
Neural Network Security: Hiding CNN Parameters with Guided
Grad-CAM

Linda Guiga1,∗ and A. W. Roscoe2

1IDEMIA and Télécom ParisTech, Paris, France
2Department of Computer Science, University of Oxford, Oxford, U.K.

Keywords: CNN, Security, Reverse-engineering, Grad-CAM, Parameter Protection.

Abstract: Nowadays, machine learning is prominent in most research fields. Neural Networks (NNs) are considered
to be the most efficient and popular architecture nowadays. Among NNs, Convolutional Neural Networks
(CNNs) are the most popular algorithms for image processing and image recognition. They are therefore
widely used in the industry, for instance for facial recognition software. However, they are targeted by several
reverse-engineering attacks on embedded systems. These attacks can potentially find the architecture and
parameters of the trained neural networks, which might be considered Intellectual Property (IP). This paper
introduces a method to protect a CNN’s parameters against one of these attacks (Tramèr et al., 2016). For
this, the victim model’s first step consists in adding noise to the input image so as to prevent the attacker from
correctly reverse-engineering the weights

1 INTRODUCTION

Deep learning is ever more important, touching most
research areas. Among deep learning models, Con-
volutional Neural Networks (CNNs) are often used
when it comes to image processing and classification
(Krizhevsky et al., 2012; Coskun et al., 2017). For
this reason, CNNs can be found on many embedded
systems from our daily lives - such as smartphones.
Face ID, the face recognition feature on the IPhone
X, is an example (Inc., 2017).

Because of the efficiency of CNNs in image clas-
sification and processing, industry makes much use
of them. This entails two security problems: it is nec-
essary to protect the companies’ intellectual property
(IP) and to ensure the output has not been tampered
with. Indeed, since finding the optimal architecture
and parameters for a CNN require much time and
computational power, the model used is part of the
company’s IP and should be kept safe from potential
malicious competitors. Second, for some applications
- such as face recognition - it must be infeasible to find
an input on which the output is incorrect. Learning
the parameters of the embedded CNN can turn such a
problem from infeasible to feasible.

In the case of face recognition, for instance, an

∗ Work conducted at the University of Oxford.

attacker who can manipulate the output of a model
could impersonate someone and steal, for instance,
the data on a mobile phone (Sharif et al., 2016; Deb
et al., 2019; Dong et al., 2019).

Unfortunately, CNNs are the target to many differ-
ent attacks. The most common attacks are adversarial
ones. The goal of an adversarial attack is to change
the model’s output for some selected inputs, without
changing the predictions for the other inputs. This is
the basis of the impersonation attacks in (Dong et al.,
2019). Since adversarial attacks are made easier if
the attacker knows the model’s parameters and archi-
tecture (Akhtar and Mian, 2018), protecting them is
paramount.

However, multiple reverse-engineering attacks
can potentially extract the victim model’s key param-
eters (Tramèr et al., 2016; Oh et al., 2018).

In that context, this paper aims at protecting CNNs
against equation-solving reverse-engineering attacks
(Tramèr et al., 2016) by adding noise to the input, us-
ing visualization maps. Its main contribution is the
use of random noise as a way of protecting the pa-
rameters against reverse-engineering attacks - rather
than protecting the input data or increasing accuracy.

The first section of this paper describes the neces-
sary background for the method. In the second sec-
tion, we detail our proposed method. In the last sec-
tion, we explain our experiments and show the effi-

Guiga, L. and Roscoe, A.
Neural Network Security: Hiding CNN Parameters with Guided Grad-CAM.
DOI: 10.5220/0009061206110618
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 611-618
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

611

Figure 1: Multi Layer Perceptron (Image taken from
(Batina et al., 2019)).

ciency of our method against Tramèr et al.’s equation-
solving attack.

2 BACKGROUND AND RELATED
WORK

In this section, we describe neural networks, detail
an attack on the parameters of a neural network and
explain Guided Grad-CAM, a visualization mapping
we will use in our defence.

