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Abstract: While meeting frequently changing market needs, manufacturers are faced with the challenge of planning 
production schedules that achieve high overall performance of the factory and fulfil the high fill rate constraint 
on shop floors. Considerable skill is required to perform the onerous task of formulating a dispatching rule 
that achieves both goals simultaneously. To create a useful rule independent of human expertise, deep 
reinforcement learning based on deep neural networks (DNN) can be employed. However, conventional 
DNNs cannot learn the important features needed for meeting both requirements because they are unable to 
process qualitative information included in these schedules, such as the order of operations in each resource 
and correspondence between allocated operations and resources. In this paper, we propose a new DNN model 
that can extract features from both numeric and nonnumeric information using a graph convolutional neural 
network (GCNN). This is done by applying schedules as directed graphs, where numeric and nonnumeric 
information are represented as attributes of nodes and directed edges, respectively. The GCNN transforms 
both types of information into the feature values by transmitting and convoluting the attributes of each 
component on a directed graph. Our investigation shows that the proposed model outperforms the 
conventional one. 

1 INTRODUCTION 

In recent years, consumers’ needs have diversified, 
while the life cycles of products have shortened. 
Under these conditions, there are two issues in 
manufacturing industries for large-item small-volume 
production: First, the issues for managers to shorten 
the lead time (LT) from material input to product 
shipment and strengthen the ability to respond to 
short delivery time. Second, the issue for shop floors 
to perform efficiently subject to individual constraints 
for each product and production line. It is important 
for manufacturing industries to construct a production 
schedule that satisfies both managers and shop floors. 

To make a production schedule, we use a general 
dispatching method (Pinedo, 2012), which makes 
schedules by successively allocating operations to 
resources based on dispatching rules. A dispatching 
rule is a criterion for selecting a remaining operation 
and a capable resource. Due to the simplicity of the 
existing rules, scheduling staff modify them so that a 
schedule satisfies both managers and shop floors, e.g., 
by combining multiple rules and/or adding individual 
constraints to the rules. However, to construct a good 

rule, we need trial and error based on experiences and 
expertise of scheduling staff. Therefore, this work can 
be a significant burden. Nowadays, due to labor 
shortage, especially in Japan, it is difficult to transfer 
the expertise to new staff. Thus, to reduce work load, 
we need a technology that automatically constructs a 
dispatching rule. 

For the automatic construction of a dispatching 
rule, Riedmiller et al. (1999) applied deep 
reinforcement learning (DRL) to production 
scheduling. DRL is a machine learning method that 
learns a policy that selects an action for each state 
through trial and error. In the application of DRL to 
production scheduling, we make many schedules by 
using the learnt rule at that time and update the rule 
to select a good allocation. 

In DRL, a dispatching rule is implemented as a 
DNN. The DNN receives a state of schedule-making 
and computes the probabilistic values for candidates 
of allocations. To construct a good schedule that 
satisfies both managers and shop floors, it is 
necessary for the DNN to extract two types of 
information: the factory’s overall performance and 
the fill rate constraint. However, the conventional 
DNN does not extract the latter, e.g., the resource 
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each operation is allocated to and the kind of 
operations allocated before or after. Therefore, a 
conventional DNN cannot be used to make a schedule 
that satisfies both managers and shop floors. 

In this paper, we propose a new DNN model that 
can deal with both types of information. This model 
is based on the following two concepts: 1) a schedule 
can be represented as a graph structure and 2) a 
feature value of each node on the graph can be 
extracted by GCN. 

The remainder of this paper is structured as 
follows. In section 2, we define the problem and 
production scheduling. In section 3, we explain the 
method of application of DRL to production 
scheduling and present the gaps in previous studies. 
In section 4, we propose a method to overcome the 
issue. In section 5 and 6, we present the experimental 
setup and the results. In section 7, we present the 
conclusion and future directions of research. 

