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Abstract: The present paper uses the learning ability of neural networks (NN) to design a nonlinear model and a nonlinear
controller that reduces the number of infected/uninfectedCD4+ T cells into the HIV dynamic when an antiviral
therapy based on protease inhibitors is applied. The dynamic of the closed-loop system based on such therapy
is analyzed to understand the stability of infected/uninfected CD4+ T cells according to a global feedback law
that regards un-modeled dynamic terms. To this end, a robustcontrol scheme based on NARMA-L2 approach
and a modified version of an already existing dynamic backpropagation algorithm is used to improve the
antiviral therapy performance (strongly related to the tracking error). The robustness of the proposed model
shows that antiviral therapy performance guarantees less infected CD4+ T cells.

1 INTRODUCTION

The study on the behavior of sensitive and resis-
tant cells infected by AIDS, a communicable disease
caused by the human immunodeficiency virus (HIV),
by using retroviral drugs and the study of responses
of these cells to certain treatments have been a high-
light in last years (Althaus and Boer, 2011; Hattaf
et al., 2009; Luo et al., 2012; Magnus and Regoes,
2011; Roy and Wodarz, 2012; Wang et al., 2014; Wil-
son, 2012; Wodarz and Hamer, 2007; Wodarz and
Hamer, 2007). The treatment for HIV/AIDS relies
on anti-retroviral drugs that suppress HIV viral load
below the limit of detection. Some drug classes are
reverse transcriptase inhibitors (RTI) and protease in-
hibitors (PIs). HIV is a deadly disease in a lack of
treatment. Time since the initial infection till death
in an untreated patient is 9-10 years. HIV infec-
tion dilapidates the patients’ health since it attacks
three extremely important cell populations, the CD4+
T cells, macrophages, and dendritic cells. In recent
works, the main goal has been to understand the be-
havior of an infected CD4+ T cells population or
the rate of infected CD4+ T cells when therapy is
applied (Pinto and Carvalho, 2015b; Pinto and Car-
valho, 2015a; Gumel et al., 2001; Karrakchou et al.,

a https://orcid.org/0000-0003-0934-5761

2006; Min et al., 2008; Allali et al., 2018; Loudon and
Pankavich, 2016; Korpusik, 2017; Wang et al., 2019).
However, the correctness of any HIV model depends
on suitable approaches whereas by using suitable pa-
rameters for deterministic models or by finding a suit-
able performance for learning algorithms in compu-
tational methods (Wang et al., 2019). Nevertheless,
the adjusting process of the parameters and the per-
formance of the computational model yields a big
complexity on the better way to find the optimal solu-
tion in nonlinear programming problems. Such com-
plexity can be defined in terms of the constraints for
stochastic models as well as choosing the right parti-
cles to model (Liu et al., 2019; Pandit and Boer, 2019;
Cheng et al., 2019; Shi and Dong, 2019). Artificial in-
telligence (AI) techniques have been used extensively
in numerous approaches to model HIV around sev-
eral CD4+ T cells (Xiang et al., 2019; Zhang et al.,
2019; Wang et al., 2019; Gupta et al., 2019). Amongst
AI numerous techniques, the Artificial Neural Net-
works (ANN) has dominated in its capability and ap-
plicability in different fields (Cybenko, 1989). In
the work reported here, it will be presented an ap-
proach to model the behavior of uninfected/infected
CD4+ T cells based on NARMA approach, which
will be implemented with neural networks and known
as NARMA-L2. In this approach, the performance
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of the dynamic model is mainly composed by using
an improved learning rule in neural networks based
on sigmoid-functions, as activation function, and the
dynamic backpropagation of the training error. The
controller developed on this approach uses the in-
verse model principle to synthesize an antiviral ther-
apy based on PI whose adjusting method updates the
value of weights of the neurons that model the HIV
dynamics. Next, it is hoped that a good adjusting
of those values implies a better efficiency of antiviral
therapy according to the response of resistant CD4+
T cells.