2.1 Neural Networks

A neural network (NN) model can be described as a
function f : X → Y ∈ [0,1]c where c is the number of
classes in the model. It is often composed of several
layers of different types. A Multi Layer Perceptron
(MLP) is a NN only composed of fully-connected lay-
ers: each neuron in one layer is connected to all neu-
rons in the next layer, with a certain weight w (see
Fig. 1). Multiclass Logistic Regressions (MLRs) are
NNs that classify data into c different classes.

CNNs - often used in image classification - are
NNs with mainly convolutional layers. These lay-
ers compute a convolution between filters F- 2-
dimensional matrices smaller than the input of the
layer - and the input of the layer. The elements of
the filters are the weights of the layer. In most cases,
a pooling layer, which performs a down-sampling
of their input, follows convolutional layers (Scherer
et al., 2010).

The weights are learnt through the optimization of
a loss function. The most common one for CNNs is
the categorical cross entropy (Srivastava et al., 2019).
This optimization of a loss function is done over sev-
eral runs - or epochs -, on a chosen dataset - the train-
ing set. This optimization problem is often solved
using either Stochastic Gradient Descent (SGD) with
Nesterov Momentum (Bengio et al., 2012) or Adam

(Kingma and Ba, 2017), as they usually perform bet-
ter than other optimizers.

2.2 Attack on Parameters

In 2016, Tramèr et al. (Tramèr et al., 2016) de-
scribed several attacks on Machine Learning models.
For neural networks, the authors described equation-
solving and retraining attacks on small models. The
retraining approaches required a much higher query-
ing budget (×20) than the equation-solving attacks.
In the context of CNNs, which have tens of thou-
sands of parameters for small architectures, retraining
attacks induce tremendous overhead. Thus, in what
follows, we will only consider the equation-solving
attack given the confidence values.

In Tramèr et al.’s equation-solving attack, the at-
tacker knows the victim model’s architecture, and can
make as many queries to the model as necessary: their
attacker randomly generates a set of query inputs, and
receives the corresponding outputs. This provides
them with a non-linear system of equations of the
form:

f (xi) = yi ∀i ∈ {1, ...,b} (1)

where b is the size of the generated input set.
The attacker then creates a new model with the

same architecture as the victim model’s and optimizes
a categorical cross entropy loss function with the vic-
tim model’s probability distribution - corresponding
to the yi queried beforehand - as the target distribu-
tion. This attack was successfully applied on MLRs
and MLPs by Tramèr et al. In this paper, we try to
protect CNNs against this attack on the last layer of
the model.

2.3 Guided Grad-CAM

Not all neurons in a CNN have the same impact on
predictions. Some works (Mahendran and Vedaldi,
2016) have asserted that the last layers of an image
focus more on the global characteristics and tend to
discard more details than the first ones. Thus, the
analysis of the neurons used in those last convolu-
tional layers might help determine the most relevant
parts of an image for the NN’s prediction.

The goal of visualization techniques such as
saliency (K. Simonyan and Zisserman, 2014), Guided
Backpropagation (J. T. Springenberg and Riedmiller,
2014) or Class Activation Maps (CAM) (Zhou et al.,
2015) is to show the way the model makes its predic-
tions. Indeed, given an image and a class label, they
return a visualization of the parts of the image associ-
ated - according to the model - to the class label (see
Fig. 3a and 3b in Sec. 4).

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

612

Guided Grad-CAM (Selvaraju et al., 2016) uses
the gradients received at the last convolutional layer in
order to compute such a visualization map. These gra-
dients are closely related to the importance weights
of the corresponding pixels. The importance weight
of a pixel evaluates the impact a change in the pixel
would have on the prediction. Guided Grad-CAM
corresponds to a mix of Guided Backpropagation and
a generalized version of CAM, Grad-CAM, and is re-
sistant to adversarial attacks (Selvaraju et al., 2016):
even though imperceptible noise is added to the im-
age - leading to a wrong prediction -, the localization
maps remain unchanged.