2 PRODUCTION SCHEDULING 

In this paper, we deal with a job shop scheduling 
problem (JSP) (Pinedo, 2012) that models large-item 
small-volume production and add a practical 
extension to it. In a practical setting of the 
manufacturing industries, there are master data that 
define what can be produced and the orders are 
selected from the master data accordingly. To follow 
this setting, we define master data (mst for short) and 
artificially create a problem from it: transaction data 
(trn for short). 

Master data is given as sets of ݊ items [itm1, …, 
itmn] (itm for short) and ݉ resources [rsc1, …, rscm] 
(rsc for short). An item consists of ݉ processes [prci1, 
…, prcim] (prc for short). A process requires 
processing time and one capable resource. 
Transaction data is given as a set of ݊ jobs [job1, …, 
jobn]. A job is related to an item and should perform 
all processes of the item. We call these processes 
operations (opr for short). An operation should be 
allocated to a capable resource of a related process 
and follow a sequence of the process. 

Algorithm 1: Deep Reinforcement Learning. 

1. create ୲ܰ୰ୟ୧୬ training problems 
2. for ݐ୲୰ୟ୧୬ 	ൌ 	1,⋯ , ୲ܶ୰ୟ୧୬: 
3.     for each training problem: 
4.         make ୉ܰୋ schedules by EG with ߝ 
5.         select the best schedule 
6.     update the DNN with selected schedules 
ߝ     .7 ← ߝ െ Δߝ 

3 DEEP REINFORCEMENT 
LEARNING 

3.1 Application to Scheduling 

To generate a dispatching rule automatically, 
Riedmiller et al. (1999) proposed an approach using 
DRL. DRL applied to production scheduling 
generates a dispatching rule through trials and errors 
by repeatedly 1) making many schedules using the 
learnt rule at that time to obtain better supervised 
allocations and 2) updating the rules to select the 
supervised allocations. 

In DRL, we make a schedule by successively 
allocating operations like in a dispatching method, 
but it differs from a dispatching method in that we use 
a DNN as a dispatching rule. A DNN receives a state 
of schedule-making and computes a policy, which is 
a set of probabilistic values for candidates of 
allocations. We select an allocation from the 
candidates that maximize the probabilistic value. A 
good schedule can be made by increasing the 
probabilistic value of a good allocation. 

We show a general DRL algorithm in Algorithm 
1. To construct a dispatching rule that makes a good 
schedule for several problems, we prepare ୲ܰ୰ୟ୧୬ 
training problems from the master data. The 
algorithm consists of two phases and repeat it ୲ܶ୰ୟ୧୬ 
times. 

In the first phase, we make ୉ܰୋ  schedules for 
each training problem to obtain better supervised 
allocations by using an epsilon-greedy method (EG). 
For each scheduling step, we select an allocation by 
using the learned DNN or randomly with a 
probability 1 െ ߝ  or ߝ . The search ratio ߝ  is 
initialized to ߝ଴ and updated to ߝ െ Δߝ at the end of a 
training step. 

In the second phase, we update the DNN so as to 
increase the probabilistic values of supervised 
allocations obtained in the previous phase. To reduce 
computational time and learn the best allocations, we 
select one schedule for each training problem that 
maximizes the value of a schedule. For each selected 
schedule and each scheduling step, we evaluate an 
error between an output of the DNN and a supervised 
allocation by a mean-squared error criterion (MSE) 
with one-hot representation and minimize them by 
Adam (Kingma et al., 2014) with default hyper 
parameters. (Although it is better to use a cross-
entropy error criterion for the one-hot representation 
in general, we extracted better ability of the DNN in 
the MSE.) 
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3.2 Issues in Previous Studies 

As mentioned in section 1, planning production 
schedules to satisfy the requirements of both factory 
management and operations is an urgent problem for 
manufacturers. When making schedules, 
manufacturers have to simultaneously consider the 
factory’s overall performance and the fill rate 
constraint on shop floors. 

