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Abstract: This paper presents a seamless low-cost Rapid Control Prototyping (RCP) development platform, LoRra for 
short, based on the open source software Scilab / Xcos. The model-based, verification-oriented RCP devel-
opment process is introduced to master the increasing system complexity in ever-shortening development 
cycles. Within this process Model-in-the-loop (MiL)-, Software-in-the-Loop (SiL)-, and Hardware-in-the-
Loop (HiL)-simulations are performed for testing and optimization. Based on requirements derived from the 
process, the concept of the LoRra platform is developed first. It contains model libraries, a code generator, a 
real-time interface, real-time hardware and a human-machine interface for measurement and calibration tasks. 
Subsequently, the design of each component will be discussed. Finally, a first validation and optimization of 
the platform is carried out by using the state of charge estimation for lithium-ion batteries. 

1 INTRODUCTION 

Nowadays, a key challenge for innovative companies 
is to develop even more complex products faster and 
faster. In order to meet the constantly intensifying re-
quirements, more and more hard- and software is being 
integrated in technical systems. Core of the resulting 
embedded mechatronic systems are the embedded con-
trol units (ECU) with implemented intelligent func-
tions for signal processing and control. Due to the rap-
idly increasing amount of functionality as well as the 
degree of networking, increasingly complex software 
components are designed which interact strongly with 
each other (Quantmeyer, 2013). As a result, software 
and hardware designs often contain numerous errors 
that need to be detected through intensive testing and 
eliminated in time-consuming iteration loops. How-
ever, in order to meet the demand for a fast time to mar-
ket, the development and validation of embedded 
mechatronic systems using an effective development 
methodology is indispensable (Liu-Henke, 2005). 

For this reason, the structured, model-based, veri-
fication-oriented Rapid Control Prototyping (RCP) 
development process is used, which includes system 
structuring and composition. Model-in-the-Loop 
(MiL)-, Software-in-the-Loop (SiL)-, and Hardware-
in-the-Loop (HiL)-Simulations are carried out for 

testing. In the automotive industry, this has estab-
lished itself in the development of ECUs (Staron, 
2017). The methodology is characterized by the high 
degree of consistency and automation, from model-
ling, model-based function design and automated 
generation of source code to the automated imple-
mentation on real-time hardware. All process steps 
mentioned are seamlessly executed in a fully auto-
mated CAE environment to minimize manual work 
and resulting random errors. Currently, only cost-in-
tensive combinations of CAE tools and real-time 
hardware, such as Matlab/Simulink with a dSPACE 
system, support the development process described 
above in a seamless way (Liu-Henke, 2014). 

As part of the EU-funded research project Low-
Cost Rapid Control Prototyping System with Open 
Source Platform for the Function Development of 
Embedded Mechatronic Systems (LoCoRCP), the 
seamless Low-Cost RCP-Development Platform, 
LoRra for short, is being developed at Ostfalia. The 
following paper presents the concept and design of 
the integrated RCP platform. It will be applied for the 
functional development of a battery management sys-
tem for verification and optimization. 

The rest of the paper is structured as follows. Sec-
tion 2 describes the basic RCP-methodology, which 
is provided by the platform. Afterwards, in section 3 
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the concept of the platform is introduced. The follow-
ing section 4 describes the design of each module of 
the LoRra platform. For a first verification and opti-
mization, section 5 demonstrates the application of an 
Extended Kalman Filter for State of Charge estima-
tion for Lithium-Ion batteries as part of a battery man-
agement system (BMS). The paper closes with a con-
clusion and a short outlook in section 6. 

