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1Institut de Mathématiques et de Sciences Physiques, Université d’Abomey-Calavi, Bénin
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Abstract: In this paper, we implement the Sequential Pattern Mining from Temporal Databases to learn activity in a
smart home. The Pre-processing is firstly conducted on sensor data by taking into account the timestamp
of sensor events. Then we extract typical activities using a sequential pattern mining algorithm. In order to
perform activities’ recognition, features are extracted and activities are modeled. Experiments are carried out
on the Massachusetts Institute of Technology (MIT) smart home data set. The results show the effectiveness
of the proposed approach with 99% as recognition rate.

1 INTRODUCTION

The study about human activities and his behaviour is
an important research area in computer vision. Nowa-
days, automatic activities and behaviour understand-
ing have gained great deal of attention. Using ma-
chine learning, researchers try to observe a scene,
learn prototypical activities and use prototypes for
analysis. This approach has been of particular in-
terest for surveillance (Stauffer and Grimson, 2000;
Makris and Ellis, 2005) and traffic monitoring (Pi-
ciarelli and Foresti, 2006; Atev et al., 2006; Mor-
ris and Trivedi, 2008) where methods for categoriz-
ing observed behavior, abnormal actions detection for
a quick response, even predicting and future occur-
rences prediction are highly solicited.

Due to the large amounts of data in use for these
applications, it is difficult to manually analyze each
individually. In these cases, the data mining in gen-
eral and the Sequential Pattern Mining (SPM) in par-
ticular appear as promising solutions. This paper is
concerned with SPM in tempoal databases and its ap-
plication to learn activity of daily living.

This paper is organized as follows. In section 2,
we present the state of art and related works on SPM.
Section 3 gives a theoretical description of the pro-
posed method while section 4 presents experimental
results and analysis. A conclusion ends this work with
its future directions.

2 STATE OF ART AND RELATED
WORKS ON SPM AND
ACTIVITIES LEARNING

The task of sequential pattern mining consists of
discovering interesting subsequences in a set of se-
quences. The sequential ordering of events is con-
sidered unlike pattern mining introduced by Agrawal
and Srikant (Agrawal and Srikant, 1994) for finding
frequent itemsets. The first sequential pattern mining
algorithm is called AprioriAll (Agrawal and Srikant,
1995). The improved version of this algorithm is Gen-
eralized Sequential Pattern algorithm (GSP) (Agrawal
and Srikant, 1996). These two algorithms are inspired
by the Apriori algorithm for frequent itemset mining
(Agrawal and Srikant, 1994). GSP algorithm uses a
standard database representation, also called a hori-
zontal database and performs a breadth-first search to
discover frequent sequential patterns. In recent years,
other algorithms have been designed to discover se-
quential patterns in sequence databases. The SPADE
algorithm (Zaki, 2001) inspired by the Eclat algo-
rithm (Zaki, 2000) for frequent itemset mining is an
alternative algorithm that uses a depth-first search. It
uses the vertical database representation. The verti-
cal representation of a sequence database indicates the
itemsets where each item i appears in the sequence
database (Zaki, 2001; Ayres et al., 2002; Fournier-
Viger et al., 2014). For a given item, this informa-
tion is called the IDList of the item. SPAM (Ayres
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et al., 2002) is another algorithm that is an optimiza-
tion of SPADE and also performs a depth-first search
using bit vector IDLists. Recently, the SPAM al-
gorithm (Ayres et al., 2002) and SPADE algorithm
(Zaki, 2001) were improved to obtain the CM-SPAM
and CM-SPADE algorithms (Fournier-Viger et al.,
2014). The CM-SPAM and CM-SPADE algorithms
are both based on the observations that SPAM and
SPADE generate many candidate patterns and per-
form the costly join operation to create the IDList
of each of them. Besides depth-first search algo-
rithms and vertical algorithms, another important type
of algorithms for sequential pattern mining is pattern-
growth algorithms. These algorithms are designed to
address a limitation of the previously described algo-
rithms by generating candidate patterns that may not
appear in the database. In this research work we used
CM-SPADE algorithm. The use of this algorithm is
motivated by the fact that CM-SPADE is claimed to
be the current fastest Sequential Pattern Mining algo-
rithm (Fournier-Viger et al., 2014).