This paper presents the proposal as follows: in
Section 2 will be reviewed the stochastic model based
on the approach in (Wang et al., 2014). It will be
assumed that all antiviral therapy based on PI can
be decomposed in decoupled inputs such that the in-
fected/uninfected CD4+ T cells have independent re-
sponses. In order to impose a performance on the
antiviral therapy and the decreasing/increasing of in-
fected/uninfected CD4+ T cells, an optimal control
law based on the NARMA-L2 approach will be pro-
posed. To this end, in Section 3 will be synthesized
a control scheme with the aid of NNs and suitable
learning algorithms. In Section 4 are shown differ-
ent parametric structures for the NARMA-L2 model
by means different learning rules in order to adjust the
synaptic weights of NNs into NARMA-L2 scheme as
well as the performance of the antiviral therapy repre-
sented by the controller. Finally, closing remarks are
made in Section 5.

2 THEORETICAL BACKGROUND
ON HIV

As well known, a deterministic model can be based
on a system of ordinary differential equations that
represent the dynamic of uninfected CD4+ T cells,
drug-sensitive infectious virus, drug-resistant infec-
tious virus, drug-sensitive infected CD4+ T cells,
and drug-resistant infected CD4+ T cells. In (Wang
et al., 2014) such dynamics is defined by ODE system
(1a)-(1e), whereT, Vs, Vr , Ts andTr represent unin-
fected CD4+ T cells, drug-sensitive infectious virus,
drug-resistant infectious virus, drug-sensitive infected
CD4+ T cells, and drug-resistant infected CD4+ T
cells, respectively. According to the epidemiology of
the disease, the uninfected CD4+ T cells (T) are pro-
duced at a rate ofλ and die at a rate ofd. These cells,
when in contact with HIV, are infected at a rateks, by
drug-sensitive viruses and moveτ time units later, to
theTs class. Furthermore,T cells may be infected at
a rate ofkr by drug-resistant viruses and move to the

Tr class afterτ time units later. The terme−mτ is the
probability of Ts and Tr cells surviving in the inter-
val τ, where 1

m represents the average life of infected
CD4+ T cells before they become actively productive.
The terms 1−ns

rt and 1−nr
rt represent the proportion

of Ts andTr cells eliminated by reverse transcriptase
inhibitors (RTIs). The infected CD4+ T cells and the
virus particles die at ratesδ andc, respectively. TheVs
andVr particles are produced by the infected CD4+ T
cell populations with bursting sizes of drug-sensitive
strain (Ns) and of drug-resistant strain (Nr ). Through-
out the infection, a proportions (0< s< 1) of Ts cells
can becomeTr cells. The proportion of virus particles
that are not eliminated by PIs is represented by 1−ns

p
and 1− nr

p, wherens
p is the efficacy of PIs for wild

type strain andnr
p is the efficacy of PIs for mutants.

According to (Pinto and Carvalho, 2015b), on
stochastic approach for model (1a)-(1e), it is believed
that the death ratesd, δ and c can be substituted
by random parameters, more specifically,d+σ1Ḃ1,
δ+σ1Ḃ1 andc+σ2Ḃ2, respectively, whereB1(t) and
B2(t) are independent standard wiener processes. In
the next sections, such wiener processes will be used
as exogenous variables into the learning algorithms.

2.1 HIV Model by Including PI

By assuming that the constant recruitment number of
new uninfected cellsT and that the rate of infection
of CD4+ T cellsks by a free virus has been saturated
probably because of overcrowding of free virus the
model (1a)-(1e) can be rewritten as

ḣ= G(h) (2)

where h = [T TsVsTr Vr ]
T ∈ IR5 is the state vector

andG(h) = [G1(h)G2(h)G3(h)G4(h) G5(h) ]
T ∈ IR5

is assumed continuously differentiable on the parame-
ters(T,Ts,Vs,Tr ,Vr , t)∈DT ×DTs×DVs×DTr ×DVr ×
[0, t], being DT ,DTs,DVs,DTr ,DVr ⊂ IR+ open and
convex sets, and eachGi(h), for i = 1, . . . ,5, repre-
sents the right-hand side of (1a)-(1e), respectively.