In the DRL framework, we construct a reward 
function based on the information to learn a better 
policy of allocating operations by repeatedly making 
trial production schedules and evaluating them. As 
such, it is necessary for a DNN to extract feature 
values that include both the information from the trial 
schedules satisfactorily. In general, it is easy to create 
a DNN model that deals with feature values of the 
factory’s overall performance as they are usually 
presented as numeric indices such as LT and 
availability. On the other hand, conventional DNN 
models, which are used in previous studies 
(Riedmiller et al., 1999; Zhang et al., 1995; Gabel et 
al., 2008), cannot extract feature values characterized 
by the satisfaction of the fill rate constraint. This is 
because such feature values are comprised of 
nonnumeric information about the schedules such as 
the resource each operation is allocated to and the 
kind of operations allocated before or after. It is 
difficult for a DNN model to accept the 
abovementioned nonnumeric information as input 
and transform them into feature values. 

For example, Riedmiller et al. (1999) used only 
numeric information to extract feature values of 
schedules, e.g., tightness of a job with respect to its 
due date, an estimated tardiness, and an average slack. 
Thus, it is very hard to address the issues of 
production scheduling by employing the previous 
methods, which cannot deal with feature values of 
nonnumeric information in trial schedules. Therefore, 
we have to overcome this limitation of the 
conventional DNN model to learn a better policy of 
allocating operations for manufacturers so that 
production schedules contribute towards both 
satisfactory factory performance and higher fill rate 
constraint. 

4 PROPOSED METHOD 

To recognize both numeric and nonnumeric 
information by a DNN, we propose a new DNN 
model. Our approach is based on two concepts: 1) a 
schedule can be represented as a graph structure, 2) a 
feature value of each node on the graph can be 

extracted by GCN. In the graph structure of a 
schedule, we can represent numeric information as 
attribute values on nodes, and nonnumeric 
information as edges. In the GCNN, we can extract 
feature values on nodes from its adjacent relations 
defined by edges through graph convolutional 
operations. Therefore, we can extract feature values 
of nodes with respect to both numeric and 
nonnumeric information. 

In section 4.1 and 4.2, we elaborate on the two 
basic concepts, respectively. In section 4.3, we add an 
enhancement that reduces the computational time of 
the proposed DNN. In section 4.4, we explain how to 
make a schedule by using the proposed DNN. 

4.1 Schedule Graph 

A graph structure is a data structure that consists of 
sets of nodes and edges. The relation of two nodes can 
be represented by an edge in a graph structure. 

In a schedule graph, a node is used to represent a 
component of a schedule as shown in Table 1. A 
“block” column is used in section 4.3. We divide the 
node type of operation into “allocated operation” and 
“unallocated operation” so that a DNN can recognize 
the difference between the two. 

Numeric information is represented as attribute 
values on nodes, e.g., an ability on rsc, processing 
time on prc, and working period on a/uopr. An ability 
attribute on the resource node is used to represent a 
difference among resources with the same function. 
For unallocated operations, we use the earliest start 
and end time that can be allocated because we cannot 
use a determined value. 

Nonnumeric information is represented as 
directed edges, as shown in Table 2, e.g., process 
sequence (process) is from/to prc, capable resource of 
a process is an edge from prc to rsc, and allocated 
resource of an operation is an edge from aopr to rsc.  

There are redundant edges as well: process 
sequence edge (operation) and capable resource edge 
(operation). They are not necessary for defining the 
state of a schedule because using a process sequence 
edge (process) and a capable resource edge (process) 
is sufficient. As such, we use them to improve the 
efficiency of a GCN by connecting nodes that are not 
connected with a minimum element. 

We show an example of a schedule graph in 
Figure 1. The graph on the right represents the state 
of a schedule, which is depicted on the left. Rsc (X, 
Y, and Z), prc (A ~ G), aopr (1, 2, 4, and 6), and uopr 
(3, 5 and 7) are defined as nodes. For simplicity, we 
do not show a capable resource edge (operation). For 
example, process sequence edge from prc A to prc  B  
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Table 1: Node types of schedule graph. 

