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Abstract: This paper presents the model-based development of a function for lateral control of an automated vehicle 
using Artificial Neural Networks (ANN) and Genetic Algorithms (GA). After an explanation of the method-
ology used and a summary of the state of the art for automated lateral control as well as for ANNs and rein-
forcement learning, the driving function is designed in the form of a functional structure. This is followed by 
a detailed description of the model-based design and validation process of the AI system. Finally, the function 
for automated lateral guidance in combination with a superior intelligent route management is verified and 
optimized in a pilot application. 

1 INTRODUCTION 

Automated driving and the associated digitalization 
and cross-linking of the cyber-physical traffic system 
(CPTS) are important focal points of modern research 
and development projects aimed to make mobility 
safer, more environmentally friendly and more com-
fortable. Autonomous driving shows new applica-
tion-specific usage scenarios that lead to innovative 
technologies if they are considered at an early stage 
in vehicle development. For this reason, electric, driv-
erless, application-specific vehicle concepts are being 
developed within the joint project "autoMoVe" (Dy-
namically Configurable Vehicle Concepts for a Use-
specific Autonomous Driving) funded by the Euro-
pean Fund for Regional Development (EFRE). 

The various advanced driver assistance systems 
(ADAS) used today are usually based on conven-
tional algorithms for information processing or on tra-
ditional methods of control theory. With increasing 
automation of driving operations, the requirements 
for safety and reliability in the various unpredictable 
situations of the complex CPTS continue to rise, 
which these proven methods can no longer meet 
(Vishnukumar, 2017). Therefore, the subproject "au-
toEVM" (Holistic Electronic Vehicle Management 
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for Autonomous Electric Vehicles) aims the model-
based design of innovative intelligent algorithms and 
functions for autonomous driving. Artificial intelli-
gence (AI) is a key technology for the many domains 
involved in the development, testing and deployment 
of intelligent, automated vehicles. 

A primary constituent of autonomous or automat-
ed driving is the control of the planar dynamics, i.e. 
the adjustment of the driving speed and steering an-
gle. In this contribution, the model-based design of a 
function based on Artificial Neural Networks (ANN) 
and Genetic Algorithms (GA) for the automated lat-
eral guidance of a vehicle is exemplarily presented. 

2 METHODOLOGY 

Due to the constantly increasing complexity and 
cross-linking of mechatronic systems, a structured 
and holistic design methodology is unavoidable. In a 
top-down process, a complex overall system is mod-
ularized and hierarchically structured into intelligent, 
encapsulated subsystems consisting of mechatronic 
components with defined interfaces. Figure 1 shows 
an example of the mechatronic structuring of the re-
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search vehicle FREDY (Function Carrier for Regen-
erative Electromobility and Vehicle Dynamics) with 
four hierarchical levels based on (Scherler, 2019). 

 

Figure 1: Mechatronic structuring of FREDY. 

The lowest hierarchical level is made up of mech-
atronic function modules (MFM), which consist of 
mechatronic systems that cannot be further subdi-
vided. They contain a mechanical structure, sensors, 
actuators and information processing. Each encapsu-
lated MFM has a defined functionality and describes 
the dynamics of the system. By coupling several 
MFMs and adding an information processing, mech-
atronic function groups (MFG) are set up. MFGs en-
able the realization of higher-value functions by using 
the subordinate MFMs. The combination of MFGs 
leads to autonomous mechatronic systems (AMS), 
e.g. the autonomous vehicle FREDY. By cross-link-
ing several AMS a cross-linked mechatronic system 
(CMS), in this case a CPTS, is created. 

After the hierarchical structuring, the mechatronic 
composition takes place in a bottom-up procedure. 
Starting with the lowest hierarchy level, each module 
is designed, validated and successively integrated into 
the overall system in a model-based, verification-ori-
ented process. 

3 STATE OF THE ART 

3.1 Automated Lateral Guidance 

Modern ADAS for automated lateral guidance re-
quire vehicle sensors for determining the direction of 
movement as well as environmental sensors, e.g. to 
detect the course of the road or to calculate the devi-
ation from the centre of the lane (Bartels, 2015). 