Now, let p= (p1, p2, p3, p4, p5) be an equilibrium
point of the nonlinear system (1a)-(1e) and suppose
that the functionsGi , for i = 1, . . . ,5, are continuously
differentiable. Expanding the right-hand side of (2)
into its Taylor series on the pointp yields

ḣ= M(p)h+∆(p)u+N(p) (3)

where M(p) is the Jacobian matrix at equilibrium
point p, defined byM(p) = [∂G(h)/∂hi] (for i =
1, . . . ,5), u ∈ IR2 is the antiviral therapy defined by
u = [ns

p nr
p ]

T , ∆(p) is the input matrix with full
rank, defined by∆(p) = [∂G(h)/∂ui] (for i = 1,2)
and N(p) = N(h)|h=p ∈ IR5 represents the higher-
order terms of expansion. In the antiviral therapy,
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dT
dt

= λ−dT(t)−Ks(1−ns
rt )Vs(t)T(t)− kr(1−nr

rt )Vr(t)T(t) (1a)

dTs

dt
= (1− s)kse

−mτ(1−ns
rt )Vs(t − τ)T(t − τ)− δTs(t) (1b)

dVs

dt
= Nsδ(1−ns

p)Ts(t)− cVs(t) (1c)

dTr

dt
= skse

−mτ(1−ns
rt )Vs(t − τ)T(t − τ)+ kre

−mτ(1−nr
rt )Vr(t − τ)T(t − τ)− δTr(t) (1d)

dVr

dt
= Nrδ(1−nr

p)Tr(t)− cVr(t) (1e)

Figure 1.

the efficacy of PI,ns
p andnr

p, are considered bounded
Lebesgue integrable functions, i.e.,

∞

∑
j=1

∫
ns

p, j < ∞ and
∞

∑
j=1

∫
nr

p, j < ∞.

If, for instance,ns
p = 1, the blockage is 100% effec-

tive. On the other hand, ifns
p = 0, there is no block-

age.
The term N(h)|h=p is associated with an un-

modeled dynamic and it has an important role to mea-
sure the performance of the alternative model based
on neural networks, which will be shown in the next
sections.

2.2 Analysis on Inner Close-loop

In the work reported here, it will be assumed that
there exists an initial quantity of uninfected CD4+ T
cells,T∗ > 0, such that the antiviral therapy guaran-
tees a number of uninfected CD4+ T cells close toT∗.
From (3), if T∗ > δv(t) > 0, beingδv(t) a known 1-
diffeomorphism, andh is assumed to be the control
input of the inner close-loop system associated to (3)
then the error converges exponentially to small ball
in W containing the origin whose radius will be ad-
justed by any known constant. The following lemma
explains this idea:

Lemma 1. Let e be the error associated with in-
ner close-loop system defined by e= Π1(h), where
Π1(h) ∈ IR5 is a known matrix. If T∗ > δv(t)> 0 and
h= ρ, then e converges exponentially to a small ball
containing the origin whose radius can be adjusted
by a k-th known constant M∗k < 0, for k = 1, . . . ,5,
∀ t ≥ 0, beingρ = [T∗ · · · ]T = Π2(e) ∈ IR5 such that
Π̇2(e)< M and

M = [M∗
1,M

∗
2, . . . ,M

∗
5]

T

being M∗
k < 0 a known constant.

