
An Analytical Scanning Technique to Detect and Prevent the
Transformed SQL Injection and XSS Attacks

Mohammad Qbea’h1, Saed Alrabaee1 and Djedjiga Mouheb2

1Information Systems and Security, College of IT, United Arab Emirates University, Al Ain, Abu Dhabi, U.A.E.
2Department of Computer Science, College of Computing and Informatics, University of Sharjah, U.A.E.

Keywords: SQL Injection Attack, Cross Site Scripting, Encoding, Base64 Encoding, XSS, Hex Encodings, SQLIA,
Android Attack.

Abstract: Among the most critical and dangerous attacks is the one that exploits Base64 or Hex encoding technique in
SQL Injection (SQLIA) and Cross Site Scripting (XSS) attacks, instead of using plain text. This technique
is widely used in most dangerous attacks because it evades detection. Therefore, it is possible to bypass
many filters such as IDS, without taking into account the transformation methodologies of the symbols and
characters. Moreover, it reserves the same semantics with different syntax. Attackers can exploit this serious
technique to reach unseen data and gain valuable benefits. To the best of our knowledge, this paper presents
the first technique that focuses on detecting and preventing transformed SQLIA and XSS from Base64 and
Hex encoding. We perform scanning and analyzing methods by targeting two places: (i) Input boxes and
(ii) Strings in page URLs. Then, we decode the inputs and compare them with our stored suspicious tokens.
Finally, we perform string matching and mutation mechanisms to revoke the activity of malicious inputs. We
have evaluated our technique and the results showed that it is capable to detect and prevent this transformed
attack.

1 INTRODUCTION

We have experienced a noticeable growth of SQL in-
jection attacks against web applications over the last
two years. Such serious attacks should worry web-
masters and website owners (ZAkamai, 2019). Mil-
lions of websites and systems in the world use back-
end servers to store billions of records of important
data in relational databases. This data could be very
critical and sensitive such as military, medical, fi-
nancial and personal data. Unfortunately, the impor-
tance of this data attracts attackers from everywhere
to spare extreme efforts to break the bridges in order
to access this hidden data and gain valuable benefits.
Furthermore, the attackers can steal a lot of money
by accessing the entire database and getting the credit
card’s numbers.

The increasing attempts to destroy and damage the
structure and the content of databases should be given
very high attention. This is because attackers use very
dangerous attacking techniques, which are SQL Injec-
tion Attack (SQLIA) and Cross-Site Scripting (XSS)
to target sensitive institutes (Balasundaram and Ra-
maraj, 2012; Khoury et al., 2011; Patel and Shekokar,

2015; Qbea’h et al., 2016; Sadeghian et al., 2013; Wu
et al., 2011).

One of the critical consequences of a successful
attack is affecting the integrity of the database by
tampering data records to become inaccurate and in-
consistent (OWASP, 2016). This could lead to send-
ing and receiving wrong information and transac-
tions to wrong targets. In addition, the weaknesses
of input sanitization are the most significant causes
of SQLIA (Sathyanarayan et al., 2014). Moreover,
we find that there are a lot of free tools, mainly
open source, such as, Drupal, Joomla, WordPress and
Quest that have vulnerable components, which are a
source of SQLIA and XSS.

There are many specialized institutes in software
security that publish a lot of reports to address com-
mon and critical vulnerabilities in the web, software
and mobile applications. Some of these reports can
classify and order the vulnerabilities based on their
risk. These vulnerabilities can be exploited by attack-
ers to steal important information or to damage the
back-end server or even to break the authentication to
the database. We classify these important studies and
reports as follows:

Qbea’h, M., Alrabaee, S. and Mouheb, D.
An Analytical Scanning Technique to Detect and Prevent the Transformed SQL Injection and XSS Attacks.
DOI: 10.5220/0009004006030610
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 603-610
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

603

1.1 Critical Vulnerabilities in the Web,
Software Application

1.1.1 Web Attacks and Gaming Abuse

A recent study by Akamai Company in the last two
years (between November 2017 and March 2019) has
published a report named ”Web Attacks and Gaming
Abuse (Volume 5, Issue 3) Akamai”, which shows
that SQL injection in these days represents two-thirds
(65.1%) of all web application attacks. The report has
also included a country ranking study based on the top
ten targets and top ten sources of application attacks.
As a result, the United States ranked first among the
ten surveyed countries as a target of 2,666,156,401
attacks and as a source of 967,577,579 attacks (ZA-
kamai, 2019; Darkreading, 2019).