2.4 Related Works

Adding noise to the input of a model during the train-
ing phase is common practice. Indeed, it helps im-
prove the accuracy and the generalizability of the
model trained (An, 1996; Bishop, 1995). If no noise
or regularization term is added, the training leads to
an overfitting over the training data. Some papers also
consider adding noise to the output of some layers
or to the gradients during backpropagation to achieve
a better accuracy and/or a faster convergence (Nee-
lakantan et al., 2015; Audhkhasi et al., 2016). How-
ever, our defence does not consider the training phase:
we only add noise during inference.

It is also interesting to note that noise injection
can be used to defend against adversarial examples,
and therefore to improve the NN’s robustness. Gu and
Rigazio add Gaussian noise and then use an autoen-
coder to remove it as a way of detecting adversarial
examples (Gu and Rigazio, 2014).

Additive noise is also a common protection tool.
Indeed, making a mechanism differentially private
usually consists in adding noise to the output of the
function to protect. This is, for instance, applied to
the Stochastic Gradient Descent (SGD) during the
training phase of a model to avoid leaking training
data (Abadi et al., 2016). Since differential privacy
provides security guarantees, Shokri and Shmatikov
apply it to joint learning of NN models: their pa-
per enables participants to jointly train a model by
sharing the parameter updates with the other partic-
ipants without leaking any information about their se-
cret dataset (Shokri and Shmatikov, 2015).

However, our goal is different from the works
mentioned above. Adding noise to the input has not
been used to protect the parameters of a model. More-
over, visualization maps have not previously been ap-
plied to the selection of ‘unimportant’ pixels as sug-
gested in this paper. In that sense, the method pro-
posed here is believed to be original and introduces

another use of saliency and visualization maps.

3 PROTECTING THE WEIGHTS:
METHOD DESCRIPTION

This section details the threat model considered, as
well as the method used to protect against the attack
described in Sec. 2.2.

3.1 Threat Model

If no prior knowledge about the victim model - such
as the architecture - is supposed, then an attacker try-
ing to extract weights from a model needs to train sev-
eral models from a - usually reduced - search space
(Oh et al., 2018). Let us note that if the architec-
ture is not known, it may be correctly guessed (Hong
et al., 2018; Yan et al., 2018). Another option for
such an attacker would be to conduct side-channel at-
tacks, such as in (Batina et al., 2019). In our case, we
will assume a stronger attacker, who already knows
the architecture of the model. This is a plausible sce-
nario given the various attacks on the architectures of
CNNs (Batina et al., 2019; Yan et al., 2018; Hong
et al., 2018).

Therefore, our threat model is the same as the one
in Tramèr et al.’s paper (Tramèr et al., 2016):

• The attacker knows the architecture of the victim
model.

• The attacker can query the victim model as many
times as necessary. This means that the attacker
can have at their disposal a set of pairs (x, f (x))
where x is in the input space, and f (x) is its cor-
responding confidence values.

The goal of the attacker is to extract the parameters -
here, essentially the weights - of a CNN. The original
attack by Tramèr et al. extracted all of the model’s
parameters. However, we limited our study to the last
layer of CNNs, due to their high number of parame-
ters.

3.2 Adding Noise to the Input

The method proposed to protect the weights is to add
random noise to the input image during the inference
phase. Adding small amounts of noise can highlight
the important features and improve the model’s accu-
racy. On the other hand, adding too much noise leads
to a drop in the victim model’s accuracy. Thus, the
challenge here is to add enough noise without alter-
ing the model’s predictions.

Neural Network Security: Hiding CNN Parameters with Guided Grad-CAM

613

With noisy inputs, the attacker gets a set of pairs
(x, f (x′)) where x′ := x+n for some noise n unknown
to the attacker, resulting in noisy extracted weights w′

for the attacker.
The noise we will consider is a normal distribu-

tion over a selected set S of pixels, with either a high
expected value - leading to a noisy output by linearity
- or a high standard deviation. Batch normalization
(BN) - a normalize layer - was introduced in 2015 by
S. Ioffe and C. Szegedy to limit the change of distri-
bution in the input during training, and therefore im-
prove its speed, performance and stability (Ioffe and
Szegedy, 2015). For each element xi, j in the input, the
layer computes:

x̃i, j =
xi, j−µbatch√
Vbatch+ε

(2)

where µbatch is the expected value of a given batch,
Vbatch is its variance and ε is a small positive value
added in order to avoid division by 0.