Proof: Let the Lyapunov function

V =
1
2

(

5

∑
i=2

e2
i

)

=
1
2

(

5

∑
i=2

[

Πi
1(h)

]2

)

,

differentiating it along the close-loop defined bye=
Π1(h), h= ρ andρ = Π2(e) one obtains

V̇ =
5

∑
i=2

(

5

∑
k=1

∂Πi
1

∂hk
ḣk

)

Πi
1(h)

=
5

∑
i=2

(

5

∑
k=1

∂Πi
1

∂hk
Π̇k

2(e)

)

Πi
1(h)

=
5

∑
i=2

(

5

∑
k=2

∂Πi
1

∂hk
Π̇k

2(e)Π
i
1(h)+

∂Πi
1

∂hk
δ̇vΠi

1(h)

)

<
5

∑
i=2

(

5

∑
k=2

∂Πi
1

∂hk
Π̇k

2(e)Π
i
1(h)

)

=−
5

∑
i=2

(

5

∑
k=2

∂Πi
1

∂hk
M∗

kΠi
1(h)

)

< 0.

whereM∗
k is thek-th element ofM, Πi

1(h) andΠk
2(e)

are thei-th andk-th elements ofΠ1(h) and Π2(e),
respectively.

Noting T∗ ≥ δv(t) > 0 (i.e., δ̇v(t) < 0 ) it can be
seen thatV exponentially converges to a small ball
containing the origin. The convergence rate is at least
defined byΠ1(h). The radius of the ball can be ad-
justed by a constantM∗

k , for k = 1, . . . ,5. Therefore,
e converges exponentially to the small ball contain-
ing the origin, and the radius of the ball can also be
adjusted by any constantM∗

k . This ends the proof�.
So, the control problem considered in this paper is

to find an improved version of a global feedback con-
troller that represents the antiviral therapy such that
the inner close-loop of system (3) guarantees that the
number of uninfected CD4+ T cells remains close to
T∗. To this end, in the next sections, it will be used
neural networks (NNs) to adjust this optimal global
feedback law.
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3 NARMA-L2-BASED THERAPY

The optimal control problem will an objective func-
tional, a set of state variablesh and a set of control
variablesu in time t, 0 ≤ t ≤ t f such that there is a
generic global feedback controlu = λ1(h,hr) where
hr is the target response,λ1 : IR5 × IR5 → IR2 is a
known nonlinear function such that there is an opti-
mal control lawu , λ∗

1 that satisfiesJ(λ∗(h,hr)) =

max
λ∗1(h,hr )∈U

J(u) beingU⊆ IR2 and

J(u) =
∫ t f

0

{

T(t)−uTRu
}

dt

for t f > 0 and any symmetric definite positive ma-
trix R. Our goal is to seek to maximize the ob-
jective functionalJ(u) by increasing the population
of the uninfected CD4+ T cells, reducing viral load,
and minimizing the cost treatment. To this end, the
nonlinear model (1a)-(1e) will be designed by using
a robust adaptive neural network (NN) with the aid
of NARMA-L2 approach and its learning ability. In
this way, the maximization problem will be associated
with the nonlinear programming problem restricted to
the learning rule of NNs.

Let h̃ = h−ρ be the error between the state vec-
tor h and the state vector defined by Lemma 1 on the
close-loop system. Thus, forh̃ one obtains

˙̃h+M(p)h̃= ∆(p)u−Γ(p,ρ) (4)

where
Γ(p,ρ), ρ̇+M(p)ρ+N(p).