1.1.2 Web Application Vulnerability

Acunetix, a pioneer in the field of automated web ap-
plication security and leader in technology, has pub-
lished a web application vulnerability report in 2019.
It has analyzed the vulnerabilities detected in year
2019, across 10,000 scan targets and one of the re-
sults is that 30% of web applications are vulnerable to
XSS (Acunetix, 2019). In addition, White-Hat Secu-
rity Threat Research Center (TRC) has validated and
analyzed millions of several attacks in multiple mar-
ket sectors. The report classified cross-site scripting
attack as one of the top 10 vulnerabilities (WhiteHat,
2019).

1.1.3 A State of Software Security

Veracode company has published a state of software
security report in 2018. It stated that attackers can use
any vulnerability for SQLI to gain unauthorized ac-
cess to a database server by using maliciously crafted
input, so they have high exploitability ratings. Also,
many programming languages such as JAVA, DOT
NET and C++ are still rife with vulnerable compo-
nents. Moreover, one of the three applications are in-
jected against SQL injection flaws. On the other side,
50% of applications have XSS vulnerabilities (Vera-
code, 2019).

In this paper, we present a first technique that fo-
cuses on detecting and preventing the transformed
forms of SQLI and XSS together from Base64 and
Hex encoding. Our technique depends on performing
several steps: (i) Scanning: we scan two targets of in-
puts, namely input box and page URL. Then, we split
the input into tokens. (ii) Decoding: we decode the
transformed inputs from base64 or hex encoding. Af-
ter that, we search about any suspicious tokens. (iii)

Analyzing. (iv) Matching. (v) Replacing. (vi) Trig-
gering excepting handling. Finally, we get the final
input format with free malicious attack.

Most of existing works focused on detecting or
preventing SQLI or XSS attacks without taking into
consideration the other shapes of these attacks such as
Base64 and Hex encoding. In addition, to the best of
our knowledge, the encoded XSS attack has not been
considered in many of the surveyed research papers.

The rest of this paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 presents
our proposed technique. In Section 4, we analyze
transformed SQLI and XSS attacks. Section 5 and
Section 6 present the experiments and implementa-
tion. The technical details of the proposed technique
are discussed in Section 5.2. Finally, we conclude in
Section 7.

2 RELATED WORK

In this section, we summarize a number of techniques,
methods and approaches, which were used to address
SQLIA and XSS. To the best of our knowledge, only
a few number of papers have addressed the trans-
formation of SQLI and XSS attacks using encod-
ing techniques. Also, there were no rich discussions
about how to prevent such encrypted attacks, espe-
cially XSS.

SQLRand (Boyd and Keromytis, 2004) proposed
a randomization technique used to encrypt the key-
words of SQL to detect SQLIA. However, this tech-
nique couldn’t detect and prevent the transformed
SQLIA, and it needs to remember the keyword. In,
the authors proposed a method to prevent SQL in-
jection by splitting the input query into tokens based
on single quote, space, and double dashes. After
that, a comparison is made to accept or reject the
query. However, the method did not take into ac-
count the transformation techniques into ASCII or
Unicode. In (Wassermann and Su, 2004), the au-
thors proposed a technique using an automated rea-
soning with a static analysis. The technique is ef-
ficient but it handled only tautology SQLIA, and it
couldn’t detect or prevent the other types of SQLIA
or XSS. The authors in (Prabakar et al., 2013) pro-
posed a technique based on static and dynamic phases
using pattern matching algorithm to prevent SQL in-
jection. This technique is effective, however, it ad-
dressed some samples of standard attacks but not all
SQLIA. Also, the technique did not discuss XSS and
the encoded attacks. In (Balasundaram and Rama-
raj, 2011), the authors proposed a technique that uses
an authentication scheme to prevent SQLIA based

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

604

on both Advanced Encryption Standard (AES) and
Rivest-Shamir-Adleman (RSA). However, this tech-
nique requires to maintain every user secret key at
the server side and the client side. Moreover, it does
not support URL-based SQLIA or XSS. In (Qbea’h
et al., 2016), the authors proposed an effective for-
mal approach based on finite automata with regular
expression to detect and prevent tautology and alter-
nate encoding of SQLIA. However, their approach
didn’t address XSS neither the transformed SQLIA
using Base64 encoding technique.