Learning daily activities in a smart home is a
real challenge. Schweizer et al. (Schweizer et al.,
2015) proposed a frequent sequential pattern mining
algorithm to learn consumer behaviour and then re-
duce energy consumption in smart homes. This al-
gorithm named Window Sliding with De-Duplication
(WSDD), uses a window with a prefixed size over
the chronologically ordered events to find all possi-
ble frequent patterns. The approach does not consider
the time between two events. In the same field of en-
ergy consumption behaviour analysis, Singh and Yas-
sine in (Singh and Yassine, 2017) proposed an unsu-
pervised progressive incremental data mining mecha-
nism.

(Li et al., 2017) used frequent episode mining to
discover sequential behaviour patterns. Suryadevara
(Suryadevara, 2017) developed a framework to dis-
cover data model for smart home and IoT Data An-
alytics. Hassani et al. (Hassani et al., 2015) em-
ployed a novel sequential pattern mining algorithm
called PBuilder which uses a batch-free approach to
mine activities in a smart home. Menaka and Gayathri
(Menaka and Gayathri, 2013) proposed high utility
pattern mining to model activity in a smart home.
Their approach used linked sensor data stream to save
processing time and memory space.

(Moutacalli et al., 2012) used temporal data min-
ing algorithm to model activities. Their approach
uses in the mining process the activities temporally
segmentation. Raeiszadeh and Tahayori (Raeiszadeh
and Tahayori, 2018) proposed a novel method named
UP-DM used sequential pattern mining based on the
longest common subsequence to model behaviour in

smart home.
The main contribution of the paper is the use of

an efficient activity recognition approach based on se-
quential pattern mining, which incorporates feature
extraction with temporal information and Random-
Forest model (SPM+RandomForest).

3 PROPOSED METHOD

In this work, we use sequential pattern mining to dis-
cover typical activities in smart home. The proposed
method has three phases namely pre-processing, se-
quential pattern mining and activity modeling. Fig. 1
presents the proposed approach architecture. For
our experimentation, we have used the Massachusetts
Institute of Technology (MIT) smart home data set
(Tapia et al., 2004). This data set needs to be trans-
formed to a temporal sequential database. The pre-
processing represents the first stage of the architec-
ture. The second step extracts typical activities using
a sequential pattern mining approach, and the third
stage operates on feature extraction and activity mod-
eling based upon temporal constraints.

Figure 1: Architecture of the proposed approach.

3.1 Pre-processing

An activity is a time ordered records of events. Events
are generated by sensors. The decision about ac-
tivating an event is linked with the state changes
(Boolean) from the sensor or when its value greatly
changes numerically. A small change in value is con-
sidered as the noise and is therefore ignored. The
pre-processing phase aims to convert sensor data into
event sequences. For illustration we show the “Wash-
ing dishes” activity from the dataset in Table 1. In the
pre-processing phase as shown in Fig. 2, raw sensor
data are converted to (t)eid format in which t repre-
sents sensor activation or deactivation timestamp, eid
represents event id. The event id named eid is of the
form XY Z where X represents sensor id, Y represents
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sensor state which can be 1 if activated or 0 if deacti-
vated. Z represents the number of times the sensor is
activated or deactivated during the same activity.

Table 1: Sample of data.

Going out to
work

4/1/2003 12:11:26 12:15:12

81 139 140
Closet Jewelry box Door
12:12:29 12:13:27 12:13:45
12:13:0 12:13:35 12:13:48
Toileting 4/4/2003 12:30:17 12:31:10
100 67
Toilet Flush Cabinet
12:30:30 12:30:51
14:2:12 12:30:54
Washing
dishes

4/5/2003 15:57:55 16:0:15

70 132 132 70
Dishwasher Cabinet Cabinet Dishwasher
15:58:31 15:58:52 15:59:22 15:59:39
15:59:32 15:59:19 15:59:26 16:7:15

Figure 2: Pre-processing phase of the sensor data.

3.2 Sequential Pattern Mining

The second stage is performed by a sequential pattern
mining to obtain frequent sequences.

3.2.1 Definitions

Let S = {1, · · · , p} and I = {i1, i2, · · · , im} be respec-
tively a set of sources and a set of items. An event e
is a set of items such that e⊆ I . A sequence database
D = 〈s1,s2, · · · ,sp〉 is an ordered list of sequences
such that each si ∈ D is of the form (eidi,ei,σi),
where eidi is a unique event-id, including a timestamp
(events are ordered by this timestamp), ei is an event
and σi is a source.