2 METHODOLOGY 

As mentioned in the introduction, modern embedded 
mechatronic systems are developed and validated us-
ing model-based, verification-oriented RCP method-
ology. After system structuring through modulariza-
tion and hierarchization, integration takes place by 
using the mechatronic composition. Based on the 
specifications and requirements, a model of the real 
plant is created and analysed. This model serves as 
the basis for functional synthesis. Using offline sim-
ulations, the designed algorithms are tested and opti-
mized (MiL). Once a sufficient state of functionality 
has been reached, the automated generation of code 
takes place, which in turn is tested and optimized in 
offline simulations (SiL). With increasing software 
quality, HiL-simulations are carried out. For this pur-
pose, the designed function is automatically inte-
grated into a real-time environment, compiled into an 
executable program and transferred to target hard-
ware. Further tests and optimizations take place under 
real-time conditions before the final implementation 
and validation on the real system is done (Liu-Henke, 
2005). 

The presented RCP methodology is seamlessly 
supported by an integrated computer aided engineer-
ing (CAE) development environment. For this pur-
pose, libraries for modelling are required. The analy-
sis and functional synthesis is supported by using 
block diagrams. A code generator, transforms the 
model into C code and then the function is automati-
cally implemented on a target hardware using a real-
time interface (RTI). Due to the high degree of auto-
mation and the model-based validation in early 
phases of development, errors are systematically min-
imized. 

3 CONCEPTION 

The following section discusses the concept of the 
LoRra platform to support the methodology outlined 

in Section 2. First, the issues to be solved are concre-
tized by the problem description. From these, the con-
cept of the platform is derived. 

3.1 Problem Description 

As early as the mid-1990s tools for the integrated 
model-based development of mechatronic systems 
were published (Hanselmann, 1996). The combina-
tion of the CAE tool Matlab / Simulink with real-time 
systems from dSPACE (see Figure 1 on the left) has 
established itself as a quasi-standard in the automo-
tive industry (Beine, 2009). 

A wide range of libraries are available from this 
high-cost platform to support modelling and analysis 
as well as functional synthesis. The Simulink Coder 
supports the automated transformation of block dia-
grams into source code in a variety of ways as well as 
for various target languages and systems. dSPACE's 
RTI links the Simulink model to the interfaces of a 
real-time hardware and automatically implements the 
generated executable on a target hardware. Here, a 
wide range of powerful real-time systems are availa-
ble. The program ControlDesk provides a human-ma-
chine interface (HMI) for interactive communication 
in case of measurement and calibration tasks 
(Schuette, 2005). The process sequence in combina-
tion with the described tool chain illustrated by the 
middle of Figure 1. 

 

Figure 1: High-Cost RCP process and principle Low-Cost 
solution. 

The costs associated with the purchase and opera-
tion of the presented tool chain are immense (Liu-
Henke, 2014). For this reason, various open-source 
solutions with comparable functionalities have been 
developed. Especially the CAE environment Scilab 
with its graphical simulation tool Xcos (formerly Sci-
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cos) comply with many functions of Matlab / Sim-
ulink (Jacobitz, 2018). In combination with a micro-
controller as real-time hardware, a low-cost develop-
ment process could be realized. However, there are 
still various gaps in this process as shown by Figure 
1. Single process steps, such as code generation, can 
be realized up to a limited extent, but there is still a 
lack of automation and consistency. 

The simulation of dynamic systems with Xcos and 
the generation of C code to accelerate the simulation 
is described in detail by (Campbell, 2010). Already at 
the beginning of the 2000s, approaches arose which 
execute this generated code on a PC using the real-
time Linux system RTAI (Bucher, 2005), (Duma, 
2009) and couple it to a real process via the interface 
library COMEDI (Weichinger, 2011). Work that is 
more recent deals with the execution of the program, 
generated by Xcos, on a microcontroller (Skiba, 
2015). Also the code itself has been improved. Thus, 
(Grabmair, 2014) presented a toolbox that generates 
C code for a microcontroller from specially imple-
mented Xcos blocks. Furthermore, the automated par-
allelization of the generated source code is being re-
searched (Reder, 2017). 

Many of the above solutions are based on old ver-
sions of Scilab and are not under development any-
more. In addition, many partial solutions are available, 
but the integration to a seamless process according to 
Figure 1 is missing. For the current Scilab version 6, 
the solutions presented are not compatible. 