The authors in (Buehrer et al., 2005) proposed
SqlGurd, a technique based on parse tree comparison.
This technique is limited to only plain text of SQLIA
without any discussion about transformed SQLIA. In
addition, XSS was not considered at all. In (Bisht
et al., 2010), the authors proposed CANDID tech-
nique, which uses a candidate inputs to detect SQLI
using a comparison between the structures of query of
candidate input and the potential SQLIA. However,
the technique has a number of limitations and can
fail in some cases, such as: First, An exception can
be triggered when a function is considered as a non-
candidate especially if it contains an ‘a’ character.
Second, if a white space appeared without classifying
it in the right implementation level, then exceptions
can happen and could make the technique fail. Third,
there is a difficulty to decide if the keywords are in-
tended from the programmer or not. Furthermore, this
technique focused on a normal form of SQLI rather
than the transformed one. Also, there is no discus-
sion regarding XSS. In (Junjin, 2009), the authors
proposed an automated approach based on static anal-
ysis to detect SQLI vulnerabilities and finding bugs.
However, this approach did not take into consider-
ation SQLIA prevention. In addition, transformed
SQLIA and XSS were not addressed. Other efforts
have been conducted in discovering such vulnerabil-
ities in binary code (Alrabaee et al., 2018; Alrabaee
et al., 2015).

3 PROPOSED TECHNIQUE

In this section, we present a technique for scanning
and analyzing the inputs by focusing on two sources:
input boxes and query strings in page URLs. We ap-
ply our technique on the following targets: websites,
applications and mobile apps. Then, we decode the
input from Base64 or Hex into its origin (plain text).
After that, we compare the decoded input with our
stored suspicious tokens to detect the attack. Finally,
we perform string matching and replacing mechanism
in order to prevent the transformed SQLIA and XSS

from Base64 and Hex encoding. The technical de-
tails of the proposed technique are discussed in Sec-
tion 5.2.

Table 1 and Table 2 list samples of the most po-
tential SQLI commands and XSS codes that can be
applied by attackers through two sources: input boxes
and page URLs’.

Table 1: Tautology SQLIA strings payload samples.

999’or 7=7--
manager’ or ‘9’=’9’--
manager’ or ‘z’=’z’#

Table 2: XSS strings payload samples.

< script > alert(′attack′);< /script >
< script > alert(\XSSAttack”);< /script >

< script > alert(111)< /script >

4 ANALYZING TRANSFORMED
SQLI AND XSS

4.1 Base64 Encoding Steps

The following are the steps for Base64 encoding:

1. Splitting the binary code from 8 bits into 6 bits

2. Convert the 6 bits into decimal digits

3. Map the obtained decimal number with
the following series (starting from 0 to 63):

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi
jklmnopqrstuvwxyz0123456789+/

4.2 Analyzing Base64 Encoding
Technique with XSS

We use the script < script > alert(′attack′);
< /script > in lower case formatting to perform our
demonstration, but the attacker can transform the XSS
to any case sensitivity format. Here are some ex-
amples: < SCriPT > ALerT (′attack′);< /script >
,< scRIPT > ALERT (′attack′);< /SCRIPT >, etc.
Table 3 shows that the attacker can transform the in-
jected command into something unknown by using
Base64 encoding technique. Therefore, we generate
the following decoded phrase:

PHNjcmlwdD5hbGVydCgnYXR0YWNrJyk7PC9
zY3JpcHQ+

instead of the plain text format:
” < script > alert(′attack′);< /script > ”.

An Analytical Scanning Technique to Detect and Prevent the Transformed SQL Injection and XSS Attacks

605

Table 3: Analyzing XSS using Base64 encoding technique.

Input <script>alert(’attack’);</script>
Splitting < s c r i p t > ..

Decimal 6
0

1
1
5

1
1
4

9
9

1
0
5

1
1
2

1
1
6

6
2 ..

Hex 3
C

7
3

7
2

6
3

6
9

7
0

7
4

E
3 ..

Binary
(8-bits)

0
0
1
1
1
1
0
0

0
1
1
1
0
0
1
1

0
1
1
1
0
0
1
0

0
1
1
0
0
0
1
1

0
1
1
0
1
0
0
1

0
1
1
1
0
0
0
0

0
0
1
1
0
1
0
1

0
0
1
1
1
1
1
0

..