Self-localization is usually achieved by visual ori-
entation along the road markings. Currently used al-
gorithms are based either on lane color characteristics 
or on manually programmed lane models. Such con-
ventional methods of image analysis achieve good re-
sults under suitable lighting conditions and clearly 
visible road markings, e.g. on motorways. But they 

are also very computationally intensive and reach 
their limits in the case of disturbances such as poor 
visibility as well as dirty, damaged or complex road 
marking situations (Zang, 2018). If the position of the 
vehicle in the lane cannot be clearly determined the 
driver must take over the steering himself. Therefore, 
depending on the manufacturer, modern lateral guid-
ance assistants are only enabled above 60 km·h-1 
(Bartels, 2015). As a result, these systems can only be 
used on country roads and motorways. Their use in 
complex inner-city scenarios is explicitly excluded. 

The approach to lateral guidance presented in 
(Koelbl, 2011) is based on the control of lateral accel-
eration. The actual value is determined using of vehi-
cle sensors and a behavior model. This implies that 
the control performance depends on the complexity 
of the underlying vehicle model, which is kept as low 
as possible due to high real-time requirements. In 
model-based design, the complexity and thus the time 
and cost of controller synthesis increases with the 
depth of modeling. This aspect is intensified if the in-
dividual perspective and acceptance of the passengers 
are considered during function design. A real individ-
ualization of a driving function, i.e. the controller pa-
rameters, is hardly possible with conventional driver 
models for reasons of effort (Semrau, 2017). 

3.2 Artificial Neural Networks and  
Reinforcement Learning 

AI algorithms are characterized by a high fault toler-
ance as well as their ability to learn and are therefore 
suitable for questions of automated vehicle guidance 
(Eraqi, 2016). Particularly ANNs with machine learn-
ing have proven themselves in control engineering 
with reliability despite incomplete data, the advanta-
geous design process and their performance (Duriez, 
2017). ANNs try to imitate the structure of the human 
brain and its function. Neurons are processing units 
that accumulate input stimuli (signals) via weighted 
connections and calculate an output using an activa-
tion function. The interconnection of several neurons 
in at least two layers makes up the ANN.  

ANNs have achieved very good results with su-
pervised learning in various fields. However, if the 
ANN is to be used directly as a controller, there is 
usually no sample data available for training. In this 
case, reinforcement learning (RL) can be used. The 
ANN learns the optimal strategy in terms of a reward 
function given by the developer (Duriez, 2016). Q-
Learning and Policy Gradients are widely used gradi-
ent based RL algorithms. (Such, 2017) showed that 
gradient based methods are in some cases not always 

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

726



the ideal choice for optimization problems, since gra-
dient-free genetic algorithms (GA) often provide bet-
ter results in shorter time. In GAs the principle of evo-
lution is applied to optimization problems. A set of 
randomly generated individuals representing possible 
solution candidates make up a population. Each indi-
vidual is evaluated according to a fitness function (re-
ward). The best individuals of each generation (selec-
tion) evolve through replication, crossing and muta-
tion into the next generation (Eraqi, 2016). 

4 CONCEPT 

4.1 Problem and Requirements 

The AI-based lateral vehicle guidance system devel-
oped in the scope of this paper addresses the identi-
fied weaknesses and limitations from subsection 3.1. 

The main requirement is to maintain a trajectory 
or a safe area around this trajectory (trajectory tube). 
The purpose of the lateral guidance function is to de-
termine a steering angle setpoint based on vehicle and 
environment sensors, which is then controlled by an 
underlying vehicle dynamics control system. The 
driving function should provide a natural steering be-
havior without permanent oscillations with large am-
plitudes. The driving task is to be learned and tested 
by the ANN itself on randomly generated tracks. Its 
ability to generalize guarantees a safe, robust and 
model- and route-independent functionality. Model-
independent in this context means that the type and 
structure of a vehicle or route model does not influ-
ence the structure and parameters of the ANN. For se-
curity, flexibility, time and cost reasons, the design 
and testing of the AI system remain model-based.  

4.2 MFG Automated Lateral Guidance 

Figure 2 shows the structure of the function for auto-
mated lateral guidance on MFG level. It mainly con-
sists of a sensor model which preprocesses the posi-
tion and orientation of the ego vehicle in the trajectory 
tube as well as the ANN which determines a steering 
angle. The input of the ANN is the output d of the 
sensor model, which indicate the position x, y and ori-
entation (yaw angle ψ) of the vehicle in relation to the 
trajectory tube. The steering angle δref is the output of 
the ANN and serves as the setpoint of a subordinate 
vehicle dynamics control system on MFM level, 
which sets the real steering angle δ on the front axle. 