Eq. 2 shows that the output of the BN layer is in-
versely proportional to the batch’s standard deviation.
Thus, adding noise with a high standard deviation de-
creases the dependence of the output with the original
input values.

In order to add enough noise to alter the attacker’s
extracted weights without altering the victim model’s
predictions, we selected a set S of pixels considered
to be “unimportant” to the model’s predictions, and
only added noise to those pixels. To do so, we com-
puted the visualization map thanks to Guided Grad-
CAM (Selvaraju et al., 2016) and set a threshold t. All
neurons whose importance weights - in other words,
whose value after Guided Grad-CAM was applied -
are below t are selected to receive noise.

4 EXPERIMENTS

In this section, we detail the experiments carried on in
order to select the set S of pixels we added noise to.
We also explain the way the attack and defence were
set up, and the results of the various experiments.

4.1 Selection of Pixels

Let us start this section by explaining the way we se-
lected the pixels to modify in the input image using
Grad-CAM.

The code used to run Guided Grad-CAM consists
in a slight modification of the code found in (Gilden-
blat, 2017).

For clarity, let us consider the VGG19 architecture
(Simonyan and Zisserman, 2014), for which Guided

(a) Image of a car from
the CIFAR10 dataset

(b) Guided Grad-CAM

Figure 2: Visualization map resulting from Guided Grad-
CAM applied to the image of a car from the CIFAR10
dataset, with the LeNet architecture.

Grad-CAM performs well. Let grad denote the output
image of the Guided Grad-CAM algorithm. Let t de-
note the threshold we choose to select the “unimpor-
tant indices”. Let m be the maximum value in grad.
Finally, let p denote the value of a pixel after Guided
Grad-CAM was performed. Then, the selected pixels
are such that 0 ≤ p < t ×m. For the VGG19 archi-
tecture, the noise we added to the selected pixels is a
normal distribution with expected value µ = 125 and
standard deviation σ = 25.

The following paragraphs explain the way we set
the threshold t.

Choosing t = 0.25 results in the images in Fig. 3.
With the chosen threshold and noise, the model’s pre-
dictions remain “African Elephant”, with 1,038 pixels
modified.

Since the predictions are unchanged, we can
choose a higher threshold: t = 0.42 for instance, re-
sulting in 5,820 chosen pixels. The predictions re-
main intact, but the model is less certain about its pre-
dictions: the probability of the corresponding class
(“African elephant”), lowers from 99.5% to, on aver-
age, 55.97%.

However, selecting the pixels close to half the
maximal value - where the background pixels should
be - results in mostly wrong predictions (around 97%
of wrong predictions).

We give an example of a run of Guided Grad-
CAM on five images in Fig. 4, with various thresh-
olds. Table 1 summarizes the results depending on
the threshold t chosen. Even though the impact of
the noise varies greatly depending on the image, a
threshold of t = 0.25 enables all predictions to remain
correct, hence a choice of t = 0.25 to minimize the
changes in the model’s predictions.

Let us now consider the case of LeNet, the first
CNN, introduced in 1998 by Lecun et al.(Y. LeCun
and Haffner, 1998). Due to the limited depth of the
architecture, guided Grad-CAM does not perform as
well as on larger architectures such as VGG16 or
VGG19 (Simonyan and Zisserman, 2014). However,
it still outlines the important features of a class in the
input image, as is shown in Fig. 2. In what fol-
lows, the “accuracy rate” will be defined as the per-

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

614

Table 1: Influence of the noise added with µ = 125 and σ = 25 depending on the threshold t. The selected pixels have a
value p in Guided Grad-CAM such that 0 ≤ p < t×max(grad). The average class probability corresponds to the average
probability associated to the correct class label over 100 trials.