Full
binary
code

001111000111001101100011011100
100110100101110000011101000011
111001100001011011000110010101
110010011101000010100000100111
011000010111010001110100011000
010110001101101011001001110010
100100111011001111000010111101
110011011000110111001001101001

011100000111010000111110

Decimal
157133528383748293573327621
502923239242317522422134395
03659152615124559412871662

Encoding PHNjcmlwdD5hbGVyd CgnYX
R0YWNrJyk7PC9zY3JpcHQ+

4.3 Analyzing Hex Encoding Technique
with SQLIA

We analyze this command ’or ′@′ =′ @′ − − of
SQLIA as Hex Encoding in a page URL. URL en-
coding or percent encoding method can be applied
by substituting characters with a percent notation (%)
followed by two ASCII values (Paige, 2013). Ta-
ble 4 shows, in details, the analysis of transformed
SQLIA using Hex encoding. As a result, the trans-
formed SQLIA from Hex encoding in URL is:
%27or%20%27@%27%3D%27@%27--

Table 5 shows a comparison between our tech-
nique and the available techniques in terms of detect-
ing and preventing transformed SQLIA and XSS us-
ing Base64 and Hex encoding. As a result, our pro-
posed technique is able to detect and prevent the trans-
formed SQLIA and XSS while other techniques either
did not address that or failed to control such attacks.

5 EXPERIMENTS

In this section, we present how to detect and pre-
vent the transformed SQLIA and XSS from Base64

and Hex encoding. We apply our experiment on
the several testing environments such as: SQL Injec-
tion Ninja Testing Lab (SecurityIdiots, 2012), XSS-
Game (XSS, 2019), Damn Vulnerable Web App
(DVWA) (DVWA, 2015), Damn insecure and vulner-
able App (DIVA) (DIVA, 2016), and our local testing
application. We select two applications as testing en-
vironments.

5.1 Attack Detection

5.1.1 Damn Insecure and Vulnerable App
(DIVA)

Damn insecure and vulnerable App (DIVA) is an an-
droid application developed to teach security profes-
sionals and programmers to protect applications and
handle insecure or vulnerable code. This simulation
works under Android operating system and can cover
several vulnerabilities such as SQLIA.

Figure 1 shows a successful attack using SQLIA
on DIVA Android application using this malicious
code: moh′ or 1 = 1−−. We execute our injected
code to gain access to all users with their credit card
numbers.

Figure 1: Successful attack using SQLIA on Android Ap-
plication.

5.1.2 Damn Vulnerable Web App (DVWA)

DVWA is a free open source environment that pro-
vides penetration testing methods for learning pur-
poses and to simulate web vulnerabilities such as XSS
and SQLIA. It uses PHP and MySQL.

Figure 2 shows a successful attack using trans-
formed XSS on DVWA application using this mali-

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

606

Table 4: Analyzing SQLIA using Hex encoding technique.

Input ‘ o r SPA
CE ‘ @ ‘ = ‘ @ ‘ - -

URL
Hex

Encoding

2
7
%

o r
2
0
%

2
7
%

@
2
7
%

%
3
D

2
7
%

@
2
7
%

- -

Table 5: A comparative capable to detect and prevent the transformed SQLI and transformed XSS Attacks from Base64 and
Hex encoding.

Approach/Technique
Transformed

SQLI
Detection

Transformed
SQLI

Prevention

Transformed
XSS

Detection

Transformed
XSS

Prevention

Rich
Examples

SQLRAND NO NO NO NO NO
SQL GUARD Partial NO NO NO NO

CANDID NO NO NO NO NO
SQL CHECK Partial NO NO NO NO

DIWEDA NO NO NO NO NO
SQLIPA NO NO NO NO NO

Automated
Approach NO NO NO NO NO

Proposed
Technique Yes Yes Yes Yes Yes

cious code: %3Cimg+src%3D%22https%3A%2F%
.̃jpg%22%2F%3E Then, we execute our injected
code, which has critical transformed symbols such as
%2F instead of using plain text of slash (/). As a re-
sult, a malicious image is inserted and appeared on
the webpage, thus the website is attacked using trans-
formed XSS.

Figure 2: Successful attack using Transformed XSS using
image tag.

