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Video quality assessment (VQA) is an important element of a broad spectrum of applications ranging from

automatic video streaming to surveillance systems. Furthermore, the measurement of video quality requires
an extensive investigation of image and video features. In this paper, we introduce a novel feature extraction
method for no-reference video quality assessment (NR-VQA) relying on visual features extracted from multi-
ple Inception modules of pretrained convolutional neural networks (CNN). Hence, we show a solution which
incorporates both intermediate- and high-level deep representations from a CNN to predict digital videos’ per-
ceptual quality. Second, we demonstrate that processing all frames of a video to be evaluated is unnecessary
and examining only the so-called intra-frames saves computational time and improves performance signifi-
cantly. The proposed architecture was trained and tested on the recently published KoNViD-1k database.

1 INTRODUCTION

In the process of generation, transmission, compres-
sion, and storage, digital videos may be corrupted by
different distortion types resulting in the degradation
of human perceptual quality. Thus, the precise predic-
tion of digital videos’ perceived quality is a very hot
research topic in the image/video processing commu-
nity. Video quality assessment (VQA) methods can
be classified into two groups: subjective and objec-
tive VQA. In subjective VQA, the quality of digital
videos is evaluated by human observers. Although
subjective methods can achieve very high accuracy,
their application is impossible in real-time systems
because it is laborious and time-consuming to obtain
enough number of ratings. In contrast, objective VQA
algorithms make an attempt to create a model that is
able to evaluate the perceptual quality of videos re-
lying on our understanding of the human visual sys-
tem (HVS), different mathematical tools or machine
learning techniques. Furthermore objective VQA al-
gorithms can be classified into full-reference (FR),
reduced-reference (RR), and no-reference (NR) ones
according to the availability of the reference, pristine
digital video.

Recently, deep learning techniques have attracted
a lot of attention in the fields of image processing
(Szegedy et al., 2017), (Lu et al., 2018), (Habibzadeh
et al.,, 2018) and visual quality assessment (Bianco

338

Varga, D.
Multi-pooled Inception Features for No-reference Video Quality Assessment.
DOI: 10.5220/0008978503380347

et al., 2018), (Varga, 2019), (Dendi et al., 2019). Fur-
thermore, Zhang et al. (Zhang et al., 2018) demon-
strated that features extracted from pretrained convo-
lutional neural networks (CNN) are highly effective
for predicting perceptual quality. As a consequence,
some NR-VQA methods rely on features extracted
from pretrained CNNs (Ahn and Lee, 2018b), (Ahn
and Lee, 2018a), (Varga, 2019). However, applying
pretrained CNNs is not a straight-forward task be-
cause they require a fixed input size. Furthermore,
previous methods (Ahn and Lee, 2018b), (Ahn and
Lee, 2018a), (Varga, 2019) analyze all video frames
one by one to predict perceptual video quality. To
overcome the fixed input size constraint, previous
methods took patches from the input video frames or
resized and cropped them. In this paper, we make the
following contributions. First, a content-preserving
feature extraction method is introduced which relies
on the Inception modules of pretrained CNNs, such
as GoogLeNet (Szegedy et al., 2015) or Inception-v3
(Szegedy et al., 2016). Specifically, the frame-level
visual features are extracted from multiple Inception
modules of a pretrained CNN and pooled by a global
average pooling (GAP) module together. This way,
it is possible to obtain both intermediate- and high-
level deep representations from the CNN. Second, we
show that the number of frames from a video to be
evaluated can be significantly reduced. Namely, pre-
vious works (Ahn and Lee, 2018b), (Ahn and Lee,
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2018a), (Varga, 2019) examine all frames. In contrast,
we demonstrate that processing all frames is unnec-
essary and examining only the so-called intra-frames
saves computational time and improves the perfor-
mance significantly. Quality assessment of videos
with authentic distortions is a relatively new topic.
Most existing deep learning based NR-VQA methods
work only for compression artifacts. From the pub-
licly available VQA databases, we chose KoNViD-1k
(Hosu et al., 2017) to train and test our proposed ar-
chitecture. KoNViD-1k is the largest available col-
lection of videos with authentic distortions and corre-
sponding quality scores.