Name Short Block Attributes 

Resource rsc mst Ability 
Process prc mst Processing time 

Unallocated 
Operation 

uopr trn 
Start date and time, 
End date and time, 

Working time 

Allocated 
Operation 

aopr sch 
Start date and time, 
End date and time, 

Working time 

Table 2: Directed edge types of schedule graph. 

Name Block From To 

Process sequence 
(Process) 

mst prc prc 

Capable resource 
(Process) 

mst prc rsc 

Operation process trn/sch u/aopr prc 
Process sequence 

(Operation) 
trn/sch u/aopr u/aopr 

Capable resource 
(Operation) 

trn/sch u/aopr rsc 

Operation sequence sch aopr aopr 
Allocated resource sch aopr rsc 
 

 

Figure 1: Example of a schedule graph. 

implies that prc A is a front process of prc B and prc 
B should be performed after prc A; allocated resource 
edge from aopr 1 to rsc X implies that aopr 1 is 
allocated to rsc X; and operation sequence edge from 
aopr 1 to aopr 6 implies that aopr 6 is to be processed 
after aopr 1 in the same resource. 

This graph needs to be updated when a new 
operation is allocated. For example, we assume that 
uopr 3 is to be allocated to rsc Z after aopr 4. At first, 
node and edge types related to uopr 3 are changed 
from uopr to aopr. Next, the following edges are 
added to the graph: an operation sequence edge from 
aopr 4 to aopr 3 and an allocated resource edge from 
aopr 3 to rsc Z.  

4.2 Graph Convolution 

A GCNN is a form of DNN architecture that is 
developed to work on a graph structure (Gilmer et al., 
2017). We define feature values on the nodes of a 

GCNN and update them by integrating them with 
their adjacent nodes. Through these processes, the 
feature values evolve into distinct values that contain 
information of their adjacent relations. We can obtain 
feature values of schedule components with both 
numeric and nonnumeric information and compute a 
policy with respect to them in a GCNN applied to a 
schedule graph. 

Our GCNN consists of three layers: 1) an input 
layer, 2) a convolution layer, and 3) an output layer. 
All equations are shown from (1) ~ (10) below. ሾ ሿ 
implies concatenation and ⋅ implies inner product. ݐ 
and ݏ imply a number of computations. To recognize 
the differences in nodes and edges, we use different 
parameters in ࡭, ,ࢇ ,࡮ ,࢈ ,࡯ ,ࢉ GRU, LSTM  for each 
index ݅, ݆, ݁, ,ݐ  and in/out types of directed edges. All ݏ
parameters are initialized by the Xavier’s method 
(Glorot et al., 2010). 

1) Input layer  

௜ࢎ
଴ ൌ ௜࡭௜࢞ ൅ ௜        (1)ࢇ

2) Convolution layer  

௜,௝࢓
௧ ሺ݁ሻ ൌ ௜ࢎൣ

௧ିଵ, ௝ࢎ
௧ିଵ൧࡮௜,௝

௧ ሺ݁ሻ ൅ ௜,௝࢈
௧ ሺ݁ሻ      (2)

௜࢓
௧ሺ݁ሻ ൌ ෍ ௜,௝࢓

௧ ሺ݁ሻ
௝∈୅ୢ୨ሺ௜,௘ሻ

 (3)

௜ࢎ
௧ ൌ GRU௜

௧൫ൣ࢓௜
௧ሺ݁ଵሻ,⋯ ௜࢓,

௧൫݁#ୣୢ୥ୣ൯൧, ௜ࢎ
௧ିଵ൯   (4)

3) Output layer  

௞ࢎ ൌ ቂࢎ௜
ேౙ౤౬, ௝ࢎ

ேౙ౤౬, ௕ࢎ
ேౙ౤౬, ௔ࢎ

ேౙ౤౬ቃ ௜,௝࡯ ൅ ௜,௝     (5)ࢉ

,଴࢘ ௞ࢗ
଴, ௞ࢉ

଴ ൌ ૙ (6)