Noting the learning ability of NN, the termΓ(p,h)
can be approximated on-line by using NNs whose ac-
tivation function is a sigmoid. Letσ(p,h) ∈ IRm∗

be
a vector of continuous sigmoid functions, according
to the approximation property of neural networks in
(Cybenko, 1989), ifΓ(p,ρ) is a continuous function
of p andρ then

Γ(p,ρ) = ψTσ(p,ρ)+ εn(p,ρ), (5)

whereψ , {ψi j } ∈ IRm∗×3 is an unknown optimal
constant weight vector, previously calculated, and de-
fined by

ψ = arg min
ς∈IRm∗×3

{

max
(p,ρ)∈Ω

‖Γ(p,ρ)− ςTσ(p,ρ)‖
}

whereΩ is a compact set andεn is the error associated
with reconstruction of the optimal weight vector. The
approximations results for NN indicate that ifm∗ is
sufficiently large then the reconstruction error can be
arbitrarily small onΩ. In this way, it will assumed
that‖εn(p,ρ)‖ ≤ ϕ∗, for ∀(p,ρ) ∈ Ω, whereϕ∗ is an
unknown constant.

TDL

TDL

...

......

......

TDL

-
NN I

NN II

...

......

......

...

......

......

(x5)

E(ψ)

T∗

hḣ= M(p)h
+∆(p)u+N(p)

Figure 2: Closed-loop system by using NARMA-L2 ap-
proach in antiviral therapy.

Without loss of generality, by using (5), the equa-
tion (4) can be rewritten as

˙̃h+M(p)h̃= ∆(p)u−ψTσ(p,ρ)− εn(p,ρ)
s.t. ‖εn(p,ρ)‖ ≤ ϕ∗,

(6)

whereψ andϕ∗ must be estimated in order to guaran-
tee the robustness of the model (4). Thus, letψ̂ and
ϕ̂∗ be the estimates ofψ andϕ∗, respectively. With
aid of Lemma 1 the following theorem is obtained:

Theorem 1. Assuming T∗ > δv(t) > 0, the global
feedback law

u= ∆−1(p)
[

−Kph̃+ ψ̂Tσ− ϕ̂∗T(h̃)
]

, (7)

guarantee that e,̃h, (ψ̂−ψ) and(ϕ̂∗−ϕ∗) converge to
a ball containing the origin whose radius can be made
as small as possible by selecting a suitable value for
γ1, γ2, δ1, δ2, ψ0, andϕ0, where

˙̂ψ =−γ1σh̃T − δ1(ψ̂−ψ0) (8)
˙̂ϕ∗ = γ2h̃TT(h̃)− δ2(ϕ̂∗−ϕ0) (9)

are update laws, Kp is a positive definite constant ma-
trix, T(h̃) is a known sigmoid function andγi , δi (for
i = 1,2) are positive constants.

Proof: Let the Lyapunov function

V =
1
2

(

5

∑
i=2

e2
i

)

+
1
2

h̃T h̃+
γ−1
1

2
(ψ̂−ψ)T(ψ̂−ψ)

+
γ−1
2

2
(ϕ̂∗−ϕ∗)2,

and differentiating it along of the closed-loop repre-
sented by Lemma 1 and (7), one obtains

V̇ =
5

∑
i=2

5

∑
k=1

∂Πi
1

∂hk
ḣk+ h̃˙̃h

+ γ−1
1 (ψ̂−ψ)T ˙̂ψ+ γ−1

2 (ϕ̂∗−ϕ∗)T ˙̂ϕ∗
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Figure 3: Training error forB1(t), E(ψ), of NN II by using three algorithms: Levenberg-Marquardt (LM), gradient descent
(GD), Broyden-Fletcher-Goldfarb-Shanno (BFGS).
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Figure 4: Training error forB2(t), E(ψ), of NN II by using three algorithms: Levenberg-Marquardt (LM), gradient descent
(GD), Broyden-Fletcher-Goldfarb-Shanno (BFGS).

or, by using (7) into (4),

V̇ =
5

∑
i=2

5

∑
k=1

∂Πi
1

∂hk
ḣk+ h̃

(

−Kph̃+ ψ̂Tσ− ϕ̂∗T(h̃)

− Γ(p,ρ)+M(p)h̃
)