The remaining modules in Figure 2 are required 
for the model-based design. A linear single-track ve-

hicle model with constant velocity v, whose input var-
iable is δ, is used for this purpose. During training, a 
fitness value Fit is calculated for each individual us-
ing simulated vehicle and environmental data as well 
as a reward function. This value is used in the GA to 
pass new connection weights to the next generation 
after an evolutionary process. Thus, an ANN which 
performs the automated lateral guidance according to 
the criteria and requirements defined in the fitness 
function regarding safety and comfort is evolved. 

 

Figure 2: Concept of the ANN for automated lateral control. 

4.3 AMS Intelligent  
Route-Management 

The function for automated lateral guidance operates 
at MFG level (Figure 1) and requires a trajectory tube 
(Figure 2). This data is provided by the intelligent 
route-management (iRM) doplar (domain-specific 
configurable, modular platform for route guidance 
and trajectory planning), a system on AMS level. The 
iRM doplar, is able to carry out trajectory planning in 
a way that a trajectory optimized for energy consump-
tion, travel distance or travel time is generated. Dy-
namic environmental data, which is available via 
wireless V2X (vehicle-to-everything) communica-
tion within the CPTS, can also be included. The struc-
ture of the iRM doplar is shown in Figure 3. It con-
sists of nine main functions that have defined internal 
and external interfaces:  
 Self-localization. The ego position of the vehicle 

is essential information for route guidance. The 
determination can be done via GPS or environ-
mental sensors. Finally, the ego position must be 
assigned to a node in the map’s graph. 

 Environment Perception. Environmental Per-
ception evaluates vehicle and environmental sen-
sors to provide information about the environment 
that is used in both route guidance and mapping. 

 Mapping. The map data are the essential basis for 
route guidance. The mapping function supplies 
this map data and converts it into the mathemati-
cally necessary form for route guidance. E.g. the 
Open-StreetMap can be used as a data source. A 
further possibility for generating or updating the 
map data is the use of environmental perception. 
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Figure 3: Structure of iRM doplar. 

 HMI. The HMI determines the destination and the 
setting of the route guidance in relation to the de-
sired operating mode. 

 Communication. The communication function is 
used for route guidance in order to receive mes-
sages about disturbances or warnings of wireless 
communication with the environment and their 
evaluation. This communication can be based on 
a variety of technologies, such as V2X communi-
cation according to the WLAN standard 802.11p 
or the mobile radio standard 5G. 

 Route Guidance. The route guidance is based on 
the Dijkstra algorithm and has an interface for in-
formation from wireless communication, e.g. 
about disturbances or warnings of other vehicles 
(CMS level). Based on the ego position of the self-
localization, the destination input of the HMI and 
the map data, an optimized route is determined ac-
cording to travel time or energy consumption. 

 Fleet Management. Optionally, a fleet manage-
ment can influence the route guidance of a vehicle 
in order to achieve the optimum of a vehicle fleet. 

 Trajectory Planning. The trajectory planning de-
termines a trajectory tube from the calculated 
route, considering safety and comfort aspects such 
as lateral acceleration or vehicle speed. 

 Automated Vehicle Guidance. The automated 
vehicle guidance calculates setpoints for inte-
grated vehicle dynamics control systems on the 
basis of the trajectory tube as well as relevant ve-
hicle conditions such as speed or position. This 
function is divided into two sub-functions for lon-
gitudinal and lateral guidance.  

 
 

5 MODEL-BASED DESIGN OF 
AN ANN FOR AUTOMATED  
LATERAL GUIDANCE 

After the interfaces and the supply of the necessary 
information by the iRM doplar were introduced, in 
this section, the function development from the de-
sign of the GA over the determination of the network 
architecture and derivation of the fitness function up 
to the validation is described. 