5.2 Attack Prevention

In this section, we perform our technique for pre-
venting the transformed XSS and SQLIA. We per-
form our technique through six steps: i) Scanning; ii)
Decoding; iii) Analyzing; iv) Matching; v) Replac-
ing or Mutating; vi) Triggering Exception handling.
We start explaining our work as follows: First, we
perform a full scanning on the query string in either
user input or page URL by splitting the encoded sym-

bols into tokens. Then, we apply decoding technique
on these tokens by transforming them from base64 or
hex format into their original format. After that, we
search about any suspicious tokens. Then, we analyze
these tokens by classifying and marking them as ei-
ther suspicious (S) or normal (N). We achieve that by
applying a matching mechanism between the trans-
formed symbols and characters with our stored sus-
picious symbols and characters. Next step, we mark
the matched symbols as (M) and (NM) is marked for
Not Matched symbols. Finally, we perform replacing
and mutating mechanisms by substituting any symbol
or character which is marked as suspicious (S) with
an empty or NULL value. We add one extra layer
to handle any exception that may appear by trigger-
ing a caution message to inform the attacker that he is
under monitoring. As a result, we get a string format
with free suspicious tokens and without any malicious
activity.

By applying our technique, we not only freeze the
attack but also inject the malicious code with a drug
that can mutate the genetic of all transformed attacks.
This is similar to an action that could happen in natu-
ral life when we revoke a snake venom without killing
the snake. In addition, for further protection, an extra
layer is added to our technique by generating a cau-
tion message using exception handling method. This
caution should appear to attackers to inform them to
stop immediately using the injection because they are
under legal liability. We select a sample of trans-

An Analytical Scanning Technique to Detect and Prevent the Transformed SQL Injection and XSS Attacks

607

formed SQLIA:”J29yIDU9NS0t” to demonstrate our
technique as shown in Table 6. The final transforma-
tion of the transformed SQLIA is ”orSPACE55” and
it is equal to ”or55”. Based on the final transforma-
tion, we can consider this result as normal and safe
format.

6 IMPLEMENTAION

To implement and simulate our technique, we have
used Microsoft Dot Net, VB.NET and Microsoft SQL
Server as testing environments. We build a very
strong code in VB.NET to prevent the Transformed
SQLIA and XSS attacks from Base64 and Hex encod-
ing. We provide our code to developers, security an-
alysts and programming language designers to write
a free vulnerable code against SQLIA and XSS. This
code is general and can be programmed in any pro-
gramming language such as: JAVA, C++, PHP and
Python. In this section, we provide the code used for
implementing our technique.

6.1 Preventing Transformed SQLIA
from Base64 Encoding

In Figure 3, we used the malicious code
”J29yIDU9NS0t” to test and simulate our tech-
nique. We have succeeded to prevent Transformed
SQLIA from Base64 encoding. We provide our
code that we used to detect and prevent transformed
SQLIA from Base64 encoding as follows:
Dim base64E As String=txtName.Text
Dim base64D As String,
Dim sentence() As Byte
sentence = System.Convert.
FromBase64String(base64E)
base64D=System.Text.ASCIIEncoding.
ASCII.GetString(sentence)
Dim result1 = base64D
Dim strBase64() As String={"’", "=",
"-", ">","<",";", "(", ")", "/"}

For Each i as char In strBase64
result1=result1.ToString.
Replace(i, "").ToLower().Trim()
Next
ResultLabel.Text =
"
"+"
"+"The Transformed
SQLIA using Base64 Encoding: "
+txtName.Text+"
"+"The original
plain text attack:"+ base64D+"
"
+"The final normal and safe format:"
+result1.ToString().ToLower.Trim()
ResultLabel0.Text="SQLIA Attack"

Figure 3: Successful Prevention of Transformed SQLIA
from Base64 Encoding.