The rest of this paper is organized as follows. In
Section 3 related and previous works are reviewed.
Subsequently, we present our proposed method in
Section 3. Experimental results and analysis are
shown in Section 4. Finally, a conclusion is drawn
in Section 5.

2 RELATED WORKS

Early NR-VQA methods mainly dealt with specific
distortion types. For example, Zhang et al. (Zhang
et al.,, 2009) measured blocking artifacts in low bit
rate H.264/AVC videos by applying a specific tem-
poral approach. Similarly, Borer (Borer, 2010) mea-
sured jerkiness using the mean squared error of con-
secutive frames. In contrast, Xue et al. (Xue et al.,
2014) trained a neural network to predict the quality
scores of images with jerkiness. In (Pastrana-Vidal
et al., 2004), the authors detected freezing artifacts
by monitoring the mean squared error between sub-
sequent frames. In contrast, Yammine et al. (Yam-
mine et al., 2012) detected freezing frames by apply-
ing motion estimation considerations. Sggaard et al.
(Sggaard et al., 2015) applied quality-aware features
using the NR-IQA method BRISQUE (Mittal et al.,
2012a) together with temporal and spatial activity in-
dices and codec specific features to detect MPEG-2
and H.264/AVC artifacts. A comprehensive review
of early distortion specific methods can be found in
(Shahid et al., 2014).

Later, general-purpose NR-VQA algorithms have
also appeared. Saad et al. (Saad and Bovik, 2012) in-
troduced a feature extraction method in the DCT do-
main. Furthermore, temporal information was also
incorporated into their model by using motion co-
herency. Similarly in (Saad et al., 2014), the authors
also extracted features with DCT using a spatiotem-
poral model. Finally, a trained SVR mapped the ex-
tracted features onto quality scores. In contrast, Video
CORNIA (Xu et al., 2014) applied unsupervised fea-

ture learning to obtain frame-level feature vectors.
Furthermore, an SVR was also used to predict frame-
level quality scores based on the frame-level features.
Finally, the video’s quality was estimated by tempo-
rally pooling the frame-level scores. Unlike previous
methods, VIIDEO (Mittal et al., 2015) relies on a pre-
defined naturalness model and perceptual quality is
predicted based on the deviation from this naturalness
model. Men ef al. (Men et al., 2017) extracted video-
level feature vectors containing quality related mea-
sures, such as contrast or colorfulness. Subsequently,
a trained SVR was used to predict perceptual qual-
ity. Later, this model was developed further by incor-
porating spatiotemporal features (Men et al., 2018).
Korhonen (Korhonen, 2019) extracted low complex-
ity features (such as motion intensity, motion consis-
tency, jerkiness, efc.) from every second of a video
to be assessed in order to determine a representative
subset of video frames for computing high complex-
ity features (such as total size of dark regions, num-
ber of dark regions, noise density, ezc.). Finally, low
and high complexity features are merged together and
mapped onto quality scores using SVR or random fo-
rest regression.