݁௞
௦ ൌ ௞ࢎ ⋅ ௞ࢗ

௦  (7)

௦࢖ ൌ Softmaxሺሾ݁ଵ
௦,⋯ , ݁#ୡ୬ୢ

௦ ሿሻ  (8)

ୱ࢘ ൌ ෍ ௞݌
௦ࢎ௞

௞∈େ୬ୢ

  (9)

௞ࢗ
௦ , ௞ࢉ

௦ ൌ LSTM௜,௝
௦ ൫࢘௦, ௞ࢗ

௦ିଵ, ௞ࢉ
௦ିଵ൯   (10)

In input layer (1), we initialize a feature value ࢎ௜
଴ 

of node ݅  by an affine transformation from an 
attribute value ࢞௜ . Although the dimensions of the 
attribute values differ from each other, the 
dimensions of the feature values are unified to ݀. 

In a convolution layer, we integrate adjacent 
relations to a feature value. This layer consists of two 
functions: 2-1) a message function and 2-2) an update 
function. In a message function, for node ݅  and its 

X

Y

Z

1

2

6

4 7
3

5

time 0 1 2 3 4

X Y Z

A B C D E F G

1 2 3 4 5 6 7
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adjacent node ݆ connected by edge type ݁, we compute 
a message ࢓௜,௝

௧ ሺ݁ሻ from node ݆ to node ݅ through edge 
type ݁  in (2) and aggregate the messages that are 
categorized in the same edge type ݁ to one message 
௜࢓

௧ሺ݁ሻ in (3). Adjሺ݅, ݁ሻ denotes a set of adjacent nodes 
to node ݅ connected by edge type ݁. In update function 
(4), we reflect aggregated messages ࢓௜

௧ሺ݁ሻ  on a 
feature value ࢎ௜

௧ of node ݅ using a gated recurrent unit 
GRU௜

௧ (Cho et al., 2014). #edge denotes the number of 
edge types that are connected to node ݅. 

Nonnumeric information, represented as adjacent 
relations, is transformed to computations such that 
each node receives messages from its adjacent nodes 
only. Moreover, by repeating this layer ୡܶ୬୴ times, the 
entire information of the graph is reflected through 
feature values because feature values of indirectly 
connected nodes are propagated to each node. 

We compute a policy in an output layer from 
feature values computed in a convolution layer. At first, 
we compute a feature value of a candidate of an 
allocation ݇ in (5). We use several feature values to 
represent a candidate with rich information: uopr ݅ to 
be allocated, rsc ݆ where uopr ݅ is to be allocated, aopr 
ܾ and ܽ that are processed before/after uopr ݅.  

Next, we compute a policy from a set of feature 
values of candidates by Set2Set architecture (Vinyals 
et al., 2015) in (6)-(10). Set2Set architecture is 
designed to work on a set of vectors and computes a 
feature value of the set itself. We compute a weight ݌௞

௦ 
for each candidate ݇  of the set in (7) and (8) and 
summarize them in (9) as a feature value ࢘ୱ of the set. 
#cnd  and Cnd  denotes a number and a set of 
candidates, respectively. A feature value ࢘ୱ is used to 
update hidden values ࢗ௞

௦ , ௞ࢉ
௦  of candidate ݇ by a long 

short-term memory LSTM௜,௝
௦  (Hochreiter et al., 1997) 

in (10). By repeating (7)-(10) ୭ܶ୳୲	 times, complete 
information of all candidates are reflected on feature 
value ࢘ୱ  and weight ࢖௦ . In this paper, we use the 
weight ࢖௦ as a policy. 

As mentioned above, by using integrated feature 
values of both complete and detailed information, we 
can compute a policy with respect to the requirements 
of both managers and shop floors. 