6.2 Preventing Transformed XSS from
Hex Encoding

In Figure 4, we used the malicious code

%3Cscript%3Ealert%28%27attack
%27%29%3B%3C%2fscript%3E

to test and simulate our technique. We succeeded to
prevent the transformed XSS from Hex Encoding. We
provide our code that we used to detect and prevent
transformed XSS from Hex Encoding as follows:

Dim str() As String={"’", "=", "-",
">","<", ";", "(", ")", "/", "+"}
Dim str3
str3=HexDecoding(txtName.
Text.ToString.ToLower.Trim())
Dim result
result=HexDecoding(txtName.
Text.ToString.ToLower.Trim())
Dim i as char
For Each i In str
result = result.ToString.
Replace(i, "").ToLower().Trim()
Next
ResultLabel.Text="
"+"
"+
"The Transformed XSS using Hex
Encoding:"+"
"+txtName.Text
ResultLabel1.Text="The original plain
text attack:"+
Server.HtmlEncode(str3)
ResultLabel2.Text="The final normal
and safe format:"+
"
"+ result.
ToString().ToLower.Trim()
ResultLabel0.Text=" XSS Attack"

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

608

Table 6: Applying our technique to prevent transformed sqlia.

Scanning
Symbols J 2 9 Y I D U 9 N S 0 t

Decoding
Decimal 9 54 61 50 8 3 20 61 13 18 52 45

Binary
(6-bits)

0010
01

110
110

1111
01

1100
10

0010
00

00
00
11

01
01
00

11
11
01

00
11
01

01001
0

11010
0

101101

Binary
(8-bits)

0010
0111

011
011
11

0111
0010

0010
0000

0011
0101

00
11
11
01

00
11
01
01

00
10
11
01

00
10
11
01

NULL NULL NULL

Hex 27 6F 72 20 35 3D 35 2D 2D NULL NULL NULL
Decimal 39 111 114 32 53 61 53 45 45 NULL NULL NULL

Splitting characters ’ o r SPACE 5 = 5 - - NULL NULL NULL

Analyzing
Symbols ‘ o r SPACE 5 = 5 - - NULL NULL NULL

S N N N N S N S S NULL NULL NULL
Matching

Potential Suspicious
Symbol

‘ ‘ ‘ ‘ ‘ ‘ ‘

Flag S S S S S S S
Our stored Suspicious

Symbols
= > / # - ! ‘

Flag S S S S S S S
Matching NM NM NM NM NM NM M

Replacing

Replacing NULL o r SPACE 5
NU
LL

5
NU
LL

NU
LL

N N N N N N N N N
Exception handling
Be careful, you are

trying to use SQLIA attack and this work is under legal liability

XSS ATTACK

Figure 4: Successful Prevention of Transformed XSS from
Hex Encoding.

7 CONCLUSION

We have presented a technique for detecting and
preventing the transformed SQLIA and XSS from

Base64 and Hex encoding by performing several
steps: scanning, decoding, splitting, analyzing,
matching, mutating and replacing. We have tested our
work on free online labs and using a local application.
The experiment showed that our technique is compre-
hensive and effective compared with other techniques
especially that we address the transformed SQLIA
and XSS together. In fact, very few papers have ad-
dressed this critical attack according to a lot of recent
studies and reports issued by specialized companies
and institutes in computer security. Furthermore, we
have provided our code for developers, security spe-
cialists and programming language designers. As a
result, we have succeeded to generate a comprehen-
sive and practical code to support our analytical tech-
nique to detect and prevent the transformed SQLIA
and XSS and to perform real life simulations. More-
over, our code can be used as supplementary materials
to facilitate future research.

An Analytical Scanning Technique to Detect and Prevent the Transformed SQL Injection and XSS Attacks

609

REFERENCES

Acunetix (2019). Web Application Vulnerability Report.
https://cdn2.hubspot.net/hubfs/4595665/Acunetix
web application vulnerability report 2019.pdf.

Alrabaee, S., Shirani, P., Wang, L., and Debbabi, M. (2015).
Sigma: A semantic integrated graph matching ap-
proach for identifying reused functions in binary code.
Digital Investigation, 12:S61–S71.

Alrabaee, S., Shirani, P., Wang, L., and Debbabi, M. (2018).
Fossil: a resilient and efficient system for identifying
foss functions in malware binaries. ACM Transactions
on Privacy and Security (TOPS), 21(2):8.

Balasundaram, I. and Ramaraj, E. (2011). An authentica-
tion scheme for preventing sql injection attack using
hybrid encryption (psqlia-hbe). European Journal of
Scientific Research, 53(3):359–368.

Balasundaram, I. and Ramaraj, E. (2012). An efficient tech-
nique for detection and prevention of sql injection at-
tack using ascii based string matching. Procedia En-
gineering, 30:183–190.