A sequence is an ordered list of events s =
〈e1,e2, · · · ,en〉 such that ek ⊆ I (1 ≤ k ≤ n). A se-
quence s is said to be of length k or a k-sequence if it
contains k items, or in other words if k = ∑

n
j=1 |e j|. A

sequence sa = 〈A1,A2, · · · ,An〉 is a subsequence of an-
other sequence sb = 〈B1,B2, · · · ,Bm〉 denoted sa � sb,
if and only if there exist integers 1 ≤ i1 < i2 < · · · <

in ≤m such that A1 ⊆ Bi1 ,A2 ⊆ Bi2 , · · · ,An ⊆ Bin . Let
Di = {e|(eid,e, i) ∈ D} be the sequence correspond-
ing to a source i ordered by eid. For a sequence s and
a source i, let Xi(s,D) be an indicator variable, whose
value is 1 if s is a subsequence of a sequence Di, and
0 otherwise. For any sequence s, its support in D is
denoted by Sup(s,D) = ∑

p
i=1 Xi(s,D). The goal is to

find all sequences s such that Sup(s,D)≥ θp for some
user-defined threshold 0≤ θ≤ 1.

A vertical database V (D) is a database in which
each entry represents an item and indicates the list of
sequences where the item appears and the position(s)
where it appears.

A sequence sa = 〈A1,A2, · · · ,An〉 is a prefix of a
sequence sb = 〈B1,B2, · · · ,Bm〉, ∀n < m, if and only if
A1 = B1,A2 = B2, · · · ,An−1 = Bn−1 and the first |An|
items of Bn according to the lexicographical order are
equal to An.

3.2.2 CM-SPADE Algorithm

Algorithm 1 presents the pseudocode of CM-SPADE
algorithm (Fournier-Viger et al., 2014). It takes a
sequence database D and minsup threshold as in-
put. CM-SPADE first constructs the vertical database
V (D) and identifies the set of frequent sequential pat-
terns F1 containing frequent items. Then, SPADE
calls the ENUMERATE procedure with the equiva-
lence class. The ENUMERATE procedure receives
an equivalence class F as parameter. Each member
Ai of the equivalence class is a frequent sequential
pattern. Then, a set Ti, representing the equivalence
class of all frequent extensions of Ai is initialized to
the empty set. Then, for each pattern A j ∈ F such
that j ≥ i, the pattern Ai is merged with A j to form
larger patterns. For each such a pattern r, the sup-
port of r is calculated by performing a join operation
between IdLists of Ai and A j. The function Prune in
(Fournier-Viger et al., 2014) uses co-occurrence prun-
ing approach. If the cardinality of the resulting IdList
is not less than minsup, it means that r is a frequent
sequential pattern. It is thus added to Ti. Finally, af-
ter all pattern A j have been compared to Ai, the set Ti
contains the whole equivalence class of patterns start-
ing with the prefix Ai. The procedure ENUMERATE
is then called with Ti to discover larger sequential pat-
terns having Ai as prefix. When all loops terminate,
all frequent sequential patterns have been output.

3.3 Feature Extraction and Activity
Modeling

In this phase, we build an activity model based on
features of the activities and RandomForest model. In
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Algorithm 1: The pseudocode of CM-SPADE.

1: procedure CM-SPADE(D,minsup)
2: for all d ∈ D do
3: create V (D)
4: identify F1 the list of frequent items
5: end for
6: ENUMERATE(F1)
7: end procedure

8: procedure ENUMERATE(an equivalence class
F)

9: for all pattern Ai ∈ F do
10: Output Ai
11: Ti← φ

12: for all pattern A j ∈ F , with j ≥ i do
13: R←MergePatterns(Ai,A j)
14: if Prune(R) = FALSE then
15: if sup(R)≥ minsup then
16: Ti← Ti∪{R}
17: end if
18: end if
19: end for
20: ENUMERATE(Ti)
21: end for
22: end procedure

addition to which sensors fired, temporal information
would be necessary to achieve good recognition. The
used features are as follows:

– Activity Start Time: The start time of an activ-
ity is one of the distinctive features for activity
recognition. Based upon the start time, there are
four periods as depicted in Fig. 3. These periods
are labeled as shown in Table 2.

– Activity Duration: According to their duration,
activities can be clustered into four classes as il-
lustrated in Fig. 4. These four classes are labeled
as represented in Table 3.