Image Threshold t
Number
of pixels
changed

Predictions
unchanged

Initial
class
probabil-
ity

Average class
probability

African elephant

0.25 1,038 100%

99.48 %

98.92 %
0.3 1,515 100% 95.53 %
0.4 4,109 100% 95.28 %
0.42 5,820 100% 57.01%

Coffee Mug

0.25 1,815 100%

89.09 %

59.79%
0.3 2,491 85% 39.28 %
0.4 5,593 0% 0 %
0.42 7,546 0% 0 %

Monarch butterfly

0.25 1,905 100%

99.75 %

95.44 %
0.3 4,726 100% 86.05 %
0.4 7,894 100% 71.27 %
0.42 10,440 86% 36.63 %

Dalmatian

0.25 1,198 100%

99.8 %

80.22 %
0.3 1,496 100% 63.74 %
0.4 2,623 0% 4.97 %
0.42 2,222 0% 0 %

Egyptian cat

0.25 1,326 100%

42.29 %

58.66 %
0.3 1,657 100% 43.35 %
0.4 2,946 0% 0 %
0.42 3,533 0% 0 %

(a) Original image (b) Guided Grad-CAM
(grad)

(c) Noisy image (d) Noise added

Figure 3: Result of adding a noise with µ = 125 and σ = 25
to the pixels whose value p in the Guided Grad-CAM map
is such that 0≤ p < t×max(grad) where t = 0.25.

centage of predictions that are equal to the victim
model’s original predictions. The noise added to the
chosen pixels has an expected value of 0.8 (represent-
ing around 37.6% of the maximal value), and a stan-
dard deviation of 0.1 (representing around 4.7% of the
maximum value). Similarly to the case of VGG19, we
observed that a threshold of t = 0.25 resulted in un-
changed predictions most of the time.

(a) African
elephant1

(b) Coffee
mug2

(c) Monarch
butterfly3

(d) Dalma-
tian4

(e) Egyptian
cat5

Figure 4: Images used for VGG19 predictions.

On the first 2,000 images of the CIFAR10 training
set, this threshold leads, on average, to a modifica-
tion of 2% of the pixels and an accuracy of 82%.
This accuracy rate is above the one we get when we
add noise to the whole image (around 79.8%). The
drop in the accuracy rate can however be explained
by LeNet’s low prediction accuracy on CIFAR10 (the

1https://en.wikipedia.org/wiki/Elephant#/media/File:
African Bush Elephant.jpg.

2https://github.com/Sanghyun-Hong/DeepRecon/
tree/master/etc.

3https://www.4ritter.com/events-1/hummingbird
butterfly-gardening.

4http://goodupic.pw/dog.html.
5https://www.pexels.com/photo/adorable-animal

animal-photography-blur-259803/.

Neural Network Security: Hiding CNN Parameters with Guided Grad-CAM

615

Figure 5: Last 8,500 epochs of SGD with Nesterov Mo-
mentum and Adam optimizersThe attack on weights is run
on the the original LeNet architecture. We chose a budget
query of 5,100 and ran the attack for 10,000 epochs.

model we trained had a 62% accuracy) and Guided
Grad-CAM’s reduced efficiency on LeNet. In Sec.
3.2, we also explained the influence of the noise on
an architecture with a BN layer. Thus, we also stud-
ied a LeNet architecture where we added a BN layer
after the first convolution. For this architecture, we
kept the threshold of t = 0.25 and we switched the
values of σ and µ: µ = 0.1 and σ = 0.8. The accuracy
of the model increased, as 89.5 % of the predictions
were the same as the original model, yet only around
1.8 % of the pixels changed.

4.2 Attack on Weights

We applied Tramèr et al.’s attack on the last layer of a
LeNet architecture, as well as a simplified LeNet ar-
chitecture with only 6 filters instead of 16 in the first
convolutional layer. The high accuracy rate Tramèr
et al. reached on MLRs and MLPs only required
1,000 epochs (they extracted 2,225 parameters with
a 99.8% accuracy for a query budget of 4,450). Due
to the large number of parameters in LeNet (62,006
for the original LeNet architecture), we focused our
attack on the last dense layer. We show that the ex-
traction of the weights can already be prevented if the
attacker knows all the parameters except those in that
last layer.