5.1 Modelling 

Linear single-track models have proven to be a good 
approximation for describing the lateral dynamics of 
automobiles (Schramm, 2018). The longitudinal ve-
locity vx of the vehicle with the mass m is assumed to 
be constant. The orientation of the vehicle in the pla-
nar coordinate system is described by the yaw angle 
ψ. The yaw rate ψሶ  and the yaw acceleration ψሷ  are 
characterizing the rotational movement of the vehicle 
about its vertical axis with the moment of inertia Jz. 
The slip angle β is the difference between the direc-
tion of the centre of gravity speed and the longitudinal 
axis of the vehicle. The centre of gravity is defined by 
the distances to the centres of the front lF and the rear 
axle lR. The steering angle δ describes the angle be-
tween the front wheels and the longitudinal axle and 
is the input of the linear single-track model. The steer-
ing angle is also defined as output of the ANN, since 
it is required as the setpoint of a subordinate vehicle 
dynamics control system. It is assumed that the sys-
tem can set the steering angle within a computation 
step, so it does not have to be simulated. The corner-
ing stiffnesses of the front and rear wheels cαF and cαR 
describe the constantly proportional relationship be-
tween the cornering angles of the respective axle and 

,ଵݔ ,ଶݔ ⋯,ଷݔ

trajectory generator

݈݅݀݁ܽ	
ܾ݁ݑݐ	ݕݎݐ݆ܿ݁ܽݎݐ

kinematics
kinetics

environment
sensors

,ܿ݅ ோܿ݅

,ݔ ݕ ≡ ߮௫,߮௬

ோݔ

data fusion

ܽ௫, ܽ௬, ܽ௭

߱௫, ߱௬, ߱௭

odometry
݃௭

state sensors self-localization

environment 
perception

map data
e݊ݐ݊݁݉݊ݎ݅ݒ	ܽ݉

ݎݐܿ݁ݒ	݊݅ݐݏ	݃݁

ݏ݊݅ݐ݅ݏ	ݐ݆ܾܿ݁

ݏݎݐܿ݁ݒ	݊݅ݐ݉	ݐ݆ܾܿ݁

ݎݐܿ݁ݒ	ݕݐ݈݅ܿ݁ݒ	݃݁

stabilisation
conditions

route guidance

݁ݐݑݎ

fleet management

HMI

communication

mapping

݊݅ݐܽ݉ݎ݂݊݅

automated vehicle
guidance

longitudonal
guidance

lateral 
guidance

	ݏݐ݊݅ݐ݁ݏ
ܯܨܯ	ݎ݂

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

728



the associated lateral forces (Schramm, 2018). The 
equations of motion of the linear one-track model are: 

 

βሶ=	‐
cαF+cαR

m·vx
β+ ൬

cαR·lR-cαF·lF
m·vx

2 -1൰ψሶ +
cαF

m·vx
δ (1)

ψሷ 	=	
cαR·lR-cαF·lF

Jz
β	-

cαF·lF
2+cαR·lR

2

Jz·vx
ψሶ +

cαF·lF

Jz
δ (2)

 
In order to test and ensure the ANN's generaliza-

tion capability, training and testing take place on ran-
domly generated tracks. The limited validity range of 
the linear single-track model with respect to lateral 
acceleration ay must already be considered during 
route generation. With the radius of curvature ρ ap-
plies to the linear single-track model: 

 

|ay|=
vx

2

ρ
≤4 m·s-2 (3)

 
The guidelines for the layout of country roads is-

sued by the German Federal Highway Research Insti-
tute (BASt) specify the ratio between the length of a 
straight line and the subsequent curve radius This 
guideline and the minimum curve radius have been 
considered during automatic track generation. 

The vehicle was extended with a body whose 
outer dimensions exceed those of the chassis. A vir-
tual sensor was modeled to detect the vehicle's own 
position and orientation in the trajectory tube. The 
sensor is centrally mounted on the front of the body 
and detects the boundaries of the trajectory tube in an 
angle range of ±40 ° and a radius of 8 m. The orien-
tation and position of the vehicle in relation to the the 
trajectory tube is determined by eleven straight lines 
with a constant angular distance. The distances be-
tween the point where the straight lines intersect with 
the trajectory tube and the mounting point of the sen-
sor make up its output signal d. If a line has no inter-
section with the trajectory tube, the measured value 
corresponds to its maximum range, in this case 8 m. 