– Density of Events: The numbers of sensor events
in an activity depends on the duration and mo-
bility. We use event density to capture this fea-
ture. To calculate the value of an event density,
the number of reported events for an activity is di-
vided by the activity duration as expressed in (1).

– Previous Activity: The activity previously per-
formed may provide a clue in recognizing the cur-
rent activity.

Event density =
Number o f events

Durationo f activity
(1)

0
–

7

7
–

12

12
–

18

18
–

23

20

40

60

80

100

120

Start time (hours)

Fr
eq

ue
nc

y

Figure 3: Frequency of activities along their start time for
subjet 1 dataset.

Table 2: Activity’s label according to its start time.

Start time interval (hours) Label
0≤ time < 7 Night

7≤ time≤ 12 Morning
12 < time≤ 18 Afternoon
18 < time≤ 23 Evening
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Figure 4: Frequency of activities along their duration for
subjet 1 dataset.

Table 3: Labelling activities based on their duration.

Time interval (minutes) Label
duration≤ 5 Ultra-Short

5 < duration≤ 15 Short
15 < duration≤ 60 Medium

duration > 60 Long
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4 EXPERIMENTAL RESULTS
AND ANALYSIS

In this section, we present the results obtained with
the proposed method. We used the MIT data smart
home testbed better described in subsection 4.1.

4.1 MIT Dataset

MIT dataset is a collection of human activity for two
weeks in two single-person apartments containing re-
spectively 77 and 84 sensors (see Fig. 5 for illustra-
tion). The first subject was a professional woman
of 30 year old who lived in the apartment shown in
Fig. 5(a) and spent her free time at home while the
second subject was a woman of 80 year old who spent
most of her time at home and lived in the apartment
shown in Fig. 5(b). The sensors were installed in ev-
eryday objects such as drawers, refrigerators contain-
ers, etc. to record opening-closing events (activation
deactivation events) as the subject carried out every-
day activities. Activities are labeled into 16 different
classes and the number of occurrences of each class
by subject is showed in Table 4.

Figure 5: (a) Apartment of subject one. (b) Apartment of
subject two.

4.2 Results and Analysis

Our implementation in Java, is executed on a machine
Intel(R) Core(TM) i7−7500U CPU @2.70 GHz 2.90
GHz running on Windows 10. With a support value

Table 4: Activity label.

Number of Examples per Class
Activity Subject 1 Subject 2
Preparing dinner 8 14
Preparing lunch 17 20
Listening to music - 18
Taking medication - 14
Toileting medication 85 40
Preparing breakfast 14 18
Washing dishes 7 21
Preparing a snack 14 16
Washing TV - 15
Bathing 18 -
Going out to work 12 -
Dressing 24 -
Grooming 37 -
Preparing a beverage 15 -
Doing laundry 19 -
Cleaning 8 -

fixed to 0.8, our method discovered 30 sequential fre-
quent patterns, with the lengths spanning from 1 to 11
events for subject 1 and 39 sequential frequent pat-
terns, with the lengths spanning from 1 to 6 events
for subject 2 when we use sequential pattern mining
algorithm. This result shows that, sequential pattern
mining algorithm return typical activities. We use
RandomForest classification model, to recognize fu-
ture activities of the users and obtained the accuracy
level of 99.38% in this model for the first subject and
95.45% for the second subject. By returning useful
and frequent pattern, our approach reduce activities
features vectors dimension and then clearly performs
better than the approach proposed by Raeiszadeh and
Tahayori in (Singh and Yassine, 2017) (see Table 5).

5 CONCLUSIONS

We have used a sequential pattern mining algorithm
from temporal databases to bring out typical activi-
ties in the smart home. We use temporal relation-
ships between events for a more accurate character-
ization/classification of frequent activities.

In the future work, we will consider sensor un-
certainty to focuse on reliable parts of the sensor data.
So we will use activity recognition approach based on
uncertain sequential pattern mining algorithm.

REFERENCES

Agrawal, R. and Srikant, R. (1994). Fast algorithms for
mining association rules. In The International Con-
ference on Very Large Databases, pp. 487-499.

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

546



Table 5: Comparison of results.