We chose Adam as an optimizer, since it pro-
vided a better accuracy on the extracted weights in
the longer run, as can be seen in Fig. 5 .

Let us define the metric for the evaluation of the
attack.

E(f , f̃) = ∑
x∈D

d(f (x), f̃ (x))
|D|

Evar(f , f̃) = ∑
x∈D

dvar(f (x), f̃ (x))
|D|

(3)

where f is the victim model, f̃ is the extracted model
and D is a test set.

The distance d is defined as follows: d(x,y) = 0
if argmax(f (x)) = argmax(f (y)) and d(x,y) = 1 oth-
erwise. On the other hand, dvar is the total variation
distance: dvar(x,y) = 1

2 ∑
c
i=0 |xi − yi| where c is the

number of classes. For the dataset, we considered CI-
FAR10’s testing set. The results of applying the attack
on the LeNet architecture and its simplified version,
with 30,000 epochs and a varying budget of queries
can be found in Table 2.

Table 2: Adam Optimizations for the LeNet architecture
where the second layer only has 6 filters, and for the origi-
nal LeNet architecture. The attack was run on the last layer
of the architecture, for 30,000 epochs.

Model Un-
knowns

Number of
parameters Queries 1−E 1−Evar

850 30,496

3,400 93.64 % 94.25 %
Simplified 4,250 95.77 % 96.43 %
LeNet 4,250 93.53 % 94.78 %
Architecture 5,100 95.87 % 96.33 %

850 62,006
4,250 (α = 5) 84.85 % 85.02 %

LeNet 5,100 81.34 % 81.37%
Architecture 5,950 84.37 % 84.29 %

We can observe that despite a lower accuracy than
Tramèr et al.’s results, the extracted weights remain
close to the original ones, with 1− E > 80% and
1−Evar > 80%.

4.3 Efficiency of the Defence

Let us now run the attack on noisy images created
thanks to Guided Grad-CAM. First, let us consider
the original LeNet architecture with no BN layer. As
explained in Sec. 3.2, we set µ = 0.8 and σ = 0.1
for the noise’s expected value and standard deviation,
and we set t = 0.25 as the threshold on the output of
Guided Grad-CAM. We also chose a query budget of
4,250.

The attacker is given the model’s architecture and
its input, as well as the model’s prediction for the
noisy input. Fig. 6 shows the optimization of the
weights when no noise was added to the input and
when some noise was added. We ran the attack for
10,000 epochs, as the Adam optimizer almost reaches
its optimum with this number of epochs.

Table 3: Evaluation of the extracted models on the original
LeNet architectures and on the LeNet architecture with a
BN layer - with and without noise. Their respective accu-
racy on the CIFAR10 testing dataset is 64.6% and 62.7%.

Model Extraction
Type 1−E(f , f̃) 1−Evar(f , f̃) ||w− w̃|| Model Accu-

racy

LeNet Not Noisy 77.36% 77.35% 5.90 58.15%
Noisy 33.86% 33.81 % 24.25 30.34%

LeNet with Batch-
Norm layer Not Noisy 71.3% 73.8% 5.74 51.02%

Noisy 56.9% 60.4 % 12.89 45.29%

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

616

Figure 6: Attack on noisy images with a query budget of
5,100. The noise has an expected value µ = 0.8 and a stan-
dard deviation σ = 0.1. The threshold on Guided Grad-
CAM is t = 0.25.

Table 3 shows the evaluation of the defence on
the LeNet architectures mentioned. In the case of the
original LeNet, the noise dropped the extraction’s ac-
curacy from 77.36% to 33.86% with relation to E and
from 77.35% to 33.81% with relation to Evar. The lit-
tle noise added therefore resulted in a model whose
predictions were far from the original model’s predic-
tions. A small change in some weights might induce a
great difference in predictions, but we can check that
this is not the case here. Let w, w̃ and w′ denote the
targeted weights - from the last layer - of the victim
model, the weights extracted from the non-noisy out-
puts and the ones extracted from the noisy outputs re-
spectively. Then:

||w− w̃||= 5.90 and ||w−w′||= 24.25 (4)

Thus, the weights extracted from the protected model
are very different from the victim model’s.