+ γ−1
1 (ψ̂−ψ)T ˙̂ψ

+ γ−1
2 (ϕ̂∗−ϕ∗)T ˙̂ϕ∗

<−c1V + c2,

wherec1 is a positive constant which depends onKp,
γ1, γ2, δ1, δ2, and

c2 =
γ−1
1 δ1

2
(ψ̂−ψ0)

T(ψ̂−ψ0)

+
γ−1
2 δ2

2
(ϕ̂∗−ϕ0)

2+2b∗,

beingb∗ a constant which satisfiesb∗ = e−(b∗+1) [i.e.,
b∗ = 0.2785]. Without loss of generality, it can be
noted thatV converges exponentially to a small ball
containing the origin and the radius of the ball de-
pends onγ1, γ2, r, δ1, δ2, ψ0 andϕ0. Therefore,e, h̃,
(ψ̂−ψ) and(ϕ̂∗−ϕ∗) will converge exponentially to
the small ball of the origin. This ends the proof�.

The NN-based controller (7) uses the update laws
(8)-(9) to approximate un-modeled dynamics. In this
way, the laws (8)-(9) represent the learning ability of
the NN responsible to optimize the synaptic weights
(ψ̂Tσ) that indirectly will ensure that the reconstruc-
tion and tracking errors converge toward a small ball
containing the origin in the setsΩ andW . Therefore,
in the work reported here, the global feedback law in
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Figure 5: Validation of NARMA-L2 model by comparing
(y) of NN II with output (h) of model defined by (3), with
exogenous brownian noiseB1(t).

Theorem 1 will be based on an alternative learning
rule that combines the laws (8)-(9) with an already
existing algorithm for dynamic backpropagation.

3.1 NARMA-L2 Training Algorithm

The NARMA-L2 scheme to design the antiviral ther-
apy u is based on two NNs, the NN II is composed
of five NNs and it will be used to model the system
(3). The NN I will be used as antiviral therapy by
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Figure 6: Validation of NARMA-L2 model by comparing
(y) of NN II with output (h) of model defined by (3), with
exogenous brownian noiseB2(t).

means of the global feedback law in Theorem 1 (see
Fig. 2). The inputT∗ represents a reference forT(t),
and with this last one the main objective of the pro-
posal reported here is to find an antiviral therapy that
guarantees a better decreasing of drug-sensitive infec-
tious virusVs, drug-resistant infectious virusVr and
drug-resistant infected CD4+ T cellsTr .

In order to verify the effectiveness of the
NARMA-L2, the NN II is trained by using three algo-
rithms: Levenberg-Marquardt, Gradient Descent, and
BFGS1. All these, based on the error backpropagation
principle for off-line mode. It will be chosen the al-
gorithm more suitable to model each state variable of
theh vector in order to guarantee a better performance
between the system and the controller represented by
NN I. On the other hand, the NN I is trained by us-
ing only dynamic backpropagation and to this end,
the BFGS approach is modified according to feedback
law in Theorem 1.

Since the inputs associated with PIs were assumed
to be mutually decoupled, the NARMA-L2 model
was designed individually for each state variable. A
standard NARMA-L2 model can be defined by

yk+2 = f̄0 [TDL(yk,n),TDL(uk,n)]

+ ḡ0[TDL(yk,n),TDL(uk,n)]uk,

where TDL(pk,n) , pk, . . . , pk−n+1 represents a
tapped delay line withn regressors (see TDL blocks in
Fig. 2); f̄0 , F̄ and ¯g0 , ∂F̄/∂uk are evaluated around
TDL(yk,n), TDL(uk,n) (with uk = 0) for any nonlin-
ear functionF̄(·) (Narendra and Parthasarathy, 1990).

1Broyden-Fletcher-Goldfarb-Shanno.