4.3 Speed-up of GCNN Computation 

In the original concept of a GCNN in section 4.2, we 
re-make the feature values of all the nodes and 
convolute them using all the edges every time when 
selecting an allocation. However, there are minute 
changes between a schedule graph and its updated 
version, e.g., an operation sequence edge from aopr 4 
to aopr 3 and an allocated resource edge from aopr 3 to 

rsc Z in the example in section 4.1. Assuming that there 
are few differences in the feature values of nodes with 
no change, almost all nodes have only a few 
differences in their feature values. 

Therefore, to reduce computational time, we re-use 
feature values computed in previous scheduling steps 
and update them for nodes with changes only: dopr 2, 
3, 4, prc C, and rsc Z in the example of section 4.1. We 
call this partial convolution. To construct a partial 
convolution, we reference a GCNN that can deal with 
a dynamic change in graph structure (Manessi et al., 
2020; Ma et al., 2018). 

An overview of a GCNN with partial convolution 
is shown in Figure 2. We prepare three blocks of 
GCNNs: 1) a master block, 2) a transaction block, and 
3) a scheduling block, by combining layers of the 
original GCN. A scheduling block has a main function 
that updates feature values on nodes with changes only 
and is executed every time when selecting an allocation. 
We use the master and transaction blocks to extract 
feature values before we start scheduling. 

 

Figure 2: Overview of graph convolutional neural networks 
with partially convolution. 

Algorithm 2: Scheduling with partial convolution. 

1. execute master block 
2. execute transaction block 
3. initialize schedule 
4. while schedule is not completed: 
5.     compute a policy by output layer  
6.     select an allocation by EG or top-k 
7.     update the schedule 
8.     execute scheduling block 
9. return schedule 

We show a procedure of scheduling with partial 
convolution in Algorithm 2. At first, we initialize 
feature values of nodes categorized to a master block 
by an input layer and convolute ୡܰ୬୴

୫ୱ୲ times with nodes 
and edges categorized under a master block by a 
convolution layer. Then, we initialize feature values on 
nodes categorized under transaction block by an input 
layer and convolute ୡܰ୬୴

୲୰୬ times with nodes and edges 
categorized under both master and transaction blocks. 
Thereafter, we can start scheduling. When we select an 
allocation, we compute a policy by an output layer with 
the feature values at that time. After an operation is 

mst

trn/sch

࢞ inputࢎ conv ࢎ

࢞ inputࢎ

conv

ࢎ

ࢎ

output conv࢖

ࢎ

ࢎ

1) master block

2) transaction block

3) scheduling block
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allocated, we update feature values of nodes with the 
changes by a scheduling block ୡܰ୬୴

ୱୡ୦ times.  

4.4 How to Make a Schedule with DNN 

Our DNN acquired a rich representation power and it 
can memorize a lot of supervised allocations. 
However, it is hard for the DNN to memorize all of 
them. There are always some mistakes in allocations 
in scheduling with a DNN. 

Moreover, we make a schedule by successively 
selecting allocations and do not change a previously 
decided allocation. Therefore, there is some 
possibility that mistakes at the opening step of 
scheduling leads to the creation of a bad schedule. 

To overcome these mistakes made by the DNN, 
we make ୡܰ୬ୢ schedules as candidates and select one 
that maximizes the value of a schedule. When we 
make candidates of schedules, we use candidates of 
allocations in only top-k of the probabilistic values 
and randomly select one from among them. 

5 EXPERIMENT 

We conduct an experiment to evaluate whether the 
value of a schedule made by the proposed method for 
problems not used in training gets better with the 
number of times of training. 

We use a benchmark problem swv11 (50 items 
and 10 resources) in OR-Library (Beasley, 1990-
2018). The abilities of resources are unified to 1.0. To 
create an artificial problem, we pick up 50 items 
randomly from the master data by allowing 
duplication. Therefore, each problem has 500 
operations. 

We evaluate a completed schedule by a makespan 
that is related to shortening LT from the perspective 
of managers and a degree of satisfaction of basic 
constraints of JSP from the perspective of shop floors. 
A makespan is a time span from start time to end time 
in which all operations are performed. In this paper, 
to simplify the problem, we assume that all candidates 
of allocations satisfy the basic constraints. 