5.2 Design of the Genetic Algorithm 

In this contribution, an individual is represented by 
one ANN. The connection weights are called param-
eters or genes. In the crossing of two individuals, ran-
domly selected genes of two randomly selected indi-
viduals are swapped. When a mutation is performed, 
one or more genes of a randomly selected individuals 
are reinitialized. The stochastic influence neither 
guarantees that the individuals of each generation will 
improve nor that a global optimum will be achieved. 
Therefore, a well-adjusted GA is essential. 

A large population ni increases the genetic diver-
sity and thus the exploration of the parameter space, 
but on the other hand also requires a higher computa-
tional effort per generation. Smaller populations pro-
mote evolutionary optimization whilst less explora-
tion of the search space. In tournament selection, nt 
randomly selected individuals are compared in ni 
tournaments. The best individuals evolve into the 
next generation. A larger tournament size leads to a 
reduction in diversity while at the same time making 
better exploitation of the known parameter space. The 
crossing rate describes the proportion of individuals 
in the population who reproduce in pairs by recom-
bining their genes into the next generation. Whether 
the modified individuals behave better or worse is not 
known before. Although recombination improves ex-
ploitation, the crossing rate should not be too high to 
minimize the probability of losing good individuals 
of the current generation. With a small mutation rate, 
the learning process tends to yield a local optimum, 
while a large rate increases the probability of finding 
a global optimum, but also the risk of losing good in-
dividuals. After intensive research, the GA parame-
ters for learning lateral guidance were defined: 

 Population Size: 50 
 Tournament Size: 5 
 Crossing Rate: 90 % 
 Mutation Rate: 1 % 

5.3 Determination of the Network  
Architecture 

The definition of the ANN’s architecture includes the 
determination of the topology as well as the number 
of hidden layers and the neurons contained therein. 
The sizes of the input and output layers can be derived 
from the function structure and interfaces (Figure 2). 
The eleven sensor values are the inputs of the ANN 
and are mapped on the steering angle representing the 
output. It can be assumed that the same lateral posi-
tion and orientation on the track always require the 
same action. Therefore, no sequential signals have to 
be processed, so that a feed-forward network, in par-
ticular a multilayer perceptron, can be used, which 
keeps the computational and training effort low. The 
hyperbolic tangent serves as the activation function. 

In a preliminary test, ANNs with one, two and 
three hidden layers are examined to determine a suit-
able network architecture. The number of neurons per 
hidden layer nhidden was selected to nhidden ={2,4,8,16} 
in order to consider very small as well as large layer 
sizes (Heaton, 2015). All solution candidates are 
trained on the same track with a length of approx. 
640 m and tested on five further identical tracks. 
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To train and evaluate the various network archi-
tectures a fitness function Fit was used, in which the 
distance covered by the vehicle u is rewarded. In ad-
dition, there is a bonus B when the vehicle reaches the 
finish of the track. As soon as the car body touches 
one of the boundaries of the trajectory tube, the sim-
ulation of this individual is classified as a crash and 
aborted. The fitness function is: 

 
Fit=u+B (4)

B= ቄ1000 arrived at destination
0 else

 (5)

 
The evolutionary process of a GA is infinitely 

long, which is why the definition of suitable termina-
tion conditions is necessary. For the preliminary test, 
the only requirement is to reach the destination. Due 
to the stochastic influence of the GA, it is not guaran-
teed that an individual that meets the requirements 
will evolve in finite time. Therefore, the maximum 
number of generations is defined as 25. 

The preliminary test showed that ANNs with one 
hidden layer and four neurons (Figure 4) are already 
able to learn lateral guidance. Larger ANNs were only 
partially able to complete the test tracks without 
crashing. Using large ANNs is associated with a 
higher risk for overfitting and a higher computational 
effort. Therefore, it is advisable to always use the 
smallest possible ANN (Figure4). This also keeps the 
parameter space for optimization as small as possible.  

 

Figure 4: ANN developed in the preliminary experiment. 