The fact that the attacker queries the model with
inputs uniformly drawn might explain the efficiency
of the defence. Indeed, the noise added keeps the pre-
dictions of the victim model close to the actual pre-
dictions when the input is drawn from the dataset, but
it does not follow that the predictions will remain the
same on random input. CNNs compute the probabil-
ities of a certain input to be in each possible class. If
the probabilities are low in each class, which is likely
to happen with random input, any slight change in the
input can lead to a change of prediction.

The results for the LeNet architecture with a BN
layer can be seen in Table 3. In this case, we used
5,100 queries, µ = 0.1, σ = 0.8 and t = 0.25, on
10,000 epochs. The difference between the model ex-
tracted from the noisy outputs and the non-noisy ones
is not as clear as in the case without BN. However,
the noise still impairs the extraction of the weights.
Moreover, the advantage of this architecture is that
the predictions remain close to the original model’s

predictions (the predictions are equal 89.5 % of the
time, as mentioned in Sec. 4.1).

So far, we have only compared the extracted
weights with the victim model’s weights. However,
the attacker can be satisfied if the extracted model
has an accuracy rate on CIFAR10 that is equivalent
or higher than the victim model’s. Table 3 shows that
this is not the case: the accuracy rate of the model
extracted from noisy input is below both the victim
model’s and the model extracted without noise, in the
considered cases.

5 CONCLUSION

This paper introduced a novel method to protect
against Tramèr et al.’s equation-solving weight ex-
traction attack using confidence values. Our method
leads to noisier extracted weights for the attacker than
the rounding of confidence values - as mentioned in
Tramèr et al.’s paper -, with only a relatively small
drop in the victim model’s accuracy, which further
work could aim at reducing. Moreover, our tech-
nique introduces a new use of visualization maps. We
have described the way visualization maps - such as
Guided Grad-CAM - can be used in order to select
the less important pixels in an input image, and how
to add noise to those selected pixels in order to protect
the model’s parameters.

Although Guided Grad-CAM generates overhead
because of the computation of gradients, we have ver-
ified the efficiency of our defence on a LeNet archi-
tecture against an attack on the last layer’s parameters.

However, this defence mechanism would not pro-
tect against side-channel attacks on CNNs (Duddu
et al., 2018; Hong et al., 2018; Batina et al., 2019;
Yan et al., 2018; Oh et al., 2018; Tramèr et al., 2016).
Protecting the architecture and weights against these
attacks could be the object of further study in the field.

Furthermore, in the equation-solving attack con-
sidered, the attacker generates random inputs in order
to make as many queries as required. Our method re-
lies on this randomness to protect the architecture’s
weights. Generating crafted inputs so as to prevent
the added noise from interfering with the attack could
be the object of further work.

Finally, as suggested by Tramèr et al., future work
could focus on finding a way to apply differential pri-
vacy to protect the parameters rather than the input.

Neural Network Security: Hiding CNN Parameters with Guided Grad-CAM

617

ACKNOWLEDGEMENTS

This work has been partially funded by the French
ANR-17-CE39-0006 project BioQOP.

REFERENCES

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., and Zhang, L. (2016). Deep
learning with differential privacy. Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS’16.

Akhtar, N. and Mian, A. (2018). Threat of adversarial at-
tacks on deep learning in computer vision: A survey.
arXiv preprint arXiv:1801.00553.

An, G. (1996). The effects of adding noise during back-
propagation training on a generalization performance.
Neural Computation, 8(3):643–674.

Audhkhasi, K., Osoba, O., and Kosko, B. (2016). Noise-
enhanced convolutional neural networks. Neural Net-
works, 78:15 – 23. Special Issue on ”Neural Network
Learning in Big Data”.