We compare the proposed method (conv.) with 
the one without convolution (no conv.). The 
comparison uses only numeric information (attribute 
values) and leaves out nonnumeric information 
(adjacent relations). This enables us to evaluate 
whether we need to use nonnumeric information to 
construct a good dispatching rule. Moreover, we use 
a dispatching method that is used for large-scale 
problems. A dispatching rule is the earliest start time 

rule as this rule makes the best schedule in a 
preliminary experiment. 

Table 3: Setups of hyper parameters. 

୲ܰୣୱ୲ 128 ୲ܶ୰ୟ୧୬ 5 

୲ܰ୰ୟ୧୬ 128 ୡܶ୬୴
୫ୱ୲ 16 / 0 

୉ܰୋ 128 ୡܶ୬୴
୲୰୬ 16 / 0 

ୡܰ୬ୢ 128 ୡܶ୬୴
ୱୡ୦ 1 / 0 

 ଴ 1.0 ୭ܶ୳୲ 8ߝ
Δ8 ݀ 0.1 ߝ 

top-k 2 Epoch 500 
  Mini-batch 4,000 

Table 4: Experimental conditions. 

OS Windows 10 Pro 

CPU 
Intel Core i7-6700HQ, 

2.60 GHz 
Memory size 16.0 GB 
Core number 8 

DNN framework PyTorch (1.0.1) 
 

 
Figure 3: Result of experiment. 

The procedure of the experiment is as follows. 
First, we prepare ୲ܰୣୱ୲ test problems. Next, we train a 
DNN with the algorithm 1 with the training problems. 
After step 6, we make a schedule for each test 
problem using the method in section 4.4 and evaluate 
their makespan. The setups of hyper parameters and 
experimental conditions are shown in Table 3 and 
Table 4, respectively. 

6 RESULT 

The results of the experiment are depicted in Figure 3. 
We use the ratio of makespan to dispatching method as 
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each problem has a different makespan. The mean 
values and standard deviations of ୡܰ୬ୢ schedules are 
presented in the figure 3. It takes about five weeks for 
complete training and about 100 seconds to make ୡܰ୬ୢ 
candidates of schedules. 

The values derived by the proposed method 
with/without convolution are better than a dispatching 
method, even without training (number of times of 
training is 0). Thus, it is likely that they find a good 
schedule by making a lot of candidates, which is not an 
effect of convolutions. 

A result worth noting is that a value given by the 
proposed method with convolutions improves with the 
number of times of training and outperforms the one 
without convolutions, which do not give the same 
results. With number of times of training at ୲ܶ୰ୟ୧୬, we 
achieve an 87 %, 95 %, or 97 % reduction in makespan 
as compared to a dispatching method, where number 
of times of training is 0, and the proposed method 
without convolution. These differences are significant 
as per the t-test, which gives ߙ ൌ 0.05. Therefore, we 
consider that the proposed method can select an 
appropriate allocation for each state of schedule-
making because the DNN can recognize the state of 
making the schedule in detail as a result of 
convolutions. 

7 CONCLUSION 

We study the DRL method for learning dispatching 
rules automatically. Our contribution to the existing 
literature is a new DNN model that can recognize both 
numeric and nonnumeric information of schedule-
making by applying graph structure of a schedule and 
a GCNN. Moreover, we reduce computational time of 
the GCNN by applying a partial convolution. After 
training a DNN using the DRL algorithm, we observed 
that the value of a schedule made by the proposed 
method for problems not used in training improves 
with the number of times of training. Therefore, we can 
automatically construct a good dispatching rule and 
expect to reduce the work load for scheduling staff. 

However, this paper shows that the proposed 
method works on a restricted setting only. To use this 
method in a practical scenario, additional experiments 
and enhancements need to be conducted. First, the 
proposed method should work on problems with a 
scale of 1,000 operations. Second, the proposed 
method should make a schedule subject to individual 
constraints. 
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