Nowadays, deep learning has gained enormo-
us popularity in video processing applications, es-
pecially convolutional neural networks (CNN) has
been proved effective in video classification (Karpa-
thy et al., 2014), action recognition (Ji et al., 2012),
event detection (Xu et al., 2015), etc. Furthermore,
Zhang et al. (Zhang et al., 2018) pointed out that fea-
tures extracted from pretrained CNNs are highly ef-
fective for predicting digital images’ perceptual qual-
ity. Thus, deep learning based NR-VQA algorithms
have appeared also. Giannopoulos et al. (Giannopou-
los et al., 2018) created a 3D CNN architecture with
the common components, such as 3D convolutional
layers, max-pooling layers, and fully-connected lay-
ers. Furthermore, the trained 3D CNN was used for
video feature extraction. Subsequently, the extracted
features were fed into a 1D CNN to map them into
perceptual quality scores. Similarly, Liu et al. (Liu
et al., 2018) introduced the so-called Video Multi-task
End-to-end Optimized neural Network (V-MEON)
for compressed videos where a 3D CNN based fea-
ture extractor and a codec classifier were applied to
predict quality scores. Zhang et al. proposed a deep
approach based on weakly supervised learning with
a CNN and a resampling strategy. Specifically, an
eight-layer CNN was trained first by weakly supervis-
ed learning to establish a relationship between the dis-
tortions of the 3D discrete cosine transform of video
blocks and the corresponding weak labels judged by
a FR-VQA algorithm. As a result, effective, quality-
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aware features could be extracted from the trained
CNN which were mapped onto quality scores by anot-
her trained network. You and Korhonen (You and Ko-
rhonen, 2019) applied a 3D CNN to extract spatiotem-
poral features from small clips of a video. Subse-
quently, a long-short term memory (LSTM) network
was used to predict quality subscores for the small
clips. Finally, these subscores were pooled together
to produce quality scores for the entire video. In con-
trast, Varga (Varga, 2019) constructed a video-level
feature vector by pooling together frame-level fea-
tures obtained from resized and cropped video frames
using a fine-tuned Inception-v3 (Szegedy et al., 2016)
CNN model. Similarly, Li er al. (Li et al., 2019) ex-
tracted features from pretrained convolutional neural
networks but these features were integrated into a net-
work with a gated recurrent unit and a temporal pool-
ing layer.

3 PROPOSED METHOD

The overview of the proposed method is depicted in
Figure 1. First, the so-called intra-frames are ex-
tracted from the input video sequence. In video com-
pression, only the changes are stored which measured
between one frame and the next. An intra-frame is by
definition a video frame which is completely stored.
As a consequence, more intra-frames are inserted into
a video sequence, the larger the video file size. Fur-
thermore, the intra-frame interval can considerably
influence the perceived quality of a video sequence
(Reinhardt, 2010). If the encoder generates too many
intra-frames for a given bit-rate, the perceived qual-
ity deteriorates. If the number of intra-frames is too
low, the transitions in the video will be less smooth
or accurate. As a consequence, the perceived quality
will also decline. Second, frame-level feature vec-
tors are extracted from the intra-frames with the help
of pretrained CNNs, such as GoogLeNet (Szegedy
et al., 2015) or Inception-v3 (Szegedy et al., 2016).
Unlike previous CNN models, not everything hap-
pens sequentially in GoogLeNet, pieces of the net-
work work in parallel. Inspired by a neuroscience
model (Serre et al., 2007) where for handling mul-
tiple scales a series of Gabor filters were used with a
two layer deep model. But contrary to the beforemen-
tioned model all layers are learned and not fixed. In
GoogLeNet (Szegedy et al., 2015) architecture Incep-
tion layers are introduced and repeated many times.
Subsequent improvements of Googl.eNet have been
called Inception-vN where N refers to the version
number put out by Google.

Subsequently, the frame-level feature vectors are
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temporally pooled to obtain the video-level feature
vector which is mapped with the help of a trained
SVR to a perceptual quality score.