Approach Result
Proposed Method (SPM+RandomForest) Subject 1: 99.38%Subject 2: 95.45%

(Raeiszadeh and Tahayori, 2018) (UP-DM+RandomForest) Subject 1: 97.45%Subject 2: 91.37%
(Tapia et al., 2004) (Naive Bayes Classifier) Subject 1: 60.6% Subject 2: 41.09%

Agrawal, R. and Srikant, R. (1995). Mining sequential pat-
terns. In The International Conference on Data Engi-
neering, pp. 3-14.

Agrawal, R. and Srikant, R. (1996). Mining sequential
patterns: Generalizations and performance improve-
ments. In The International Conference on Extending
Database Technology, pp. 1-17.

Atev, S., Masoud, O., and Papanikolopoulos, N. (2006).
Learning traffic patterns at intersections by spectral
clustering of motion trajectories. In Conf. Intell.
Robots and Systems, Bejing, China, pp. 4851–4856.
IEEE.

Ayres, J., Flannick, J., Gehrke, J., and Yiu, T. (2002). Se-
quential pattern mining using a bitmap representation.
In International Conference on Knowledge Discovery
and Data Mining, pp. 429-435. ACM SIGKDD.

Fournier-Viger, P., Gomariz, A., Campos, M., and Thomas,
R. (2014). Fast vertical mining of sequential patterns
using co-occurrence information. In The Pacic-Asia
Conference on Knowledge Discovery and Data Min-
ing, pp. 40-52.

Hassani, M., Beecks, C., ows, D. T., and Seidl, T. (2015).
Mining sequential patterns of event streams in a smart
home application. In The LWA 2015 Workshops:
KDML, FGWM, IR, and FGD.

Li, L., Li, X., Lu, Z., Lloret, J., and Song, H. (2017).
Sequential behavior pattern discovery with frequent
episode mining and wireless sensor network. In Com-
munications Magazine. IEEE.

Makris, D. and Ellis, T. (2005). Learning semantic scene
models from observing activity in visual surveillance.
In Trans. Syst., Man, Cybern. B, vol. 35, no. 3, pp.
397–408. IEEE.

Menaka, J. and Gayathri, K. S. (2013). Activity modeling
in smart home using high utility pattern mining over
data streams. In The Journal of Computer Science and
Network.

Morris, B. T. and Trivedi, M. M. (2008). Learning, mod-
eling, and classification of vehicle track patterns from
live video. In Trans. Intell. Transp. Syst., vol. 9, no. 3,
pp. 425–437. IEEE.

Moutacalli, M. T., Bouzouane, A., and Bouchard, B.
(2012). Unsupervised activity recognition using tem-
poral data mining. In The First International Confer-
ence on Smart Systems, Devices and Technologies.

Piciarelli, C. and Foresti, G. L. (2006). On-line trajectory
clustering for anomalous events detection. In Pattern
Recognition Letters, vol. 27, no. 15, pp. 1835–1842.

Raeiszadeh, M. and Tahayori, H. (2018). A novel method
for detecting and predicting resident’s behavior in
smart home. In 6th Iranian Joint Congress on Fuzzy
and Intelligent Systems. IEEE.

Schweizer, D., Zehnder, M., Wache, H., and Witschel, H.
(2015). Using consumer behavior data to reduce en-
ergy consumption in smart homes. In 14th Interna-
tional Conference on Machine Learning and Applica-
tions.

Singh, S. and Yassine, A. (2017). Mining energy consump-
tion behavior patterns for house holds in smart grid.
In Transactions on Emerging Topics in Computing.
IEEE.

Stauffer, C. and Grimson, W. E. L. (2000). Learn-
ing patterns of activity using real-time tracking. In
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp.
747–757. IEEE.

Suryadevara, N. (2017). Wireless sensor sequence data
model for smart home and iot data analytics. In
First International Conferenceon Computational In-
telligence and Informatics, Advances in Intelligent
Systems and Computing.

Tapia, E. M., Intille, S. S., and Larson, K. (2004). Activ-
ity recognition in the home setting using simple and
ubiquitous sensors. In Pervasive Computing.

Zaki, M. J. (2000). Scalable algorithms for association min-
ing. In Transactions on Knowledge and Data Engi-
neering, vol. 12(3), pp. 372-390. IEEE.

Zaki, M. J. (2001). Spade: An effcient algorithm for mining
frequent sequences. In Machine learning, vol. 42(1-
2), pp. 31-60.

Activity Mining in a Smart Home from Sequential and Temporal Databases

547