3.2 Conception of LoRra 

In order to fill the gaps described in Section 3.1 and 
meet the non-functional requirements, the functionality 
is modularized, first. The LoRra model libraries are 
used to support modelling in Xcos. The automatic gen-
eration of C code is performed by the LoRra-Code-
generator. Further processing for online simulation on 
a microcontroller is possible with the LoRra-RTI. Fi-
nally, online experiments can be performed using the 
LoRra-iGES graphical user interface. All mentioned 
modules are integrated to fill the gaps shown in Figure 
1 and build the seamless LoRra platform. Figure 2 
summarizes the over-all concept of LoRra. 

4 TOOL DESIGN 

The following section describes in detail the design 
of the modules introduced in section 3. As they are 
essential, the focus will be on the LoRra Model librar-
ies, the LoRra-Code-generator, the LoRra-RTI and 
the target hardware. 

 

Figure 2: Concept of the LoRra-Platform. 

4.1 Design of the LoRra Model  
Libraries 

The LoRra platform supports a large number of dif-
ferent technical domains as model libraries. In this 
section, the modeling of a lithium-ion battery cell ac-
cording to (Quantmeyer, 2014a) is carried out in an 
exemplary manner. This model will be used for the 
application in section 5. 

The behaviour of the lithium-ion battery depends 
highly nonlinear on the current ݅௦ as well as on the 
state of charge (ܵܥ), temperature ܶ and the state of 
health (ܵܪ). For this model, the influences of ܶ and 
 .are neglected ܪܵ

First, the ܵܥ is determined on basis of the bal-
ance equation (Eq. 1). The determined charge is 
scaled with the nominal capacity ܥ and the coulomb 
efficiency ߟ. 

ܥܱܵ ൌ ܥܱܵ  න
ߟ
ܥ
݅௦	dt (1)

The terminal voltage ݑ  is calculated from an 
equivalent circuit model (cf. Figure 3). It consists of 
a voltage source representing the open circuit voltage 
-a series resistance and four RC modules to ap ,(ܸܥܱ)
proximate the dynamics. The ܱܸܥ as well as the pa-
rameters of resistors and capacitors depends highly 
nonlinear on the ܵܥ. This nonlinearity poses a huge 
challenge particularly to the identification. 

Therefore, identification is done by using a elec-
trical impedance spectroscopy in the frequency do-
main at various SoC level. After that, the model has 
been validated in time domain using a dynamic stress 
test (DST). 
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Figure 3: Equivalent circuit model of a battery 
(Quantmeyer, 2014a). 

4.2 Design of LoRra-Code-generator 

As shown in section 2, the automated generation of 
code from the model is an essential part of the RCP 
process. The block diagram of the function is trans-
formed into equivalent, high-performance C code 
without user intervention. This avoids random errors 
caused by manual programming and saves develop-
ment time (Hanselmann, 1996). 

Figure 4 illustrates the concept of the LoRra-
Code-generator. The Xcos model is divided into its 
functional and topological description. The functional 
description is available for each basic block in the 
form of its algorithms. The topology, i.e. the connec-
tion of the blocks to the model logic, can be inter-
preted as a directed graph. A model transformation 
compiler links both information to code fragments e.g. 
for initialization, output and state calculation and 
event calculation. These can be optimally used for 
post-processing (e.g. for generating SiL- or HiL-sim-
ulations). 

 

Figure 4: Concept of the LoRra-Code-generator. 

4.2.1 Topological Description of the Model 

As mentioned before, the topology of the Xcos model 
is represented by a graph 	ܩ ൌ ሺܸ, ܴ,  ሻ. ܸ is the setܧ

of nodes (each node represents a block in the dia-
gram), ܴ is the set of regular edges (continuous sig-
nals) and ܧ is the set of event edges (time discrete 
event impulses). 