3.1 Frame-level Feature Vectors

The pipeline of the frame-level feature extraction is
depicted in Figure 3. To extract frame-level fea-
ture vectors, GooglLeNet (Szegedy et al., 2015),
Inception-v2 (Szegedy et al., 2016), and Inception-
v3 (Szegedy et al., 2016) networks were considered
as base models in this study. Specifically, global av-
erage pooling (GAP) layers are attached to the output
of each Inception module. Similar to max- or min-
pooling layers, GAP layers are applied in CNNs to
reduce the spatial dimensions of convolutional lay-
ers. However, a GAP layer carries out a more ex-
treme type of dimensional reduction than a max- or
min-pooling layer. Namely, an 4 X w X d block is re-
duced to 1 X 1 x d. In other words, a GAP layer re-
duces a feature map to a single value by taking the
average of this feature map (Figure 2 illustrates GAP
layer). By adding GAP layers to each Inception mod-
ule, we are able to extract resolution independent fea-
tures at different levels of abstraction. Namely, the
feature maps produced by neuroscience models in-
spired Inception modules have been shown represen-
tative for object categories and correlate well with
human perceptual quality judgments (Szegedy et al.,
2015), (Szegedy et al., 2016). As already mentioned,
a vector is extracted over each Inception module us-
ing a GAP layer. Let f; denote the vector extracted
from the kth Inception module. The video frame’s
feature vector is obtained by concatenating the vec-
tors extracted over each Inception module. Formally,
we can write F =f, &f, ® ... ©fy where N denotes the
number of Inception modules in the base CNN and @&
stands for the concatenation operator.

3.2 Video-level Feature Vectors

The frame-level feature vectors of a video sequence
are temporally pooled to produce the video-level fea-
ture vector. Let N;, denote the number of intra-frames
and let FU) stand for the frame-level feature vector re-
lated to the ith intra-frame. In this paper, we adopted
average pooling which proved the best choice for vi-
sual quality assessment in many works (Varga, 2019),
(Bianco et al., 2018). Average pooling can be for-
mally expressed as:

avg 1 j
Vi 8 _ ﬁk ' Z FE/)v (1)
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Figure 1: Architecture of the proposed NR-VQA method. First, the so-called intra-frames are extracted from a video se-
quence using the free and open-source FFmpeg. Second, frame-level feature vectors are extracted from the intra-frames via
a pretrained CNN. Third, video-level feature vectors are formed by temporally pooling the frame-level features. Finally, the
video-level feature vectors are mapped onto perceptual quality scores using a trained SVR.
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Figure 2: Illustration of global average pooling (GAP) layer.
A GAP layer reduces the dimensions A xwxdto1x1xd
by averaging across i X w.

where Fl(.j ) denotes the ith entry of the jth frame-level
feature vector, and V; stands for the ith entry of the
video-level feature vector.

Subsequently, an SVR (Drucker et al., 1997) with
radial basis function (RBF) kernel is trained to learn
the mapping between video-level feature vectors and
corresponding perceptual quality scores.

3.3 Database Compilation and CNN
Fine-tuning

As already mentioned, KoNViD-1k (Hosu et al.,
2017) video quality database was utilized to train and
test the proposed architecture. Specifically, KoNViD-
1k consists of 1,200 videos with authentic distor-
tions sampled from YFCC100m (Thomee et al., 2015)
database. 840 sequences were randomly selected for
training, 120 sequences for validation, and 240 se-
quences for testing. The video sequences’ spatial res-
olution is 960 x 540 in KoNViD-1k and the frame rate
is 25, 27, or 30 fps. Moreover, the length of video
sequences fluctuates between 7 and 8 seconds. The
MOS distribution is depicted in Figure 4.

The intra-frames were extracted from the train-
ing and validation videos. Furthermore, the ex-
tracted intra-frames inherited the quality scores of
their source videos. The fine-tuning of base CNN
models were carried out on the extracted intra-frames
of the training and validation videos. Specifically,

the output softmax layers were replaced by linear, re-
gression layers with one neuron and mean squared
error (MSE) loss function. Moreover, we made ex-
periments to find the optimal input resolution for our
model. To this end, we trained the CNN models us-
ing the original resolution of KoNViD-1k (960 x 540)
and two down-sampled resolutions (480 x 270 and
299 x 299).

