical tests, however a meaningful survey 
was provided underlying the profitable aspects. 

Nevertheless, the advantages have to be balanced 
by issues due to confounding factors due to different 
physiological aspects such as gender, age-range, 
ethnicity, smoke-habits, diet, motor exercises, sleep 
habits, taking medication, comorbidities, pregnancy, 
etc. Considering the e-nose applications, for instance, 
men have higher isoprene levels in breath with 
respect to women (Lechner et al., 2006). Volatile 
alkanes contents of the human breath (Phillips et al., 
2000) and lung cancer breath-print (Bikov et al., 
2014) differ for different age, as well as exhaled air 
of healthy subjects with asthma depends on age 
(Dragonieri et al., 2007). A gluten-free diet changes 

the values of 12 volatile compounds excreted in 
exhaled breath (Baranska et al., 2013). The exhaled 
pentane levels differs after sleep in patients with 
obstructive sleep apnoea (Olopade et al., 1997). The 
tobacco smoking alters the breath VOC profile 
(Gordon et al., 2002). Physiological hormonal 
changes due to the ovarian cycle can alter the exhaled 
VOCs (Dragonieri et al., 2018). 

All considered, to date, data acquisition by 
sensors and data analysis by machine learning 
algorithms represent a new frontier for non-invasive 
not-painful but accurate disease screening and 
diagnosis, with all the credentials to become routinely 
applied in medical practice. 
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