To guarantee the lawŝψ and ϕ̂∗, a segmented
training based on BFGS algorithm will be used to
compute the synaptic weights of NN I from a mod-
eling error between the system (3) and NN II. Now,
the learning rule proposed here can be described by
using‖εn(p,ρ)‖ , ‖εn(ψ)‖ as goal function accord-
ing to next steps:
s 1. InitB0 = I , ‖εn(ψ0)‖= ne andϕ̂∗ = nv,

whereB0 is the initial condition for a Hessian ma-
trix of εn(ψ), ne ≥ 100 andnv < 0.001. From (9),
if ϕ̂∗ = nv then

ϕ̂∗ =
γ2

δ2
h̃T

k T(h̃)+
ϕ0

δ2
,

thus the BFGS algorithm becomes as

s 2. While‖εn(ψk)‖>
γ2
δ2

h̃T
k T(h̃)+ ϕ0

δ2
do

s 3. ∆ψk =−αkB
−1
k ∇εn(ψk);

s 4. Compute∇εn(ψk+1);

where∇εn(ψk) represents the gradient descent as
first-order iterative optimization tool. So,

s 5. Ek(ψ) = ∇εn(ψk+1)−∇εn(ψk);

s 6. βk = I −Ek∆ψT
k /ET

k ∆ψk;

Next, from step (s3.) and (8), by using the pseu-
doinverse ofσ(p,h), σ+(p,h) yields

s 7. h̃T
k =−σ+

γ1

[

δ1(ψk−ψ0)−αkB
−1
k ∇εn(ψk)

]

;

s 8. B−1
k+1=βkB

−1
k βk+∆ψT

k ∆ψk/ET
k ∆ψk;

s 9. ψk+1 = ψk+∆ψk;

s 10. Compute‖εn(ψk)‖ and go to step (s2.);
It can be seen that the term−Kph̃ is used to make

h converge toρ while the term−ϕ̂∗T(h̃) is used to
compensate the reconstruction error‖εn(ψk)‖ of NN
I. The termψ̂Tσ in (7) uses a dynamic learning rule
based on laws (8)-(9) and BFGS algorithm to adjust
the synaptic weights of NN I and to enhance the ro-
bustness of the un-modeled dynamicsN(p).

4 SIMULATION

The simulation tests were done by using the nonlinear
NARMA-L2-based controller with a two-layer NN in
order to implement (7) (in Theorem 1). All this, when
the antiviral therapy is applied with initial uninfected
CD4+ T cells.

The NARMA-L2 model was set withn = 3 re-
gressors (in TDL blocks), 20 iterations at BFGS al-
gorithm and 30 hidden neurons at the middle layer
of NNI. In previous simulation tests, it was noted
that when the number of hidden neurons is less than
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Figure 7: Validation of the drug-sensitive infectious virus
Vs based on the global feedback law (7), in Theorem 1,
by comparing the behavior of each variable with controlu
(solid line) and without controlu (dash line).
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Figure 8: Validation of the drug-resistant infectious virus
Vr based on the global feedback law (7), in Theorem 1,
by comparing the behavior of each variable with controlu
(solid line) and without controlu (dash line).

30 the weights were adjusted to values that were not
enough robust. In order to train the NNI, it was con-
sidered that the antiviral therapyu represents 10% at
PIs efficacy, i.e.,ns

p = 0.1 andnr
p = 0.1 for ∀ t > 0.

Complementary, since the signalsBi(t), for i = 1,2,
have independent increments for∀ t > 0, the future
increments of the death rates are independent of the
past values. So, such signals were set as pseudo-
random binary signals (PRBS) with maxim ampli-
tude 1 and samples between 10 and 100 ms. The
parameters of model (1a)-(1e) were set as in (Wang
et al., 2014; Pinto and Carvalho, 2015b):λ = 100;
d = 0.1; m= 0.01; ks = 2.4×10−6; kr = 2×10−6;
s= 3×10−5; δ = 1; Ns = 4800;Nr = 4000;c= 23;
τ = 1; ns

rt = 0.4; nr
rt = 0.2; σ1 = σ2 = 0.1; with

initial conditionsT(0) = T∗ = 1000,Ts(0) = 1 and
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Figure 9: Validation of the drug-resistant infected CD4+ T
cells Tr based on the global feedback law (7), in Theorem
1, by comparing the behavior of each variable with control
u (solid line) and without controlu (dash line).
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Figure 10: Validation of the uninfected CD4+ T cellsT
based on the global feedback law (7), in Theorem 1, by
comparing the behavior of each variable with controlu
(solid line) and without controlu (dash line).