4 EXPERIMENTAL RESULTS
AND ANALYSIS

In this section, experimental results and analysis
are shown. First, the evaluation metrics are pre-
sented. Second, the software packages and hardware
resources used in the implementation and testing pro-
cess are given. Subsequently, we present a detailed
parameter study related to the proposed architecture.
Finally, a performance comparison to the state-of-the-
art is shown.

4.1 Evaluation Metrics

The evaluation of objective VQA algorithms is based
on measuring the correlation between ground-truth
quality scores and predicted quality scores. Two
parameters: Pearson’s linear correlation coefficient
(PLCC) and Spearman’s rank order correlation coeffi-
cient (SROCC) are widely used to this end in the liter-
ature. The PLCC between dataset A and B is defined
as

i1 (Ai—A)(B; — B)
ﬁ e VEL (B~
(2)

where A and B denote the average of set A and B, A;
and B; stand for the ith element of set A and B, re-
spectively. For two ranked sets A and B, SROCC is
calculated as

PLCC(A,B)

i1 (A —A)(B; — B)

\/>: AA\/Z

SROCC(A,B)

(3)
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Figure 3: Frame-level feature extraction. A video frame is run through a pretrained CNN body containing Inception modules
(GoogLeNet (Szegedy et al., 2015), Inception-v2, and Inception-v3 are considered in this study). Furthermore, global average
pooling (GAP) layers are attached to each Inception module to extract resolution independent deep features at different
abstraction levels. The features obtained from the Inception modules are concatenated to create the frame-level feature vector.
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Figure 4: MOS distribution in KoNViD-1k (Hosu et al.,
2017). In this database, MOS = 1 represents the lowest
video quality, while MOS = 5 stands for the highest video
quality.

where A and B denote the middle ranks of set A and

B, respectively. The range of values for PLCC and
SROCC is [—1;1]. Furthermore, the closer the value
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is to 1, the better the correlation between ground-truth
and predicted perceptual quality scores. More specif-
ically, PLCC is a number between —1 and +1 that in-
dicates the extent to which two variables are linearly
correlated, while SROCC is the non-parametric ver-
sion of the PLCC and measures the strength and di-
rection of association between two ranked variables.

4.2 Implementation Details

The proposed models were implemented with the
help of Keras! (Chollet et al., 2015) with a Ten-
sorFlow backend (Abadi et al.,, 2016). The intra-
frames were extracted using the free and open-source
FFmpeg® using ffimpeg -i ”$FILE_NAME” -vf ”se-
lect="eq(pict_type, PICT_TYPE_I)’” command. Fur-
ther, the models were trained on a NVidia Geforce
GTX 1080 GPU.

Thttps://keras.io/

Zhttps://www.ffmpeg.org/
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As mentioned above, KoNViD-1k (Hosu et al.,
2017) database was used for training and testing.
Specifically, 840 videos were selected randomly for
the training set and 120 videos were selected ran-
domly for the validation set. The remaining 240
videos were reserved to test the proposed method.
Moreover, average PLCC and SROCC were measured
over 20 random train-validation-test splits.

In all experiments, Adam optimizer (Kingma and
Ba, 2014) was utilized for fine-tuning base CNN ar-
chitectures with default parameters 3; = 0.9 and 3, =
0.999. Unlike stochastic gradient descent, Adam does
not maintain a single learning rate for all weight up-
dates. Instead, Adam adapts the learning rate by cal-
culating an exponential moving average of the gradi-
ent and the squared gradient, while B; and 3, control
the decay rates of these moving averages. Specifi-
cally, the learning rate was set to 10~* and divided by
10 when the validation error stopped improving. Fur-
thermore, early stopping was applied to avoid over-
fitting. This means that training was stopped when
the validation error showed no improvement despite
the decimation of the learning rate. The proposed ar-
chitecture was trained and tested on a PC with 8-core
17-7700K CPU and two NVidia TitanX GPUs.