5.4 Optimization of the Fitness  
Function 

According to subsection 4.1, the ANN should keep 
the vehicle in the middle of the trajectory tube without 
oscillations. In consequence the absolute value devi-
ation from the centre of the trajectory tube |Δy| is pe-
nalized. In order to avoid oscillations, steering angle 
speeds |δሶ |> δሶ ୟୡ = 60 °·s-1 on the steering wheel are pe-
nalized too. For a stable evolution process, a monot-
onously increasing fitness function is recommended 
(Duriez, 2017). For this the penalized parameters |Δy| 
and |δሶ | must be normalized to their respective maxi-
mum values Δymax and δሶmax and multiplied by a factor. 
The factor k1 describes the percentage of the maxi-
mum possible penalty of the reward received. The ra- 

tio between |Δy| and |δሶ | is expressed by k2: 
 

Fit = u+B - k1·uቆk2

|Δy|

Δymax

+ሺ1-k2ሻ
f൫หδሶ ห൯

δሶmax

ቇ (6)

f൫หδሶ ห൯= ൜หδ
ሶ ห หδሶ ห>δሶ ac

0 else
 (7)

 
The optimum values for k1 and k2 according to the 

requirements have to be determined experimentally. 
The new requirements result in two further termina-
tion conditions. Firstly, the root-mean-sqaure value of 
the lateral deviation Δy must not exceed 25 cm over 
the entire track. In addition, no inadmissible steering 
angle speed may occur on the entire tracks.  

During extensive simulation series it was found 
out that k1=50 % is the best compromise between un-
acceptable driving behavior at a too small and an in-
creasing tendency for overfitting at a too high penalty. 
In further experiments the factor k2 was determined. 
Figure 5 exemplarily shows the simulation results of 
three fitness functions according to eq. (6) on one of 
the test tracks. The indices for the different colored 
curves indicate the respective value for k2. The lateral 
deviation, the steering angle and the steering angle 
speed at the steering wheel are shown over the x-co-
ordinate of the approx. 630 m long track. 

 

Figure 5: Simulation results on one of test tracks. 

Figure 5a shows that for all factors k2, the lateral 
deviations are completely inside the dashed lines 
marking the RMS boundaries, so that they all fulfil 
this requirement. The blue curve with k2=100 % does 
not take δሶ  into account. Therefore, Figure 5c shows 
steering angle speeds exceeding the acceptable range. 
The resulting strong oscillations can also be observed 
in the steering angle and the lateral deviations curves. 
The red curve with k2=50 % shows a significantly im-
proved behavior regarding the steering angle speed. 
This has also led to smoother curves of the steering 
angle and lateral deviation. The minimum value for 

input neuron

hidden neuron

output neuron

bias neuron
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k2 is 50 %, since a vehicle which always drives at the 
edge of the lane without oscillations is dangerous. All 
yellow curves with k2=80 % show a good compro-
mise |Δy| and |δሶ |. The steering angle speed is consist-
ently within the acceptable range and barely exceeds 
the values of the red line. Furthermore, there has been 
an improvement in the lateral deviation. Neverthe-
less, the oscillations, especially at the beginning of 
the track, could not be completely avoided. The re-
maining amplitudes in Figure 5a are in the range of 
millimeters, which are retained anyway in a real ap-
plication due to imperfect environmental conditions.  

With k2 =80 %, the best result was achieved in the 
simulation series, which is why this GA-trained ANN 
forms the result of the model-based designed function 
for automated lateral guidance.  

5.5 Validation of the ANN  

The training and testing of the ANN designed so far 
has been carried out with a constant vehicle speed of 
50 km·h-1, on tracks with a length of up to 800 m. In 
order to extensively validate the driving function, a 
longer distance had to be travelled at different but 
constant speeds. Figure 6 shows the simulation result. 

 

Figure 6: Simulation results with different velocities. 

It is noticeable that the vehicle caused crashes at 
speeds >79 km·h-1 and that the RMS values of the lat-
eral deviations in Figure 6a show a V-shaped course. 
The ANN does not know the speed, so it always out-
puts the same steering angle for the same sensor sig-
nals. This increases the tendency to high-frequency 
steering angle oscillations with large amplitudes at 
higher speeds when looking at the δRMS values in Fig-
ure 6b. At 65 km·h-1, a favorable combination of am-
plitude and frequency seems to help the vehicle keep-
ing in the middle of the trajectory tube. At lower 
speeds there are no oscillations to compensate the de-
viations, so the ANN causes higher but acceptable lat-
eral deviations. However, the driving function has po-
tential for improvement, especially at higher speeds. 