Tr(0) =Vs(0) =Vr(0) = 0.01. In order to set the con-
troller, the parameters of nonlinear law (7) were set
asKp = γ1 = γ2 = k2 = k3 = 1, δ1 = δ2 = 0.01 and
T(h̃) = tanh(h̃).

In Fig. 5 and Fig. 6 can be seen the behavior of
variablesVs,Vr andTr modeled by NN II on NARMA-
L2 approach by consideringBi(t), for i = 1,2, as
Brownian signals. Complementarily, in Fig. 3 and
Fig. 4 can be seen the adjustment error of five sig-
nals associated with the NN II. For each NN was used
three algorithms based on the error backpropagation
principle. It can be noted that the BFGS algorithm
has a better approximation than Levenberg-Marquardt
(LM) and Gradient Descent (GD) approaches, except
for the behavior ofT. For this reason, it will be
used the BFGS approach to model the responses of
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the variablesTs, Tr , Vr andVs, while the Levenberg-
Marquardt algorithm will be used to model the re-
sponse ofT.

4.1 Validation of the Antiviral Therapy

Since the main objective is to reduce drug-resistant in-
fected CD4+ T cells in order to guaranteeT close to
T∗, then the global feedback law (7) will use the abil-
ity of NNs to approximate nonlinear and un-modeled
behaviors (i.e.,N(p)) in order to improve the perfor-
mance of the antiviral therapy. To this end, the signals
Bi , for i = 1,2, will be set as exogenous inputs to the
closed-loop of (2) and the inputu will be represented
by the outputs of the NARMA-L2-based controller.

By comparing the Fig. 7 and Fig. 8 can be seen
that the drug-sensitive infectious virus (Vs) decreases
faster than the drug-resistant infectious virus (Vr)
when the antiviral therapyu is applied during 100
days. It can be noted that the antiviral therapy guaran-
tees a decreasing of the contagion effect of the HIV,
see thatTr decreases significantly on time domain in-
stead of the case when the antiviral therapy is not used
(see dash lines in Fig. 8).

Although the behavior ofT was model by using
the LM approach in NN II, Fig. 10 shows that the
control law (7) guarantees that the concentration of
uninfected CD4+T cells decreasing close to a neigh-
borhood ofT∗ (= T(0) = 1000). Without treatments
(without controlu), the number of uninfected cells de-
creases drastically.

5 FINAL REMARKS

The controller in Theorem 1 differs from other con-
tributions mainly because the optimization approach
used to maximize any objective functionalJ(u) is
based on a nonlinear programming rule. Never-
theless, here was chosen the use of NARMA-L2
approach together with nonlinear programming for
training NN because it improves the performance of
the model and the controller used as antiviral ther-
apy, both reducing viral load, and minimizing the cost
treatment. Here, it was assumed that un-modeled in-
formation could be related to the learning ability of
the NNs as well as it was proposed an alternative
learning technique based on the dynamic of the back-
propagation approach. In this way, the robustness of
the NN-based controller (7) was improved by includ-
ing the nonlinear term−ϕ̂∗T(h̃) into the nonlinear
control law (see (7) in Theorem 1 and step (s2.)) such
that the convergence radius of the tracking error can
be regulated by known parameters. It is hoped that in

future works the NN-based controller can be designed
by using three or more layers to improve the perfor-
mance of the term̂ψTσ(q∗,h) and the compensation
of the un-modeled dynamicsN(p).
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