4.3 Parameter Study

First, we conducted experiments to determine the op-
timal resolution of video frames for fine-tuning base
CNN architectures. Because we trained the proposed
architecture with different resolution images, we were
not able to train all models with exactly the same
batch size because of the memory limitations of the
GPU. Hence, the largest available 2" batch size that
fit on the GPU memory was used for each model.

First, the models were trained on the original res-
olution — 960 x 540 of KoNViD-1k? (Hosu et al.,
2017). Second, the models were trained on images
down-sampled by a factor of two using bilinear in-
terpolation (480 x 270). Finally, we trained the mod-
els on those down-sampled images that correspond to
the minimal input size of Inception-v3 — 299 x 299.
Furthermore, the we measured the performance if all
frames are used in the training and if only the so-
called keyframes are used.

The results of the parameter study are summarized
in Figures 5, 6, 7, and 8. Surprisingly, we found
that models fine-tuned on half-sized video frames
(480 x 270) achieved slightly better results than those
fine-tuned on the original resolution video frames
(960 x 540) or on the video frames with 299 x 299
resolution. One reason for this result could be that

3http://database. mmsp-kn.de/konvid- 1k-database.html

the applied pretrained CNNs are optimized for im-
ages with resolutions smaller than 960 x 540. Fur-
thermore, we were only able to apply a batch size
of two when fine-tuning on 960 x 540-sized images
because of GPU memory limitations. Moreover, the
deeper Inception-v3 base CNN yielded better results
than GoogLeNet or Inception-v2. Our analysis also
demonstrates that CNN fine-tuning improves both
PLCC and SROCC significantly. Figure 5 summa-
rizes the results without fine-tuning. Figure 6, 7, and
8 depict those results when the base CNNs were fine-
tuned on 299 x 299, 480 x 270, and 960 x 540 sized
video frames, respectively. As already mentioned, we
report on average PLCC and SROCC values obtained
by 5-fold cross-validation with 20 repetitions.

Our analysis demonstrated that models trained
only on the so-called intra-frames outperform mod-
els trained on all frames. More specifically, consider-
ing only the intra-frames in the training process im-
proves the performance by 0.05 — 0.1 both in terms of
PLCC and SROCC. Furthermore, the computational
time of a video-level feature vector lasts for approxi-
mately 185 secs if we consider all frames in a video
sequence for KoNViD-1k. In contrast, the computa-
tional time fluctuates between 1.5 - 75 secs (videos
may contain different number of intra-frames) given
the experimental setup described in Section 4.2. As
a consequence, we have shown that processing all
frames is not necessary and a selection strategy is able
to improve performance and decrease computational
time.

On the whole, the best-performing architecture re-
lied on Inception-v3 fine-tuned on half-sized (480 x
270) video frames. Further, intra-frames are selected
in the training and testing procedure. In the next sub-
section, we refer to this model as Multilnception, and
it is compared with other state-of-the-art algorithms.

4.4 Comparison to the State-of-the-Art

We compared the proposed architecture to seven
state-of-the-art NR-VQA methods (V-CORNIA (Ye
et al., 2012), V-NIQE (Mittal et al., 2012b), V-
BLIINDS (Saad et al., 2014), VIIDEO (Mittal et al.,
2015), Inception-v3 + avg. pooling (Varga, 2019),
TLVQM (Korhonen, 2019), VSFA (Li et al., 2019))
whose source code available online. Furthermore, we
reimplemented FC Model (Men et al., 2017). All of
them were trained using those setup that we applied
to our proposed method, that is 960 videos (80%)
were used for training and validation purposes, while
the remaining 240 videos (20%) were utilized in the
testing process. Moreover, the average PLCC and
SROCC values were measured over 20 random train-
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Figure 5: CNN base architecture comparison without fine-tuning.
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Figure 6: CNN base architecture comparison with fine-tuning on resolution 299 x 299.
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Figure 7: CNN base architecture comparison with fine-tuning on resolution 480 x 270.

validation-test splits. The results of the comparison
are summarized in Table 1.