From these simulation results it can be concluded 
that the model-based developed and GA-trained ANN 
is able to realize automated lateral guidance for the 

speed range between 30 and approx. 70 km·h-1 with 
constant speeds according to the requirements. 

6 VERIFICATION AND  
OPTIMAZATION 

To verify and further optimize the ANN for auto-
mated lateral guidance, it will be tested in a pilot ap-
plication under more realistic conditions. The vehicle 
should automatically navigate from Ostfalia in Wolf-
enbuettel (Salzdahlumer Straße 46/48) to the Institute 
of Automotive Engineering (IfF) at the Technical 
University of Braunschweig (Hans-Sommer-Straße 
4) as shown in Figure 7. In an offline simulation, ad-
ditional functions of the iRM doplar on AMS level 
are used for route guidance and trajectory planning.  

At first, the vehicle must localize itself and calcu-
late a route. The black line in Figure 7 shows the re-
sulting travel time-optimized 12.8 km long route. 
Since this is an offline simulation, no dynamic infor-
mation from the V2X communication were consid-
ered. The trajectory generator then calculates a trajec-
tory tube considering safety and comfort aspects. The 
sensor model uses this information to determine the 
position and orientation of the ego vehicle and passes 
it to the ANN. Since this can only operate at constant 
speeds so far, it is set to 50 km·h-1 over the entire route 
because of the inner-city sections. When navigating 
on the route, curved sections are particularly chal-
lenging. The five most critical situations as well as an 
exemplary straight line are marked by the numbered 
circles in Figure 7 and will be evaluated exemplarily. 

 

Figure 7: Pilot Application with time optimized route. 

Figure 8a and b show simulation results in seg-
ments of the sections 2 and 5 from Figure 7. In Figure 
8a and b the trajectory tube is drawn in black and its 
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centre line in turquoise, while the actual travelled 
route was drawn in red. Here it can be seen that the 
trajectory tube contains relatively strong kinks in 
some places due to a large discretization. At the kinks 
the vehicle deviates quite strongly from the set course 
but maintains a realistic and more pleasant route. 
Shortly before and after the kinks, the vehicle holds 
the middle of the trajectory tube very exactly. 

 

Figure 8: Exemplary results of the pilot application. 

Figure 8c shows the maximum lateral deviations 
of the vehicle from the centre of the trajectory tube in 
the respective sections. The dashed line marks the ac-
ceptable limit during training (ΔyRMS=25 cm). Except 
for the first section of the route with a particularly 
small, i.e. difficult, curve, this limit was adhered to 
over the entire track. For segments 2 and 5, these de-
viations are about 12 and 23 cm at the kink points 
drawn, and thus within a very good range. On the 
straight section 3 the maximum lateral deviation is 
less than 4 cm. Within the 3.5 m wide trajectory tube, 
a maximum lateral deviation of 85 cm is possible for 
the simulated vehicle with a width of 1.81 m.  

Thus, both parts of the iRM doplar and the func-
tion for automated lateral guidance have proven to be 
functional in a realistic pilot application. Considering 
the constraints that the vehicle drives at a constant 
speed, the function is verified. By extending the func-
tionality regarding the longitudinal dynamics, the sys-
tem can be further optimized in the future. 

7 CONCLUSION AND  
FUTURE WORK 

This paper shows the model-based design of a func-
tion for automated lateral guidance using ANNs and 
GAs. After a short presentation of the the motivation 
and the underlying methodology of this work, the ba-
sics of automated lateral guidance as well as ANNs 

and RL were explained. Subsequently, requirements 
and a functional structure for the driving function 
were derived from the problems of today's ADAS and 
the advantages of ANNs and GAs were pointed out. 
This was followed by a description of the model-
based design process of the ANN for automated lat-
eral guidance. After the training on a remarkably 
short distance with a length of 640 m, the function for 
automated lateral guidance was validated. Finally, the 
function was verified in a realistic pilot application 
and optimization potential regarding the longitudinal 
dynamic behavior was pointed out. 

A future work step is to extend the functionality 
of the lateral guidance function for operation at higher 
and variable speeds. A further step is the analogous 
design of an ANN for longitudinal guidance respec-
tively their integration for planar vehicle guidance. 
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