A node ݒ ∈ ܸ can represent a basic block or a hi-
erarchy element. Hierarchy elements are called Super 
Blocks and contain an independent dataflow graph. 
The basic blocks Input and Output are used to link it 
to the next higher level. Since the sequence of input 
or output signals of a block is relevant for the calcu-
lation, an edge ݎ ∈ ܴ or ݁ ∈ -must also contain in ܧ
formation about the input / output port number in ad-
dition to the source and target nodes. 

4.2.2 Functional Description of the Blocks 

The functional behavior of each basic block can be 
described as an extended nonlinear state space repre-
sentation: 

പሶݔ ൌ പ݂൫ݐ, ,പݔ ,പݖ ,ഫݑ പ൯ (2)

ݕ ൌ ݃൫ݐ, ,പݔ ,പݖ ,ഫݑ പ൯ (3)

Where ݐ is the current simulation time, ݔപ  the vector 
of continuous states, ݖപ  the vector of time-discrete 
states, ݑഫ the vector of input variables, പ  the parame-
ter vector and ݕ the vector of output variables. Both, 

the continuous and the time-discrete states can jump 
when the block is activated by an event input. In ad-
dition, then the time of each output event impulse 
 :is calculated (Nikoukhah, 1996) (௩ݐ)

ାݔ ൌ ݄൫ݐ, ,ିݔ ,ିݖ ,ିݑ ,പ ൯ (4)ݑ

ାݖ ൌ ݄ௗ൫ݐ, ,ିݔ ,ିݖ ,ିݑ ,പ ൯ (5)ݑ

௩ݐ ൌ ݄௧൫ݐ, ,ିݔ ,ିݖ ,ିݑ ,പ ൯ (6)ݑ

Here, ݑ is the event input vector. It contains both the 
external event inputs of the block and internal events 
(e.g. due to zero crossing). 	ݔା and ݖା are the values 
of the states right after event activation. ିݔ,  and 	ିݖ
 .are the states / inputs at the arrival of an event ିݑ

4.2.3 Model Transformation Compiler 

The Model transformation compiler is the core of the 
code generator and drives the process. This is done in 
three steps: 
- Pre-processing of the Xcos model 
- Linking of functional and topological description 
- Post-processing of the generated code fragments 

During pre-processing, the Xcos data structure is first 
transformed into the dataflow graph (cf. section 4.1.1). 
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It is then checked for validity. In particular, this con-
cerns the inclusion of unsupported basic blocks or al-
gebraic loops. To recognize algebraic loops, a modi-
fied depth-first search is performed to find cycles in 
the dataflow graph. If the given model is considered 
to be valid, the topology can be optimized, e.g. by re-
moving paths that are not used or by merging similar 
structures into functional groups. Finally, starting 
from each source node, a topological sorting of the 
graph is performed to determine the correct calcula-
tion sequence. 

To link topology and functional description, the 
given algorithms for each node ݒ ∈ ܸ  are trans-
formed into C code by executing formal transfor-
mation rules. Taking into account the previously de-
termined calculation sequence, the code fragments 
are thus joined up. This can be done for the model as 
a whole (without considering hierarchy levels) or by 
encapsulating functions while retaining the hierar-
chical structure. The post-processing of the generated 
code is mainly done by associated modules (e.g. to 
generate a SiL- or HiL-simulation).  

4.3 Design of the LoRra-RTI 

The RTI implements the model from the offline sim-
ulation automatically into a real-time environment for 
HiL-simulations as described in section 2. The func-
tionality can be divided into two tasks. Firstly, the 
Xcos model must be linked to the interfaces of the 
target hardware (e.g. digital out, A/D converter, 
PWM generation, etc.). This takes place on model 
level in Xcos. In addition, the automated implemen-
tation of the model on the real-time hardware must be 
realized. 

4.3.1 Model to Hardware Interfaces 

For linking the model with the hardware interfaces, 
specially implemented Xcos basic blocks are used. 
By the deposited functional description, correspond-
ing code for reading, scaling and processing of signals 
is generated. Due to the modular concept of the code 
generator, the peripheral interfaces or microcontroller 
functions can easily be implemented in Xcos as a new 
basic block. 