Bisht, P., Madhusudan, P., and Venkatakrishnan, V. (2010).
Candid: Dynamic candidate evaluations for automatic
prevention of sql injection attacks. ACM Transac-
tions on Information and System Security (TISSEC),
13(2):14.

Boyd, S. W. and Keromytis, A. D. (2004). Sqlrand: Pre-
venting sql injection attacks. In International Confer-
ence on Applied Cryptography and Network Security,
pages 292–302. Springer.

Buehrer, G., Weide, B. W., and Sivilotti, P. A. (2005). Us-
ing parse tree validation to prevent sql injection at-
tacks. In Proceedings of the 5th international work-
shop on Software engineering and middleware, pages
106–113. ACM.

Darkreading (2019). SQL Injection Attacks Rep-
resent Two-Third of All Web App Attacks.
https://www.darkreading.com/attacks-breaches/sql-
injection-attacks-represent-two-third-of-all-web-app-
attacks/d/d-id/1334960.

DIVA (2016). Damn insecure and vulnerable App.
https://github.com/payatu/diva-android.

DVWA (2015). Damn Vulnerable Web App (DVWA).
http://www.dvwa.co.uk.

Junjin, M. (2009). An approach for sql injection vulnerabil-
ity detection. In 2009 Sixth International Conference
on Information Technology: New Generations, pages
1411–1414. IEEE.

Khoury, N., Zavarsky, P., Lindskog, D., and Ruhl, R.
(2011). Testing and assessing web vulnerability scan-
ners for persistent sql injection attacks. In proceedings
of the first international workshop on security and pri-
vacy preserving in e-societies, pages 12–18. ACM.

OWASP (2016). Web Application Vulnerability Report.
https://www.owasp.org/index.php.

Paige, M. (2013). The tangled web: A guide to securing
modern web applications by michal zalewski. ACM
SIGSOFT Software Engineering Notes, 38(4):39–40.

Patel, N. and Shekokar, N. (2015). Implementation of pat-
tern matching algorithm to defend sqlia. Procedia
Computer Science, 45:453–459.

Prabakar, M. A., Karthikeyan, M., and Marimuthu, K.
(2013). An efficient technique for preventing sql in-
jection attack using pattern matching algorithm. In
2013 IEEE International Conference ON Emerging
Trends in Computing, Communication and Nanotech-
nology (ICECCN), pages 503–506. IEEE.

Qbea’h, M., Alshraideh, M., and Sabri, K. E. (2016). De-
tecting and preventing sql injection attacks: a formal
approach. In 2016 Cybersecurity and Cyberforensics
Conference (CCC), pages 123–129. IEEE.

Sadeghian, A., Zamani, M., and Ibrahim, S. (2013). Sql in-
jection is still alive: a study on sql injection signature
evasion techniques. In 2013 International Conference
on Informatics and Creative Multimedia, pages 265–
268. IEEE.

Sathyanarayan, S., Qi, D., Liang, Z., and Roychoudary, A.
(2014). Sqlr: Grammar-guided validation of sql injec-
tion sanitizers. In 2014 19th International Conference
on Engineering of Complex Computer Systems, pages
154–157. IEEE.

SecurityIdiots (2012). SQL Injection Ninja Testing Labs.
http://leettime.net/sqlninja.com/index.php.

Veracode (2019). State of Software Security.
https://www.thehaguesecuritydelta.com/media/com
hsd/report/219/document/state-of-software-security-

2018-veracode-report.pdf.
Wassermann, G. and Su, Z. (2004). An analysis framework

for security in web applications. Citeseer.
WhiteHat (2019). Top 10 Applica-

tion Security Vulnerabilities of 2018.
https://www.whitehatsec.com/blog/whitehat-security-
top-10-application-security-vulnerabilities-of-2018.

Wu, H., Gao, G., et al. (2011). Test sql injection vulnera-
bilities in web applications based on structure match-
ing. In Proceedings of 2011 International Conference
on Computer Science and Network Technology, vol-
ume 2, pages 935–938. IEEE.

XSS (2019). XSS Game. https://xss-game.appspot.com/.
ZAkamai (2019). Web Attacks and Gaming Abuse.

https://www.akamai.com/us/en/multimedia/
documents/state-of-the-internet/soti-security-web-
attacks-and-gaming-abuse-report-2019.pdf/.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

610