Batina, L., Bhasin, S., Jap, D., and Picek, S. (2019). CSI
NN: Reverse engineering of neural network architec-
tures through electromagnetic side channel. In 28th
USENIX Security Symposium (USENIX Security 19),
pages 515–532, Santa Clara, CA. USENIX Associa-
tion.

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R.
(2012). Advances in optimizing recurrent networks.
arXiv:1212.0901.

Bishop, C. M. (1995). Training with noise is equiva-
lent to tikhonov regularization. Neural Computation,
7(1):108–116.

Coskun, M., Uçar, A., Yildirim, Ö., and Demir, Y. (2017).
Face recognition based on convolutional neural net-
work,. ” International Conference on Modern Elec-
trical and Energy Systems, pages 376–379.

Deb, D., Zhang, J., and Jain, A. K. (2019). Advfaces: Ad-
versarial face synthesis.

Dong, Y., Su, H., Wu, B., Li, Z., Liu, W., Zhang,
T., and Zhu, J. (2019). Efficient decision-based
black-box adversarial attacks on face recognition.
arXiv:1904.04433.

Duddu, V., Samanta, D., Rao, D. V., and Balas, V. E. (2018).
Stealing neural networks via timing side channels.
CoRR, abs/1812.11720.

Gildenblat, J. (2017). Grad-cam implementation in keras.
Gu, S. and Rigazio, L. (2014). Towards deep neural network

architectures robust to adversarial examples.
Hong, S., Davinroy, M., Kaya, Y., Locke, S. N., Rackow,

I., Kulda, K., Sachman-Soled, S., and Dumitras, T.
(2018). Security analysis of deep neural networks op-
erating in the presence of cache side-channel attacks.
CoRR, abs/1810.03487.

Inc., A. (2017). Face id security. white paper.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-

celerating deep network training by reducing internal
covariate shift. arXiv:1502.03167.

J. T. Springenberg, A. Dosovitskiy, T. B. and Riedmiller, M.
(2014). Striving for simplicity: The all convolutional
net. arXiv preprint arXiv:1412.6806.

K. Simonyan, A. V. and Zisserman, A. (2014). Deep inside
convolutional networks: Visualising image classifica-
tion models and saliency maps. CoRR, abs/1412.6806.

Kingma, D. P. and Ba, J. L. (2017). Adam: A method for
stochastic optimization. arXiv:1412.6980.

Krizhevsky, A., Sustskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. Advances in neural information process-
ing systems, pages 1097–1105.

Mahendran, A. and Vedaldi, A. (2016). Visualizing
deep convolutional neural networks using natural pre-
images. International Journal of Computer Vision,
pages 1–23.

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser,
L., Kurach, K., and Martens, J. (2015). Adding gradi-
ent noise improves learning for very deep networks.

Oh, S. J., Augustin, M., Schiele, B., and Fritz, M. (2018).
Towards reverse-engineering black-box neural net-
works. International Conference on Learning Rep-
resentations.

Scherer, D., Müller, A., and Behnke, S. (2010). Evalua-
tion of pooling operations in convolutional architec-
tures for object recognition. pages 92–101.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. (2016). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. CoRR, abs/1610.02391.

Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K.
(2016). Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition. In ACM
Conference on Computer and Communications Secu-
rity.

Shokri, R. and Shmatikov, V. (2015). Privacy-preserving
deep learning. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’15, pages 1310–1321, New York,
NY, USA. ACM.

Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv 1409.1556.

Srivastava, Y., Murali, V., and Dubey, S. R. (2019). A per-
formance comparison of loss functions for deep face
recognition. arXiv preprint arXiv:1901.05903.

Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. (2016). Stealing machine learning models via
prediction apis. USENIX Security, pages 5–7.

Y. LeCun, L. Bottou, Y. B. and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc.
IEEE.

Yan, M., Fletcher, C. W., and Torillas, J. (2018). Cache
telepathy: Leveraging shared resource attacks to learn
dnn architectures. CoRR, abs/1808.04761.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Tor-
ralba, A. (2015). Learning deep features for discrimi-
native localization.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

618