Presently just a limited number of interfaces is 
supported. Due to the modular, functional descrip-
tion, an extension will be easily possible. The config-
uration of the interfaces (like ports and frequencies) 
is read from an XML file at runtime of the RTI and 
can therefore be adapted without altering the RTI 
blocks. 

 

4.3.2 Implementation of the Model 

In  order  to  implement  an  Xcos  model on real-time 
hardware, the process illustrated by Figure 5 has to be 
executed. The code fragments, generated by the code 
generator, are assembled to the application software 
by using code-templates and finally linked with a 
basic software by the embedded code transformer. 
The basic software includes, e.g., the real-time oper-
ating system (RTOS) and the hardware abstraction 
layer. It is a component of the RTI and needs to be 
adapted in view of the specific target hardware. In ad-
dition to optimize the generated source code, the Em-
bedded Code Transformer configures the RTOS, in-
tegrates memory-protection mechanisms, and effects 
linking to driver- and function libraries. Use of a lay-
ered architecture having standardized interfaces ena-
bles flexible adaption to different microcontrollers as 
real-time hardware. 

 

Figure 5: Process for translating and programming by the 
LoRra-RTI (Jacobitz, 2019). 

Compiler and linker calls are completely auto-
mated. Subsequently, the generated executable pro-
gram file can be analysed in view of extracting, e.g., 
memory map information. These will be saved and 
transmitted to the iGES interface for measurement 
and calibration. 

4.3.3 Structure of the Real-time  
Environment 

The real-time environment is structured in layers with 
standardized interfaces. It contains the layers basic 
and application software. Figure 6 illustrates the sim-
plified structure of the resulting software system. 

The application software consists of hardware-in-
dependent components of the RTI (e.g. the XCP 
server for processing commands for measurement 
and calibration tasks) and one or more user-generated 

Xcos 
model

LoRra code generator

Start

End

code 
templates and 
basic software

LoRra embedded 
code transformer

source 
code

code 
fragments

compiler and linker

programmer interface

executable 
binaries

The Seamless Low-cost Development Platform LoRra for Model based Systems Engineering

61



applications. Usually, these applications are encapsu-
lated modules that do not share resources. If two ap-
plications use the same resource (e.g. memory or pe-
ripherals), access is controlled by memory protection 
functions of the operating system such as mutex. 
However, particular care must be taken here to ensure 
that no deadlocks occur (e.g. by path coverage tests). 

 

Figure 6: Software structure of the real-time environment. 

The access to the basic software as well as the mi-
crocontroller takes place via standardized interfaces. 
The CMSIS API standard allows the usage of multi-
tasking, memory protection and so on independently 
of the specifically implemented RTOS. In addition to 
the operating system, the basic software also includes 
functions for simplified hardware access (Hardware 
Abstraction Layer, HAL) and more complex drivers 
such as a TCP/IP stack. 

5 APPLICATION OF LoRra 

For the verification, optimization and demonstration 
of the LoRra platform, the seamless functional design 
of a State of Charge (SoC) estimator as part of a bat-
tery management system (BMS) for LiFePO4 cells 
will be performed in this section. The design process 
is carried out according to the methodology presented 
in Section 2. First, the concept of the BMS is intro-
duced. After that, the modelling and synthesis is done 
using the LoRra model libraries. Finally, the results 
of MiL-, SiL- and HiL-simulations are discussed. 

5.1 BMS 

The battery system is a typical embedded control sys-
tem containing four LiFePO4 batteries connected in 
series, sensors, actuators and an information-pro-
cessing unit. The BMS consists of a central battery 
management controller, which is used for high-order 
algorithms such as SoC estimation, power prediction 

or a safety concept, and decentralized cell modules on 
each battery cell. The cell modules provide as well 
acquisition of the terminal voltage and communica-
tion via CAN to the control unit as the local execution 
of the load balancing. 