From these results, it can be concluded that the
proposed model is able to outperform state-of-the-
art algorithms. Specifically, the proposed method
improves both PLCC and SROCC by approximately
0.05 compared to TLVQM (Korhonen, 2019), which
is currently one of the best and recent methods pro-
posed in the literature. Moreover, our method was
the only one that produced results over 0.8 of PLCC
and SROCC. We attribute this improvement to the fact
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that our method extracts resolution independent fea-
tures from video frames at different levels of abstrac-
tion using powerful CNN architectures. This state-
ment is supported by the observation that the pro-
posed architecture achieves the state-of-the-art with-
out fine-tuning as well. Namely, the application of
fine-tuning (transfer learning) improves both PLCC
and SROCC by approximately 0.06. The overall 20-
run-results of our proposed method with fine-tuning
are depicted in the form of box plots in Figure 9.
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Figure 8: CNN base architecture comparison with fine-tuning on resolution 960 x 540.

Table 1: Comparison of state-of-the-art NR-VQA algorithms measured on KoNViD-1k (Hosu et al., 2017). Average PLCC
and SROCC values were measured over 20 random train-validation-test splits. Furthermore, the standard deviation values are

given in parentheses. The best average PLCC and SROCC results are typed by bold.

Method PLCC SROCC

V-CORNIA (Ye et al., 2012) 0.586 (0.037) | 0.591 (0.040)

V-NIQE (Mittal et al., 2012b) 0.543 (0.041) | 0.545 (0.043)

V-BLIINDS (Saad et al., 2014) 0.567 (0.044) | 0.578 (0.046)

VIIDEO (Mittal et al., 2015) 0.300 (0.051) | 0.284 (0.049)

FC Model (Men et al., 2017) 0.496 (0.015) | 0.473 (0.015)

Inception-v3 + avg. pooling (Varga, 2019) | 0.783 (0.023) | 0.790 (0.022)

TLVQM (Korhonen, 2019) 0.776 (0.019) | 0.783 (0.020)

VSFA (Li et al., 2019) 0.760 (0.030) | 0.768 (0.030)

Multilnception (without finetuning) 0.769 (0.025) | 0.769 (0.025)

Multilnception 0.828 (0.026) | 0.829 (0.025)
T i trained CNNs. Specifically, we presented a content-
0.89 | = preserving feature extraction method which relies on
0.88 - } } the Inception modules of pretrained CNNs, such as
0.87 } : GoogLeNet or Inception-v3. Unlike previous met-
0.86 - ; ! hods, patches are not taken from the input video
0.85 | | frames but treated them as a whole. More specifically,
0.84 - ] ‘ the frame-level visual features were extracted from
0.3k . . multiple Inception modules and pooled by a global
o8zl average pooling layer together. This way, we incor-
ostl porated both intermediate- and high-level deep repre-
‘ | sentations to the frame-level feature vectors. Another

0.8t | | o . .-

el 0 o contribution of this study was that we showed it is un-

pLcC srocc
Figure 9: The overall 20-run-results of our proposed met-
hod with fine-tuning in the form of box plots. On each box,
the red line indicates the median, the star indicates the me-
an, and the bottom and top edges of the box stand for the
25th abd 75th percentiles, respectively. The whiskers ex-

tend to the most extreme data points.

S CONCLUSIONS

In this paper, we introduced a framework for NR-
VQA relying on visual features extracted from pre-

necessary to process all frames of a video to be eval-
uated. Unlike previous algorithms, we do not exam-
ine all frames. In contrast, only the so-called intra-
frames are considered. We demonstrated that con-
sidering only intra-frames saves computational time
and improves the performance significantly both in
terms of PLCC and SROCC. Finally, we compared
our method to six state-of-the-art NR-VQA methods.
The proposed architecture surpassed the best state-of-
the-art method by approximately in terms of PLCC
and SROCC.
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