An essential function of the BMS is the SoC esti-
mation. Since many other functions depend on the es-
timated SoC, only minor deviations of maximum 
±1% may occur during operation (long-term behav-
iour). A further challenge is the determination of the 
unknown SoC during initialization of the BMS (con-
vergence behaviour). The estimated SoC must reach 
a stationary value within a short time (maximum 5s). 

5.2 Modelling and Synthesis 

To design the SoC estimator using the LoRra plat-
form, a sufficiently accurate model of the battery pack 
is needed. The LoRra model library offers among oth-
ers the nonlinear battery model, introduced in section 
4.1, which has already been identified and verified.  

An Extended Kalman Filter (EKF) according to 
(Quantmeyer, 2014b) is used for SoC-estimation be-
cause of the nonlinear system behaviour. Therefore 
the battery model is transformed into state-space with 
the state vector ݔ, consisting of the SoC and the over 
voltages at the RC-elements (ߟ), the current ݅௦ as in-
put and the terminal voltage ݑ as output. 

The algorithm of the EKF consists of a correction 
and a prediction step. First, the states predicted by the 
last time step are corrected, using measurement data 
and the error covariance. Then the states and error co-
variance for the next step are predicted by using the in-
puts. The filter is initialized at the correction step with 
initial values for the states and the error covariance.  

The covariance matrix of the measurement മܴ  is 
determined using various measurements on the real 
system with help of the LoRra-iGES and a subsequent 
analysis of the noise. Finally, the covariance matrix 
of the system മܳ  was selected as a weighting matrix 
with a compromise being made between stability of 
the EKF and sufficiently fast convergence according 
to (Liu-Henke, 2017). 

5.3 MiL- / SiL-simulation 

The designed EKF is now tested and optimized by 
various offline simulations (MiL) in the LoRra plat-
form. For the tests, the battery starts with 99 % ܵܥ 
and the EKF is initialized with ܵ80 = ܥ % to test as 
well the convergence as the stationary behaviour. Af-
ter a brief idling period the battery pack is subjected 
to the dynamic stress test as already used for validat-
ing the battery model. 
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After a sufficient quality has been achieved, code 
is generated from the EKF model using the LoRra-
Code-generator. The generated code is then further 
tested and optimized using SiL-simulations in the 
LoRra test environment. 

5.4 HiL-simulation 

After successful SiL-simulations, the EKF is inte-
grated into the real-time environment by the LoRra-
RTI, in order to perform HiL-simulations. For the 
online-simulations, a special HiL-test-rig is used. It 
measures the terminal voltage as well as the current, 

using an AD-converter. The cell modules are con-
nected via CAN. A safety circuit is actuated by digital 
outputs. In addition, an electronic load- / source mod-
ule is driven via CAN. 

Figure 7 shows the measurement results, recorded 
by LoRra-iGES. The diagram shows the SoC, the de-
viation between estimated and calculated SoC, the 
terminal voltage, and the current profile. In the left 
part you see clearly the rapid convergence of the fil-
ter. After that, the right part shows that the deviation 
of the estimation is very small. Also, the measured 
and estimated terminal voltages matches with high 
accuracy. 

 

Figure 7: Measurement results from the HiL-simulation. 
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6 CONCLUSION AND OUTLOOK 

In this paper, a seamless and integrated low-cost rapid 
control prototyping development platform (LoRra for 
short) based on the open source software Scilab was 
presented. The model-based, verification-oriented 
RCP development process, starting with the LoRra 
model libraries, the automated generation of code with 
the LoRra-Code-generator and its implementation on a 
microcontroller as real-time hardware using the LoRra-
RTI, can thus be performed highly automated in a sin-
gle low-cost software environment. The three process 
steps Model-in-the-Loop, Software-in-the-Loop and 
Hardware-in-the-Loop are supported for testing and 
verification. 

Further work deals with the implementation of a 
graphical user interface for measurement and calibra-
tion tasks. In addition, the development of a test field 
for interconnected autonomous guided vehicles for 
further verification is being forced. For this purpose, 
it is planned to add functions from the IoT, Industry 
4.0 and Smart Home areas to the LoRra-RTI. 
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